
Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6571

Using logic rules to achieve interpretable Convolutional Neural Network

Vahid Bahrami Foroutan

a and Elham Bahrami Foroutan b
a Higher Educational Complex of Saravan, Iran.
b University of Bremen, Germany.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021;

Published online: 10 May 2021

Abstract: Using logic rules in the Convolutional Neural Network (CNN) is helpful of CNN. The motivation of our paper is to
show that there is a possibility to turn black box to white box. Moreover, in the proposed methodology, the output and output
production (convolutional formula) will be interpretable. In our paper, it is shown that it would be possible to go from LCNN to
CNN and vice versa. For this reason, score function is developed using quantum logic formula. Therefore, it is proven that there
are some rules between input and output and the way of output production could be interpreted by the rules. This rules help us

to understand CNN method.

Keywords: Logic, CNN, LCNN, Score function

1. Introduction

CNN provides a useful mechanism for learning patterns. However, the problem of CNN is that its results are not

interpretable for human. Thus, using logic rules would be beneficial in order to achieve interpretable CNN. Some

relevant papers are investigated to use rules in CNN. In [1], a CNN-based deep learning structure is applied as the

fundamental building block of a data-driven classification network. A FL (Fuzzy Logic) based layer is presented as

an integral part of the overall CNN structure which acts as the main classification layer of the deep learning structure.

One could extract directly from the deep learning structure linguistic rules in the form of a FL rule-base. Reference

[2], presents a system called Churn-teacher using an iterative distillation method which transfers the knowledge,

elicited using just the combination of three logic rules (𝑋&𝑌 = 𝑚𝑎𝑥{𝑋 + 𝑌- 1.0}, 𝑋 ∨ 𝑌 = 𝑚𝑖𝑛{𝑋 + 𝑌. 1}, 𝑋1 ∧

… ∧ 𝑋𝑁 = ∑𝑖
𝑋𝑖

𝑁
) into the weight of Deep Neural Networks. Authors investigate the use of CNNs augmented with

structured logic rules to overcome or reduce uninterpretability. Authors used the mean for assessing results. In [3],

a novel critic learning based deep convolutional neural network framework is presented to address drawbacks.

Papers [4-6] also focused on CNN drawbacks papers. All above mentioned papers suffer from two deficiencies.

First, the prior-knowledge given may be incorrect sometimes. Although, the methods do not have influence on the

knowledge rules adaptively. Second, most of the existing studies regard only simple knowledge rules, and more

sophisticated structures are ignored or not carefully used. In [3] their work is a two-branch CNN model, where one

branch for creating a predictor from text features and the other one to train a predictor with the given knowledge

rules. In our paper, score function is developed as an innovative work using quantum logic formula [10] where

inputs scaled to interval ∈[0,1]. In QL [10] an scheme is presented which applies conjunction between inputs based

on weighting that we use it. For classification of images (Chair, Cat, Cow, Clothes) assume some features for input,

output is the interpretation of results (class of assumed input). For example, there are some pictures and the purpose

is to find a cat, inputs are some features and output is the interpretation of cat. According to the Fig. 1, there are four

classes.

Figure 1. Classification of images(chair, cat, cow, clothes).

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6572

2. Problem

 The problem is that CNN is a black box. The motivation of our paper is to show that there is a possibility to turn

black box to white box. Moreover, in the proposed methodology, the output and output production (convolutional

formula) will be interpretable. In our paper, it is shown that it would be possible to go from LCNN to CNN and vice

versa.

3. Proposed solution

 For finding a solution, it must be proven that there are some rules between input and output and the output

production could be interpreted by the rules and proven that there is a relation between input and output. This rules

help us to understand CNN method.

4. Idea of solution

 We use these rules in our work :

Definition 1: Let 𝜇1. 𝜇2 be CQQL conditions and Θ = {Θ1. … . Θ𝑛} with Θ𝑖 ∈ [0,1] a set of weights [10].

