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Abstract: Identification of good metaphase is a prerequisite and an essential step in human karyotyping used for analysis of 
genetic abnormalities in human beings. Most of the research work is focused on automation of karyotyping process but 

despite being crucial step very scant attention is given to metaphase selection. The conventional method still used by 
cytogeneticists is a manual visual search of good metaphase spread from microscopic slides. This system is highly dependent 
on individual observations and suffers from majority of drawbacks such as complexity, tediousness, subjective, time 

consuming and needs a trained expertise. Today, there is an increasing demand in automating the process of metaphase 
identification to speed up the Automated Karyotyping so as to provide speedy, consistent and accurate diagnostic results and 
by that effective treatment. This paper is the systematic literature review covering thorough analysis and comparison of 

various reported selection techniques. It also provides directional pointer to future prospects in the research on automated 
metaphase selection tools. 
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1. Introduction  

A Cell is a basic building block of all living organisms which contains thread-like structures called 

chromosomes in its nucleus.  Chromosomes contain DNA (deoxyribonucleic acid) which is tightly coiled around 

protein. They carry valuable hereditary information regarding the individual‟s health in the form of genes [Yunis 

1974]. Each human cell normally has 23 pairs of chromosomes - 22 pairs of autosomes and one pair of Gender 

chromosomes [ Rooney et al., 2001, Tjio 1956]. DNA has the instructions for the synthesis of proteins which 

help in movement of molecules, perform maintenance and structure building activities of the human body. The 

mutation or a change in the gene can change the instructions for making a particular type of protein that causes 

malfunctioning of the protein or absence of the gene [Yunis 1974]. This can result in a medical condition known 

as genetic disorder. The alteration in either number of chromosomes or the structure of the chromosomes leads to 

genetic disorder. Even a small deviation in chromosome count (mutation) results in physical abnormalities 

[Gajendran et al., 2004]. One can get the genetic mutation from either one parent or both the parents; moreover, 

it may also occur during the lifetime. It is important to the doctors to analyse chromosomes for detecting genetic 

disorders in an individual [Munot et al., 2018]. This procedure requires generating a layout of chromosomes 

organized by decreasing size in pairs for each testing cell; this is called a Karyotyping process and performed at 

metaphase stage of the cell cycle. 

A cell cycle has three different stages: interphase, mitosis and cytokinesis. Among which Mitosis has four 

stages - prophase, metaphase, anaphase and telophase [ Rooney et al., 2001]. Chromosome analysis is carried 

out during the metaphase stage as chromosomes becomes relatively shorter and wider and hence visible under 

microscope which are otherwise slick, slender and invisible even under a microscope [Munot et al., 2018].  

These metaphase images are used in karyotyping to prepare Karyogram of an individual which  is a standard 

representation having a layout of chromosomes pairs organized by their decreasing size [Mousami et al., 2016]. 

In karyogram, chromosomes are arranged according to Denvar classification system based on their lengths. 

Cytogeneticists can then perform chromosomal analysis according to the guidelines of the International System 

for Human Cytogenetic Nomenclature (ISCN, 2013) on metaphase images [ Polipalli et al., 2016]. 

Abnormalities in Chromosomes can be structural like distortions in band patterns, rearrangement, translocations 

or variations in chromosome count due to absence or duplication of a chromosome [ Lijiya et al., 2012].    

Such abnormalities are the root cause for many genetic diseases like cancers, mental retardation and autism 

to name a few. By analysing karyotype, cytogeneticists can exactly probe into the chromosomes abnormalities in 

the cell which immediately reveals the possible genetic disorders and thus assist cytogeneticists in early 

diagnosis and effective treatments [ Howard et al., 2017 ]. Chromosome analysis involves a lot of clinical steps 

such as collecting and storing blood samples, culturing and harvesting metaphase, preparing glass slides, 

selecting best metaphase spread and then karyotyping [ Munot et al,. 2013 ] as shown in figure1. 
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1.1. Karyotyping 

Earlier karyotyping process was performed manually by cytogeneticists that involved identification 

metaphase on specimen slides, identification of chromosome in metaphase and then its classification in 

respective groups. This manual method suffered from various drawbacks such as time consuming, tedious, 

laborious and lengthy [ Munot et al,. 2019]. This demanded the need of Automation or use of computers in 