 ∧Θ1.Θ2
(𝜇1. 𝜇2) ⇒ (𝜇1 ∨ ¬Θ1) ∧ (𝜇2 ∨ ¬Θ2) (1)

 ∨Θ1.Θ2
(𝜇1. 𝜇2) ⇒ (𝜇1 ∧ Θ1) ∨ (𝜇2 ∧ Θ2) (2)

Definition 2: Let 𝜇(𝑜1. 𝑜2) be a CQQL condition on objects 𝑜1and 𝑜2 in the required syntactical form, then

𝑒𝑣𝑎𝑙1(𝜇(𝑜1, 𝑜2)) is recursively defined as [10, 11]:

 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2) ∧ 𝜇2(𝑜1 . 𝑜2)) = 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)). 𝑒𝑣𝑎𝑙1(𝜇2(𝑜1. 𝑜2)) (3)

𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2) ∨ 𝜇2(𝑜1. 𝑜2)) = 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)) + 𝑒𝑣𝑎𝑙1(𝜇2(𝑜1. 𝑜2)) − 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)). 𝑒𝑣𝑎𝑙1(𝜇2(𝑜1. 𝑜2))

(4)

 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2) ∨ 𝜇2(𝑜1 . 𝑜2)) = 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)) + 𝑒𝑣𝑎𝑙1(𝜇2(𝑜1. 𝑜2)) (5)

 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)) = 1 − 𝑒𝑣𝑎𝑙1(𝜇1(𝑜1. 𝑜2)) (6)

 Equation 3, 4 are used when 𝜇1 and 𝜇2 are not exclusive and equation 5 is used when 𝜇1 and 𝜇2 are exclusive.

Definition 3: According to [10] we use this formula:

 𝑑 ∧Θ1.Θ2
𝑓 = (𝑑 + (1 − Θ1) − 𝑑(1 − Θ1))(𝑓 + (1 − Θ2) − 𝑓(1 − Θ2))

where f, d are conditions and Θ1, Θ2 are weights. First, the idea is to develop score function (in CNN, 𝑓(𝑥) =
𝑤 ∗ 𝑋 + 𝑏 is called score function where X is an input matrix and 𝑤 is a weight matrix and b is a bias matrix) as an

innovative work using quantum logic formula [10] (Definition 1 and 2 and 3) where inputs scaled to interval∈ [0,1].

At the beginning assume two inputs x1, y1 ∈ [0,1], where x1, y1 are features of images and a weight matrix 𝑤 =

{𝑤𝑖𝑗} ∈ [0,1] and i∈ {1.2}, j∈ {1.2}. Then we will create matrix X=(
𝑥1 𝑦1
¬𝑥1 ¬𝑦1

). Following rules are used in this

idea instead of 𝑤 ∗ 𝑋 in score function (according to Definition 1 and 2 and 3):

 (𝑥1 ∧𝑤11.𝑤12
𝑦1) = (𝑥1 + (1 − 𝑤11) − 𝑥1(1 − 𝑤11)) ∗ (𝑦1 + (1 − 𝑤12) − 𝑦1(1 − 𝑤12))

(7)

 (¬𝑥1 ∧𝑤21.𝑤12
𝑦1) = ((1 − 𝑥1) + (1 − 𝑤21) − (1 − 𝑥1)(1 − 𝑤21)) ∗ (𝑦1 + (1 − 𝑤12) − 𝑦1(1 − 𝑤12))

 (8)

 (¬𝑥1 ∧𝑤21.𝑤22
¬𝑦1) = ((1 − 𝑥1) + (1 − 𝑤21) − (1 − 𝑥1)(1 − 𝑤21)) ∗ ((1 − 𝑦1) + (1 − 𝑤22) − (1 −

𝑦1)(1 − 𝑤22)) (9)

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6573

 (𝑥1 ∧𝑤11.𝑤22
¬𝑦1) = (𝑥1 + (1 − 𝑤11) − 𝑥1(1 − 𝑤11)) ∗ ((1 − 𝑦1) + (1 − 𝑤22) − (1 − 𝑦1)(1 − 𝑤22))

(10)

 There are four conjunctions in our work (if we assume the bias is zero):

 (𝑥1 ∧𝑤11.𝑤12
𝑦1) = 𝐴 (11)

 (¬𝑥1 ∧𝑤21.𝑤12
𝑦1) = 𝐵 (12)

 (¬𝑥1 ∧𝑤11.𝑤22
¬𝑦1) = 𝐶 (13)

 (𝑥1 ∧𝑤11.𝑤22
¬𝑦1) = 𝐷 (14)

 Then disjunction is applied between these minterms according to formula below (there is the arithmetic forms

below for it, Because the purpose is to have a formula from disjunctive normal form):

 𝐴 ∨𝑤′11.𝑤′12
𝐵 = (𝐴 ∗ 𝑤′11) + (𝐵 ∗ 𝑤′12) (15)

 ∨𝑤′11.𝑤′12.𝑤′21.𝑤′22
(𝐴. 𝐵. 𝐶. 𝐷) = 𝐴 ∗ 𝑤′11 + 𝐵 ∗ 𝑤′12 + 𝐶 ∗ 𝑤′21 + 𝐷 ∗ 𝑤′22 (16)

 Where 𝑤′ = {𝑤′𝑖𝑗} ∈ [0,1] is the result of training of weighting (see section 6.1). Second, we will create a

trained CNN and compare its output with the output of following logical formula to prove that there is a logical rule

in CNN (see more details about trained CNN in section 7, table 3).

 (𝑎1 ∧ 𝑏1) = 𝑎1 ∗ 𝑏1 (17)

 (¬𝑎1 ∧ 𝑏1) = (1.0 − 𝑎1) ∗ 𝑏1 (18)

 (𝑎1 ∧ ¬𝑏1) = 𝑎1 ∗ (1.0 − 𝑏1) (19)

 (¬𝑎1 ∧ ¬𝑏1) = (1.0 − 𝑎1) ∗ (1.0 − 𝑏1) (20)

 (𝑎1 ∨ 𝑏1) = 𝑎1 + 𝑏1 − 𝑎1 ∗ 𝑏1 (21)

 ¬𝑎1 = (1.0 − 𝑎1) (22)

 ¬𝑏1 = (1.0 − 𝑏1) (23)

Where a1, b1 are inputs in trained CNN (a1, b1 ∈ [0,1]). In this method, it is proven that it would be possible to

get to LCNN from CNN and vice versa.

 𝐶𝑁𝑁 ⇐ 𝐿𝐶𝑁𝑁

5. Input and output

 Input: Inputs are the features of the images.

Output: Output is the result of disjunction between below minterms (means output is the name of class according

to input features):

 (𝑥1 ∧𝑤11,𝑤12
𝑦1) = 𝐴 (24)

 ,

 ((¬𝑥1) ∧𝑤21,𝑤12
𝑦1) = 𝐵 (25)

 ,

 ((¬𝑥1) ∧𝑤21,𝑤22
(¬𝑦1)) = 𝐶 (26)

 ,

 (𝑥1 ∧𝑤11,𝑤22
(¬𝑦1)) = 𝐷 (27)

6. Details of solution

 The training data is according to table below. In this table there are four pictures with two features (color and

texture). Color feature has two values, white and black and texture feature has two values, iron and non iron. There

are four classes in this table: Chair, Cat, Cow, Clothes.

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6574

Table 1: Training data.

picture color texture class

 white black iron non iron

1 0.19 0 0 0.8 Cat

2 0 0.22 0.72 0 Chair

3 0 0.35 0 0.67 Cow

4 0.20 0 0 0.70 Clothes

And the testing data is according to table 2. In this table there are four pictures with two features (color and

texture). Color feature has two values, white and black and texture feature has two values, iron and non iron. There

are four classes in this table: Chair, Cat, Cow, Clothes.