Karyotyping. Initially Ledley had presented the idea of using computers to which enormous contribution has 

been made by researchers in development of an automated karyotyping system (AKS) [Joshi et al., 2013, Ding 

et al.,  2010]. The extensive efforts of researchers in proposing and implementing various method and 

methodologies has lead to availability of AKS system providing promising results with advantages like highly 

efficient, speedy Karyogram completion with less human intervention, facility of interactive and graphical 

environment, long term storage and aids in ease of understanding and analysis of the image and decreased labour 

cost. These karyotyping systems are highly dependent on selection of good metaphase spread and accuracy of 

these systems gets pivoted by metaphase spread. A Metaphase image having good spread, clear banding pattern 

of chromosomes and having minimum number of touching and overlapping chromosomes results in greater 

accuracy of classification of chromosomes in their respective groups during karyotyping [Piper et al., Arora et 

al. , 2016] as shown in figure2. 

1.2. Metaphase Selection 

Although tremendous efforts are taken in automaton of karyotyping, staggeringly metaphase selection step 

still remained manual. Before karyotyping a technologist prepares at least 8-10 glass slides from patient‟s 

samples and uses high end microscope to visually search these slides and identify cells with best metaphase 

spread having well separated chromosomes with clear band patterns and less overlaps [Qui etal. 2010] as shown 

in figure3.  Each slide can have approximately 20 metaphase spreads but not necessarily all will be including 

analyzable metaphases. This metaphase spread count highly depends upon the investigation or type of disorders 

and sometimes merely giving low quality or scarce spreads. Analysts prefer to have at least 20-30 best 

metaphase images with well spread and banded chromosomes for their examination or karyotyping [ Polipalli et 

al., 2016 ]. Technologist thus has to rigorously search large number of cells approximately around 200 

metaphases and should select number of best metaphases for AKS      [ Uttamatanin et al.,2013]. 

 

 
Figure 1. Clinical steps in Karyotyping 

 

 

Figure 2 (a). A metaphase spread of a normal human cell; (b). The corresponding karyotype 
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Figure 3 a). Analyzable metaphase; b). Non-analyzable metaphase 

 

1.3. Manual Method of metaphase selection 

Manual method of metaphase selections has several major setbacks like time consuming, labour intensive, 

complex due substantial number of metaphase scan, tiresome, subjective or biased as it is highly human 

dependent and needs a trained expertise [Korthof et al., 2008], consequently is not an efficient solution for 

selection of the best metaphase images [Kovác et al.,  2009].  

This procedure of metaphase finding apparently needs to be automated using computerised schemes so as to 

facilitate faster diagnosis and effective treatment, highly efficient due to elimination of intra observer variability 

and can be more accurate as quality of metaphase spread can significantly improve karyotyping results which in 

turn improves diagnosis accuracy [ Moazzen et ai, 2019]. 

1.4. Basic Steps in Automated Metaphase Selection: 

A typical automated system for metaphase selection generally includes four fundamental steps: pre-

processing, segmentation, feature extraction followed by Metaphase classification as shown in Figure4. The 

microscopic images acquired need to undergo some pre-processing to improve the quality of desired metaphase 

and remove undesired noise from images. Scanned images may contain small noise objects of low contrast or 

dried border drops of dye etc. once clean image is acquired the Segmentation techniques can be applied to 

extract feature set of metaphase. By suitably employing feature extraction techniques and classification 

techniques, best analyzable metaphases can determined from the scanned slides of specimen. 

 

2. Literature Survey 

The earliest preliminary study was presented by [Castleman, 1992] on commercially available automated 

metaphase finder. This metaphase finder used Bayes type classifier trained for different specimen types on 

binary images. Specific pattern recognition algorithms are used for the selection of metaphases and rejection of 

non-metaphase material. This suffered from drawbacks like time consuming and performance affected by quality 

of input samples and variability in spread count per metaphase and wasn‟t able to provide accuracy more than 

80%.  