Table 2: Testing data.

picture color texture class

 white black iron non iron

1 0.22 0 0 0.9 Cat

2 0 0.42 0.63 0 Chair

3 0 0.17 0 0.14 Cow

4 0.46 0 0 0.37 Clothes

At the beginning, assume two inputs x1, y1∈ [0,1], that x1, y1 are features of images and a weight matrix 𝑤 =

{𝑤𝑖𝑗} ∈ [0,1] and i∈ {1,2}, 𝑗 ∈ {1,2}. An input matrix X((
𝑥1 𝑦1
¬𝑥1 ¬𝑦1

)) is generated then conjunction is applied,

following formulas in logic are used:

 (𝑥1 ∧𝑤11.𝑤12
𝑦1) = (𝑥1 + (1 − 𝑤11) − 𝑥1(1 − 𝑤11)) ∗ (𝑦1 + (1 − 𝑤12) − 𝑦1(1 − 𝑤12)) (28)

 ((¬𝑥1) ∧𝑤21.𝑤12
𝑦1) = ((1 − 𝑥1) + (1 − 𝑤11) − (1 − 𝑥1)(1 − 𝑤11)) ∗ (𝑦1 + (1 − 𝑤12) − 𝑦1(1 − 𝑤12))

 (29)

 ((¬𝑥1) ∧𝑤21.𝑤22
(¬𝑦1)) = ((1 − 𝑥1) + (1 − 𝑤11) − (1 − 𝑥1)(1 − 𝑤11)) ∗ ((1 − 𝑦1) + (1 − 𝑤12) − (1 −

𝑦1)(1 − 𝑤12))

(30)

 (𝑥1 ∧𝑤11.𝑤22
(¬𝑦1)) = (𝑥1 + (1 − 𝑤11) − 𝑥1(1 − 𝑤11)) ∗ ((1 − 𝑦1) + (1 − 𝑤12) − (1 − 𝑦1)(1 − 𝑤12))

 (31)

 and

 ¬𝑥1 = 1 − 𝑥1 (32)

 ¬𝑦1 = 1 − 𝑦1 (33)

 Conjunction between two elements is according to following picture(1. Orange arrow 2. Green arrow 3. Blue

arrow 4. Yellow arrow).

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6575

Figure 2: Conjunction between two elements.

Then disjunction is applied between minterms that have been created previously. Because the goal is to find a

formula and every formula could be express by normal form and here disjunctive normal form is used.

 ∨𝑤′11.𝑤′12.𝑤′21.𝑤′22
(𝐴. 𝐵. 𝐶. 𝐷)

Here, every minterm has a weight of 𝑤′. 𝑤′ = 𝑤′𝑖𝑗 ∈ [0,1] and this matrix is generated by learning. The goal is

to have an arithmetic form from the formula above. So, following formulas are used (with two inputs x1, y1):

 (𝑥1 ∧𝑤11.𝑤12
𝑦1) = 𝐴 (34)

 ((¬𝑥1) ∧𝑤21.𝑤12
𝑦1) = 𝐵 (35)

 ((¬𝑥1) ∧𝑤21.𝑤22
(¬𝑦1)) = 𝐶 (36)

 (𝑥1 ∧𝑤11.𝑤22
(¬𝑦1)) = 𝐷 (37)

 𝐴 ∨𝑤′11.𝑤′12
𝐵 = (𝐴 ∗ 𝑤′11) + (𝐵 ∗ 𝑤′12) (38)

 ∨𝑤′11.𝑤′12.𝑤′21.𝑤′22
(𝐴. 𝐵. 𝐶. 𝐷) = 𝐴 ∗ 𝑤′11 + 𝐵 ∗ 𝑤′12 + 𝐶 ∗ 𝑤′21 + 𝐷 ∗ 𝑤′22 (39)

6.1. logical rules in CNN

 According to formula above, we can use them in CNN. In CNN, formulas below are basic statements of neuron

in which output depends on the sum of product of the input with a weight. It is named a score function that maps

the raw data to class scores:

 𝑠(𝑥. 𝑤. 𝑏) = 𝑤 ∗ 𝑥 + 𝑏 (40)

 𝑓(𝑥. 𝑤) = 𝑤 ∗ 𝑥 (41)

 In our work, this formula is developed to 𝑠(𝑋. 𝑤. 𝑏) = 𝑓(𝑋. 𝑤) + 𝑏 in CNN(in this example 𝑖 ∈ {1.2}, 𝑗 ∈ {1.2}

and 𝑖′ ∈ {1.2}, 𝑗′ ∈ {1.2} and 𝑓(𝑋. 𝑤) is developed to):

 𝑓(𝑋𝑖𝑗 . 𝑤𝑖𝑗) = 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖′𝑗′) = {

𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋11) if 𝑖 = 𝑛 and j = n.

𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋2𝑖) if 𝑖 = 1 and j = n.

𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖𝑗+1) if 𝑖 and j.

 (42)

 According to the 24th rule to 27th one, we have:

 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋11) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗)) ∗ (𝑋11 + (1 − 𝑤11) − 𝑋11(1 − 𝑤11)) (43)

 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋2𝑖) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗)) ∗ (𝑋2𝑖 + (1 − 𝑤2𝑖) − 𝑋2𝑖(1 − 𝑤2𝑖)) (44)

 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖𝑗+1) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗)) ∗

 (𝑋𝑖𝑗+1 + (1 − 𝑤𝑖𝑗+1) − 𝑋𝑖𝑗+1(1 − 𝑤𝑖𝑗+1)) (45)

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6576

 Where 𝑋𝑖𝑗 belongs to matrix X for example value of 𝑋11 is x1 and 𝑋12 is y1 ,... . Also there is |{𝑓𝑖𝑗}| = 2 ∗ 𝑁

that N is the number of input (in this example N=2). In output is used ReLu (The range of ReLu is[0, s1) because

in each layer, loss function is reducing):

 𝐹(𝑠) = 𝑚𝑎𝑥(0. 𝑠) (46)

 Target function is the loss function:

 𝐿𝑖 = ∑𝑗≠𝑦𝑖
𝑚𝑎𝑥(0. 𝑠𝑖 − 𝑠𝑦𝑗

+ 1) (47)

 𝑠𝑗 = 𝑓(𝑋. 𝑤)𝑗 (48)

 𝑓(𝑋𝑖𝑗 . 𝑤𝑖𝑗) = 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖′𝑗′) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗)) ∗

 (𝑋𝑖′𝑗′ + (1 − 𝑤𝑖′𝑗′) − 𝑋′𝑖′𝑗(1 − 𝑤𝑖′𝑗′)) (49)

Function 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 , 𝑋𝑖′𝑗′) has been explained earlier. The proposed method is based on Fig. 3.

Figure 3: Paper method.

Where the orange arrows have a weight 𝑤11, the gray arrows have a weight 𝑤21, the yellow ones have a weight

𝑤12 and the green ones have a weight 𝑤22. For example, assume CNN searches a cat and matrix X is generated

from two values x1=iron=0.19, y1=white=0.8 (with four classes according to Fig. 4).

Figure 4: matrix X from two values x1, y1.

 The objective is to compare results obtained from CNN and proposed approach. Now consider matrix X that

has been generated from 0.19, 0.8, (1-0.19), (1-0.8):(
0.19 0.8
0.81 0.2

) and matrix 𝑤 (Weighting matrix values are

randomly selected.): (
0.95 0.87
0.48 0.683

) and b: (
0.1 0.12
0.08 0.01

). There is 𝑓(𝑋𝑖𝑗 . 𝑤𝑖𝑗) = 𝑤𝑖𝑗 ∗ 𝑋𝑖𝑗 in CNN (without our

method 𝑖 ∈ {1.2}, 𝑗 ∈ {1,2}) that result is: (
0.1805 0.696
0.388 0.136

). With considering outputs and b result matrix is

(
0.1805 0.696
0.388 0.136

) + (
0.1 0.12
0.08 0.01

) = (
0.2805 0.816
0.468 0.137

). Here, loss function is L=0.359. Relu is:

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6577

 𝐹(𝑓(𝑋. 𝑤) + 𝑏) = 𝑚𝑎𝑥(0. 𝑓(𝑋. 𝑤) + 𝑏) = (
0.2805 0.816
0.468 0.137

)

result is y1=0.816 in CNN. It means this is a member of the Cat class with feature of white.