Another system Metafer2 presented by Grell et al. (1991) and Weber et al. (1992) reported to be more time 

efficient but haven‟t included the detailed analysis of the same. [ R. Huber et al. 1995 ] have assessed the 

performance and efficiency of this Metafer 2 system on metaphases of rat liver cells. This Metafer2 is based on a 

binary image analysis technique having programmable threshold and uses three-step algorithm for detection of 

metaphase on scanned slide frame. 

 

 

          
Figure 4 Steps in Automated metaphase Selection 

Microscopic images 
Best metaphase image 
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In the first step the system finds candidate metaphase which has higher line values of band pass filtered 

object. In second step, system looks for higher column values of these candidate metaphases. Last step uses rapid 

contour following algorithm on binary image within the rectangle set by first two steps for further detail analysis. 

The system computes its features and classifies it into two classes as 'metaphase' or 'non-metaphase' using 

multivariate statistical classifiers and provides higher accuracy in simple cases having separated chromosomes. 

The classification is highly dependent on binary images generated by comparing input images with a 

programmable threshold hence threshold selection is crucial and prone to lose small structural details during this 

step. System‟s classification accuracy gets affected by the number of additional, overlapping or touching 

chromosomes present in the binary image. Moreover the system performance is not evaluated on non-aberrant 

metaphases hence it remains unexplored. 

Corkidi et al. 1998  introduced a novel feature Mean Depth-Width Ratio of Extrema (MDWRE) which is a 

roughness feature of surface-intensity image and used it for the automatically estimating mitotic index in cell 

proliferation. A mitotic index is the percentage of cells that are in the process of division stage. This helped in 

identifying variable-shaped metaphases and interphase nuclei on microscopic images even in the presence of 

artefacts. After acquiring images, segmentation performed by Otsu‟s method which had two problems, firstly it 

failed to detect stimulated nuclei brighter than set threshold and secondly it segmented chromosomes of the 

scattered metaphases as single objects instead of a cluster. 

A stereological-inspired approach was implemented wherein density of particular two-dimensional extrema 

(roughs), is estimated to extract texture roughness of low-resolution images. It analyzes features of roughness 

such as mean value and the shape of the distribution of the depth-width ratio of selected extrema. Both these 

features claimed to be distinctive feature of mitotic chromosome clusters and interphase nuclei. 

MDWRE feature extraction provided excellent results in detection of artefacts, but did not perform well in 

detection of metaphases and nuclei. Secondly, as MDWRE uses mean value, it fails to detect fine  

Further work to improve the accuracy and speed of detection of a neural network classifier has been devised 

by [Cosio et al. 2001]. Neural network is used to classify each segmented object using its ten distinct 

morphological features into three classes: metaphases, nuclei and artifacts. A data set of 909 patterns (191 

metaphases, 331 nuclei and 387 artifacts) partially used for training and testing of NN which have three-layer 

feed forward architecture. 

Although the neural network classifier out performs previous systems, it faces difficulty in automation of MI 

because of higher probability of finding artifacts than metaphases. 

Machine Learning based methodology was reported by [Qui 2016] for identifying and classifying metaphases 

into analyzable and unanalysable groups. Pre-processing and segmentation techniques such as Median filtering, 

adjustable threshold and Four-connectivity component labelling algorithm are used to detect chromosomes and 

lessen the effect of background and artifact noise in microscopic images. Five image features such as number of 

labelled regions, size, circularity, average grey value and radial length of each region to the cell centre are 

extracted from these labelled regions and are applied to machine learning classifiers. Two different machine 

learning algorithms which are explored and tested are Decision Tree (DT) and Artificial Neural network (ANN). 

Both the classifiers are implemented to classify images into two classes analyzable and non analyzable. 

The DT with four horizontal layers and five nodes compares computed features of individual chromosomes 

with a set threshold at each node and classifies the respective class. Metaphases having higher individual and 

recognizable chromosomes are classified as analyzable by DT. 

Another approach using ANN works on features computed from all labelled regions in one acquired image 

region of interest (ROI). Features considered for classification are six features, which are number of labelled 

regions, their average size, standard deviation of region size and pixel value, average pixel value of all regions 

and average radial length of all regions. 

Both the classifiers performed well in classifying metaphases with DT accuracy slightly higher in detecting 

analyzable whereas ANN in non-analyzable metaphases. Performance of the system in terms of accuracy is 

curbed by use of limited databases and preselected microscopic images with at least one metaphase cell. 