Now consider matrix X that has been generated from 0.19, 0.8, (1-0.19), (1-0.8): (
0.19 0.8
0.81 0.2

) and

𝑤: (
0.95 0.87
0.48 0.683

) and according to our method there are:

 𝑓(𝑋𝑖𝑗 . 𝑤𝑖𝑗) = 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖′𝑗′) = (𝑋𝑖𝑗 ∧𝑤𝑖𝑗.𝑤𝑖′𝑗′
𝑋𝑖′𝑗′) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗))

 ∗ (𝑋𝑖′𝑗′ + (1 − 𝑤𝑖′𝑗′) − 𝑋𝑖′𝑗′(1 − 𝑤𝑖′𝑗′))

 𝑒𝑣𝑎𝑙(𝑋11. 𝑋12) = (𝑋11 ∧𝑤11.𝑤12
𝑋12) = (𝑋11 + (1 − 𝑤11) − 𝑋11(1 − 𝑤11))

 ∗ (𝑋12 + (1 − 𝑤12) − 𝑋12(1 − 𝑤12)) = 0.18

In fact 𝑓(𝑋. 𝑤) is: 𝑓(𝑋. 𝑤) = (
0.18 0.75
0.40 0.103

), with considering b result is (
0.18 0.75
0.40 0.103

) + (
0.1 0.12
0.08 0.01

) =

(
0.28 0.87
0.48 0.113

) because there is this result matrix (with 4 classes (Fig. 5)).

Figure 5: classes of matrix.

and Relu is:

 𝐹(𝑓(𝑋. 𝑤) + 𝑏) = 𝑚𝑎𝑥(0. 𝑓(𝑋. 𝑤) + 𝑏) = (
0.28 0.87
0.48 0.113

)

6.2. Training

 For training data following equation is used:

 𝑋𝑟+1 = 𝑚𝑎𝑥(0. (𝑓𝑟(𝑋. 𝑤) + 𝑏𝑟)) (50)

 where 𝑋𝑟+1 is X in layer r+1. And for training of weighting:

 𝑤𝑟+1 = |𝑤𝑟 + 𝛾𝑟(∇𝑤𝑟 𝑄(𝑍, 𝑤𝑟))| (51)

 𝑄(𝑍. 𝑤𝑟) = 𝑙((𝑋𝑖𝑗
𝑟 + (1 − 𝑤𝑖𝑗

𝑟) − 𝑋𝑖𝑗
𝑟 (1 − 𝑤𝑖𝑗

𝑟)) ∗ (𝑋𝑖′𝑗′
𝑟 + (1 − 𝑤𝑖′𝑗′

𝑟) − 𝑋𝑖′𝑗′
𝑟 (1 − 𝑤𝑖′𝑗′

𝑟)))

(52)

 ∇ is gradient operator. 𝛾 is the learning rate (𝛾 ∼ 𝑡−2 and 𝑡 > 1) and Z is a output of 𝑓(𝑋. 𝑤) and 𝑙 is loss

function of 𝑓(𝑋. 𝑤).

 𝑍 = 𝑓(𝑋. 𝑤) (53)

 𝐿𝑖 = ∑𝑚≠𝑦𝑖 𝑚𝑎𝑥(0. 𝑠𝑚 − 𝑠𝑦𝑖
+ 1) (54)

 𝑙 =
1

𝑁
∑𝑁

𝑖=1 𝐿𝑖 (55)

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6578

 𝑠𝑚 = 𝑓(𝑋. 𝑤)𝑚 + 𝑏 (56)

 𝑓(𝑋𝑖𝑗 . 𝑤𝑖𝑗) = 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖′𝑗′) = (𝑋𝑖𝑗 + (1 − 𝑤𝑖𝑗) − 𝑋𝑖𝑗(1 − 𝑤𝑖𝑗))

 (𝑋𝑖′𝑗′ + (1 − 𝑤𝑖′𝑗′) − 𝑋𝑖′𝑗′(1 − 𝑤𝑖′𝑗′)) (57)

 Function 𝑒𝑣𝑎𝑙(𝑋𝑖𝑗 . 𝑋𝑖′𝑗′) has been explained earlier. Here, using the weight of training formula, the weight

matrix is 𝑤′ = (
0.5695 0.357
0.0925 0.33

) (According to next formula: |𝑤𝑟 + 𝛾𝑟(∇𝑤𝑟 𝑄(𝑍. 𝑤𝑟))|) . Then disjunction is

applied:

 ∨𝑤′11,𝑤′12,𝑤′21,𝑤′22
(𝐴. 𝐵. 𝐶. 𝐷) = 𝐴 ∗ 𝑤′11 + 𝐵 ∗ 𝑤′12 + 𝐶 ∗ 𝑤′21 + 𝐷 ∗ 𝑤′22 = 0.441

that result is a cat with white and non iron features.

7. Finding logical formulas from trained CNN

 The purpose is to find applied rules in trained CNN. At first, for creating this CNN, Assume two inputs a1, b1

∈ [0,1] (There are a weight matrix w ∈ [0,1] and a bias matrix b ∈ [0,1] for inputs) and one output and 10 nodes in

trained CNN. There are 100 training data and this CNN is according to picture below:

Figure 6: Trained CNN .

The algorithm of training is described in table 3:

Table 3: Algorithm 1.

Algorithm of training:

trainingdata(target):

stepnumber = math.sqrt(numbertraining)

step=1.0/(stepnumber-1.0)

for t in range(numbertraining):

i1 = t // stepnumber

i2 = t mode stepnumber

a1=i1*step

b1 = i2 * step

result[0,t] = a1

result[1,t] = b1

result[2,t] = target(a1,b1)

return result

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6579

Here, stepnumber is the steps number in training and numbertraining is the number of training data, target is one

of logical rules (OR or AND rules that OR rule as target is considered here). Then SGD optimization is applied

because after optimization, error is reduced. Finally, input value is multiplied in the weight and sum with the bias:

 𝑠(𝑥. 𝑤. 𝑏) = 𝑤 ∗ 𝑥 + 𝑏 (58)

 where x is input matrix (it consists of algorithm 1 result and optimization result, in fact is a matrix of a1, b1)

and w is a weight matrix (it consists of optimization result) and b is a bias matrix (it consists of optimization result).

Then Relu is applied (on output) because CNN is linear, moreover, rules that is used in trained CNN are non linear

and the goal is to work without this limitation which Relu do it for us.

 𝐹(𝑠) = 𝑚𝑎𝑥(0. 𝑠) (59)

 Every result from Relu has a weight (v 𝑖 ∈ [0.1], 𝑖 ∈ {1.2.3.4}) and The result is multiplied by the weight. Now,

the output is compared with logical formulas output as following seven logical rules:

 (𝑎1 ∧ 𝑏1) = 𝑎1 ∗ 𝑏1 (60)

 (¬𝑎1 ∧ 𝑏1) = (1.0 − 𝑎1) ∗ 𝑏1 (61)

 (𝑎1 ∧ ¬𝑏1) = 𝑎1 ∗ (1.0 − 𝑏1) (62)

 (¬𝑎1 ∧ ¬𝑏1) = (1.0 − 𝑎1) ∗ (1.0 − 𝑏1) (63)

 (𝑎1 ∨ 𝑏1) = 𝑎1 + 𝑏1 − 𝑎1 ∗ 𝑏1 (64)

 ¬𝑎1 = (1.0 − 𝑎1) (65)

 ¬𝑏1 = (1.0 − 𝑏1) (66)

Where OR rule with trained inputs (algorithm 1) is applied separately then the output of trained CNN is compared

with OR rule output, this result is reached (blue: OR rule outputs and red: trained CNN outputs (Fig. 7)).

 Figure 7: comparing output of CNN and OR rule (blue: OR rule outputs and red: trained CNN outputs).