Moreover there is no substantial verification of system results by different cytogeneticists (merely one) hence 

cannot be proven against inter observer variability parameters.  

Kovács et al. 2009  suggested and implemented a two pass algorithm on digitized microscopic slides for 

faster detection of metaphases. First step is coarsely localizing possible metaphase structures in image and in 

second step performs recognition of finer details such as size of metaphase. The diameter of the metaphases is 



Turkish Journal of Computer and Mathematics Education 

 

__________________________________________________________________________________ 

3262 
 

 

 

Research Article  

Vol.12 No.6 (2021), 3258-3266 

estimated as two times the diameter of the biggest round cells localized in the first step. The method uses Otsu 

threshold and component labelling algorithm to detect location of metaphase. To find the size of chromosome 

metaphases, it uses Hough- transform to find round cells on the scan which helps to calculate coarse resolution 

of recognizable metaphases.  

System performs faster in detection and improved time efficiency. However, for their algorithm the diameter 

of chromosome metaphases (metaphase size) is measured manually. Furthermore, the system suffers from need 

of human intervention to note the chromosome metaphases manually on the scans and need to be improvised.  

Uttamatanin et al. 2013  proposed applying a rule based classification of chromosomes to address the issue 

of good metaphase spreads selection. This Methodology worked on classification of chromosomes into four 

main classes with straight individual chromosomes as first, bended individuals as second, overlapping 

chromosomes and artifacts as third and fourth class respectively. After performing pre-processing and 

segmentation on the scanned image, segments are arranged in vertical orientation to facilitate calculation of its 

geometrical features; width, height, and estimated area ratio. Width and height parameters of chromosome 

segments have been proved pivotal in classifying the chromosomes into respective classes.  

Based on statistical models, threshold value for each parameter is decided i.e. Gaussian model gives a 

67.84% threshold value for area ratio classifying chromosomes above this being in straight class. To remove 

artifacts from this class, threshold check on average width is performed; Width ratio between 0.98 and 1.15 

classified in class 1 as straight chromosome and outliers being discarded as artifacts (class 4). This threshold 

value for object width is determined by empirical and Gaussian probability distribution of width ratio. 

Chromosomes having area ratio less than threshold belong to either bended individual or overlapping 

chromosomes. Such objects are rechecked on its height parameter for elimination of artifacts. For separation of 

bended individuals and overlapping chromosomes, threshold check is performed on maximum width ratio. The 

proposed system performs efficiently with satisfying accuracies with straight chromosome class but accuracy 

declines for of bended and overlapped chromosomes. After classification the images are ranked according to 

their total number of individual chromosomes present in class 1 and 2, with higher ranking are considered to be 

of good quality and analyzable.  

Although a special software tool called Metasel is developed for quickly ranking metaphases using the above 

method but major hindrance is the need of cytogeneticists to select metaphase spread image from rankings and 

provide it to perform karyotyping. So the system doesn‟t automatically select the best metaphase spread rather it 

assists cytogeneticists in choosing the most probable best metaphases. 

Another similar approach was presented by Arora et al. 2017 for detecting and ranking of metaphases but 

lacked in touching upon automatic selection of metaphases. One more study investigated and presented by 

Hakan et al. [28] which implemented again only the detection of metaphases from microscopic images and did 

not address selection techniques. The System uses a filter called Meta filter for detection and is claimed to be a 

low cost system for metaphase finding. 

A two-stage automated metaphase-finding scheme proposed by Moazzen et al. 2019 has two steps: 

metaphase detection and selection.  For metaphase detection, image processing techniques are employed whereas 

selection stage has been implemented with a deep convolutional neural network.  

The Candidate Metaphase Detection (CMD) finds all candidate metaphase cells by image segmentation 

techniques on 10x microscopic images.  This eliminates stains and undivided cells by observing morphological 

properties like circularity and pixel information of these objects. A complete metaphase spread cell‟s regions are 

saved by dilation methods to connect neighbour chromosomes of metaphase cells. All these detected ROI 

applied to a pre-trained deep CNN to find the best analyzable metaphases. 