 It is obvious that the result of trained CNN is close to OR rule output. Then we proved this rule is used in trained

CNN. Finally, correlation is applied for comparison between AND rules outputs and CNN outputs(Table 4). The

least value of results belongs to (¬𝑎1 ∧ ¬𝑏1)=(1.0-a1)*(1.0-b1) since, this logical formula has not been used in

LCNN (because as we know (𝑎1 ∨ 𝑏1) = (𝑎1 ∧ 𝑏1) ∨ (¬𝑎1 ∧ 𝑏1) ∨ (𝑎1 ∧ ¬𝑏1)):

Table 4: Correlation between AND rules outputs and CNN output.

Rule Correlation

(𝑎1 ∧ 𝑏1) 0.85068792104721

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 6571-6580

 Research Article

6580

(¬𝑎1 ∧ 𝑏1) 0.67625582218170

(𝑎1,∧ ¬𝑏1) 0.69745105504989

(¬𝑎1 ∧ ¬𝑏1) 0.523018956184387

8. Conclusion

 In our paper, it is proven that there is a possibility to go from CNN to LCNN and vice versa. First, our work is

stared with CNN and applied rules and changed score function with rules then showed that there is a relation between

input and output in CNN. in the second part, the work is started with trained CNN and proved that the results of

CNN and some rules are almost same, it means there are logical formulas in trained CNN and CNN is created with

these rules. For further extension of our work, it would be interesting to capture LCNN with more Performance and

extracting more rules from trained CNN.

References

1. Xi, Z., Panoutsos, G., Interpretable Machine Learning: Convolutional Neural Networks with RBF Fuzzy

logic Classification Rules. International Conference on Intelligent System, IEEE, Portugal, pp. 448-454

(2018)

2. Gridach, M., Haddad, H., Mulki H.: Churn Identification in Microblogs using Convolutional Neural

Networks with Structured Logical Knowledge. Association for Computational Linguistics, Denmark,

Denmark, pp. 21-30, (2017)

3. Yhang, B., Xu, X., Li, X., Chen, X., Ye, Y., Wang, Y.: Sentiment analysis through critic learning for

optimizing convolutional neural networks with rules. Neurocomputing, Elsevier, 21-30 (2019)

4. Fang, W., Zhang, J., Wang, D., Chen, Z., Li, M.: Entity disambiguation by knowledge and text jointly

embedding. Proceedings of the Twentieth SIGNLL Conference on Computational Natural Language

Learning, Association for Computational Linguistics, 2016, Germany, pp. 260-269, 10.18653/v1/K16-

1026

5. Dai, W.-Z., Xu, Q.-L., Yu, Y., Zhou, Z.-H.: Tunneling neural perception and logic reasoning through

abductive learning.Artificial Intelligence, Computer Science, CoRR abs/1802.01173 (2018)

6. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. Proceedings of the

Seventh ACM International conference on Web Search and Data Mining, ACM, USA, pp. 543-552 (2014)

7. Hu, Z., Yang, Z., Salakhutdinov, R., Xing, E.: Deep neural networks with massive learned knowledge.

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Association

for Computational Linguistics, Texas, pp. 1670-1679 (2016). 10.18653/v1/D16-1173

8. Alashkar, T., Jiang, S., Wang, S., Fu, Y.: Examples-rules guided deep neural network for makeup

recommendation. AAAI, USA, pp. 941-947 (2017)

9. Ruder, S., Ghaffari, P., Breslin, J.G., A hierarchical model of reviews for aspect- based sentiment analysis.

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Association

for Computational Linguistics, Texas, pp. 999-1005 (2016). 10.18653/v1/D16-1103

10. Schmitt, I.: Incorporating Weights into a Quantum-Logic-Based Query Language. Quantum-Like Models

for Information Retrieval and Decision-Making. Springer, Switzerland, 129–139 (2019)

11. Kumar Saha, S., Schmitt, I.: Non-TI Clustering in the Context of Social Networks. The 2nd International

Workshop on Web Search and Data Mining (WSDM)April 6 - 9, Warsaw, Poland, Science Direct, 1186-

1191(2020).