Recently, with emerge of deep neural networks(DNN) it has become possible to increase the accuracy in 

medical diagnosis while avoiding the chromosome segmentation and feature extraction steps [Cheikh et al., 

2020 , Bar et al., 2015]. DNN are made of multiple layers of neurons which automatically learns and classifies 

the images into appropriate classes after suitable training[ Qui et al., 2020]. Because of its interesting trademark, 

this profound learning technique has been applied in the clinical field to diagnose various diseases like cancer [ 

Navab et al., 2015 ] , chest pathology[ Bar et al., 2015], brain tissue identification [Zhang et al., 2015]. 

One such attempt made by Qiu et al. 2020 developed a computer aided detection (CAD) scheme using eight 

layer neural network. First six layers learns the features while last two MLP based layers identifies analyzable 

metaphases from images. Receiver operation characteristic (ROC) method is used to analyse performance of 

CAD system which proved the system resulting higher the accuracy with AUC of 0.8. The major drawback of 

the study is limited dataset which demands for further in-depth study. 
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Remya R. S. et al. 2020 proposed a sequential Convolutional Neural Network (CNN) model having five 

layered structure with four convolution-pooling and one completely connected and  last layer of output neurons. 

The output layer contains two neurons for two classes as analyzable/ un-analyzable. Experiment results of model 

shows a training and validation accuracy of 87 and 88% respectively. Experimentation on the limited dataset, 

handling of only fixed size images in RGB space due to limited computational resources and ranking of 

analyzable metaphases needs to be addressed further. 

3. Discussion and Conclusion 

In Cytogenetic analysis Metaphase selection can be broadly viewed as a two process: Detection of metaphase 

on scanned microscopic image and selection of the detected metaphases for AKS system.  

The traditional manual method suffers from numerous drawbacks such as exhaustive, complex, subjective, 

time consuming, storage problem, expensive, need of expertise and hence necessities the automation through 

present day technology. Research carried out in this area has still not given the optimum accuracies in detecting 

analyzable metaphases and hardly any work is done in selecting best metaphase and passing it automatically for 

karyotyping which expedites end to end atomization.  

The suboptimal accuracies of metaphase detection and finding analyzable metaphases have underlying causes 

such as type of sample, quality of specimen dependant on slide preparation techniques, magnification power of 

microscope lens, inherent count variation of number of metaphases due to genetic disorders, staining methods 

etc.    

Analyzable metaphase images should contain a large number of individuals, well-separated straight 

chromosomes, clear band patterns and fewer artifacts. Most of the efforts were put in to identify metaphases in 

microscopic slides and group them into analyzable or un analyzable metaphases and very few have worked 

towards analyzing the quality of the detected metaphases as that‟s the basis for AKS. Few such attempts were 

made by researchers which used a ranking system for detected metaphases and metaphases with higher ranking 

are considered to be of „best quality‟. 

Commercial systems are available earlier since not more than the 90's decade. One of such systems [ 

Castleman  1992 ] was developed and deployed in practice but fails in giving accuracy more than 80% and even 

does not suffice on faster detection. One more such system metafer2 [ Huber 1995 ] has highly dependent 

classification accuracy on the set threshold and presence of overlapping or touching chromosomes. Recently 

introduced metasel [ Uttamatanin, 2013] uses rule based classifiers for identification and ranking of metaphases 

and performs very well in terms of accuracies reaching 99.42% in case of straight, individual chromosomes but 

experiences decline for  bended and overlapped chromosomes.  Besides this, a major drawback is human 

intervention needed to select a metaphase spread image from rankings and pass it for AKS. 

Irrespective of these progressing systems available commercially, they lack in gaining acceptance and 

practical deployment by genetic laboratories because of performance issues and thus still provide scope for 

further research. Thirst for producing accurate results has kept the researchers zestful towards exploring different 

image processing techniques in various stages of metaphase selection.  

With the aid of simple and effective image pre-processing algorithms such as Median filtering [ Qiu et al 

2016 ] band pass filtering  facilitates on improving signal to noise ratio, background suppression and increasing 

the quality of low contrast metaphase images which indirectly improves chromosome classification accuracy.  

For segmentation of metaphases thresholding techniques have been popularly used and are proved effective. 

Some of the methods employed empirical values while some used statistical models to eliminate the bias in 

setting it. Performance of automated metaphase selection system significantly hinges upon selection of 

segmented images and Extraction methods used.  

Feature extraction of a metaphase images puts a strenuous challenge on automated selection as it is highly 

affected by parameters like resolutions and quality of the image, number of overlapping and touching 

chromosomes, bended and highly curved chromosomes etc.  

Geometrical features are the most used feature set for metaphase selection.  Researchers have developed 

systems by working on diverse number of features from as few as three to as many as ten [ Cosío, , 2010 , 

Yilmaz , 2017]. These geometrical features include width, height, estimated area ratio, labeled region, size, 

circularity, average gray value and radial length of each region, normalized area, centromeric ratio or arm ratio 

etc. Few attempts also have been made on working with morphometrical, photo metrical and textural features, 

while a novel feature MDWRE which is a roughness feature of surface-intensity image is used by Cosío et al. 

2001]. Another such method devised by [ Uttamatanin et al. 2006 ]  that works on shape and band features of 

metaphase images for its classification have provided encouraging results . 
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The final step in an automated metaphase system is classification of metaphases. Majority of the systems 

works on classifying the metaphase into two classes: analyzable or un analyzable. While some work goes a step 

ahead and provides ranking or quality factor for the analyzable metaphases so as to assist cytogeneticists in 

effective karyotyping. 

A wide variety of classification algorithms like rule-based classifiers, decision tree, Bayes classifiers and 

ANN have been proposed and implemented in literature. Among these, statistical algorithms and artificial 

intelligence approaches have been proved better performing. Recently introduced DNN based approaches [Qiu 

2020 , Remya 2020 ] proved to be improving with detection accuracy but still need further research on use of 

extensive dataset so as to make the system robust. Table I compares the classification accuracies of methods 

reported in the literature. Numerous commercial and non-commercial developments presented and implemented 

by research community have limited success in building intelligent systems with complete automation, 

consistent and promising accuracies regardless of quality parameters of metaphases and appreciable time 

efficiency. 

Table 1.  Performance comparison of the various methods 

Reference. Features used Approach 
No. of 

classes 

Classification 

method 
Accuracy Time 

Castleman 

1992 
- 

Detection, 

Ranking 
2 - 80% Slow 

Huber 

1995 
Geometric  2 

multivariate 

statistical 

classifier 

* Slow 

Corkidi 

1998 

Geometric and 

textural 
Detection 2 - 85% - 

Cosio 

2001 

Morphometrical, 

photometrical and 

textural  

Detection 3 
Neural 

Networks 
91%  

Gajendran 

2004 
Geometric  0 Not used * Slow 

Qiu  

2010 

Geometric and 

Intensity 
 5 

Decision 

trees 

 and ANN 

- Slow 

Kovac 

2009 
Geometric Detection 2 

fast 

component 

analysis  

80% Fast 

Uttamatanin 

2013 

Geometric and 

intensity  

 

Detection, 

Ranking 

2  

 

Rule based 

Classifier 
- Fast 

Tanvi 

2016 
Geometric 

Detection, 

Ranking 
5 

CVR 

classifier 
96.5% Fast 

Yilmaz 

2017 
Geometric Detection 2 - 98.8% Fast 

Maozen 

2019 
Morphological 

Detection, 

Selection 
2 

Rule based 

Classifier 

and NN 

99.33% Fast 

Qui 2016 NA Detection 2 MLP 
AUC of 

0.886±0.043 

Fast 

Remya 

2020 
NA Detection 2 CNN 

88.34% 

On 

Validation 

Fast 

 

 

 

The developed systems have yet not proved to be fully successful in terms of detection accuracy as compared 

to an expert cytogeneticist and hence suffer from having error rates which are unacceptable in sensitive field of 

medical treatments.  Research in machine learning is also increasing exponentially leading to many advanced 

algorithms like GAN, DNN whose utility can be further be explored for development of automated metaphase 
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selection technique for karyotyping. The designed selection tools can further be customised and tailored for 

which the karyotyping is addressed. Such a selection tool will have a wide scope of applications in genetic labs 

and will serve as a boon for cytogeticists. 
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