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Abstract: In this paper, two dimensional monic polynomial technique is present for solving linear and nonlinear 

partied differential equations. The application of the method to boundary value problems leads to algebraic 

systems.  The procedure in handling solutions of differential equations using Monic  polynomial is to express 

the derivatives of a function in terms of its values by operational matrices. The suggested method can be used to 

facilitate greatly the setting up of the algebraic systems to be obtained solving differential equations. The 

effective application of the method is demonstrated by three examples. 
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1. Introduction 

It is well known that the numerical methods have played an important role in solving (PDEs). Several 

applications have been developed for numerical solutions of PDEs. Some of the most known numerical methods 

are finite difference methods, finite element methods, Adomian decomposition [1,2] , Homotopy perturbation 

method [3,4], differential transform [5], and many others. Approximation method have always been the subject 

of intense investigation because they have been for most of the times inescapable in the resolution to some 

partial differential equations [6]. In recent years,  the  monic polynomials have the advantage that they provide 

the best approximation  in solve differential equations and integral equations. Borwein P. B., and al. [7], studied 

the problem of minimizing the supremum norm by monic polynomials with integer coefficients. El-Kady M. 

And El-Sawy N. [8], presented a new formula of the spectral differentiation matrices is. therefore, the numerical 

solutions for higher-order differential equations are presented by expanding the unknown solution in terms of 

monic Chebyshev polynomials. Azim Rivaz, and al. [9], presented a new method to gain the numerical solution 

of the straight two-dimensional Fredholm and Volterra Integro-differential equations (2d-fide and 2d-vide) by 

two-dimensional Chebyshev polynomials and construct their operational matrices of integration. Abdelhakem 

M., and al. [10], formulate a technique for discovering a new approach to solve ordinary differential equations 

(DEs) by using Galerkin spectral method. The Galerkin approach relies on Monic Gegenbauer polynomials 

(MGPs).  Abdelhakem M., and al. [11], concentrated on carrying out a new approach for solving linear and 

nonlinear higher-order boundary value problems (HBVPs). The trial function of this method is the Monic 

Chebyshev polynomials (MCPs). This approach was depending on inflective of MCPs which explicit in the 

series expansion. Shoukralla E. S. and M. A. Markos [12], presents a numerical method for solving a specific 

class of Fredholm integral equations of the first kind, using the economized monic Chebyshev polynomials of 

the identical degree, the given possibility function is closed by monic Chebyshev polynomials of the same 

degree.  

in this paper, a new formula for solving linear and nonlinear  partied differential equations using two- 

dimensional Monic polynomial. In section 2, the basic ideas of monic polynomial are described. Section 3, a 

new differentiation matrices of two-dimensional monic polynomial are presented. Section 4, a new formula used 

for solving partied differential equations based on two-dimensional Monic technique. The results and 

comparisons of the numerical solutions are presented in section 5, and concluding remarks are given in section 

6. 

2. Function approximation of by monic polynomials 

The  monic polynomials have the advantage that they provide the best approximation  in the minimax 

sense to arbitrary, continuous linear functions with integral and integrodifferential problems in any given finite 

intervals. The monic polynomials of degree n(n =  1,2, … ) on [−1,1] are defined by the formula [13,14]: 

𝑄𝑛(𝑥) = 21−𝑛 cos(𝑛 cos−1 𝑥)                         (1) 

where 

𝑄0(𝑥) = 1,             𝑄1(𝑥) = 𝑥,         𝑄2(𝑥) = 𝑥
2 −

1

2
 

𝑎𝑛𝑑         𝑄𝑛(𝑥) = 𝑥𝑄𝑛−1(𝑥) − 1 4𝑄𝑛−2(𝑥),              𝑛 > 2⁄       
Clearly |𝑄𝑛(𝑥)| ≤ 1 𝑓𝑜𝑟 𝑥𝜖[−1,1]. 
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A relationship between the monic polynomials 𝑄𝑛and the Chebyshev polynomials 𝑇𝑛  of the first kind is: 

𝑄𝑛(𝑥) =
1

2𝑛−1
𝑇𝑛(𝑥)                             𝑛 = 1,2, …                                    (2) 

The monic approximations of a given function 𝑓(𝑥) ∈ 𝐶∞[−1,1]  using (𝑁 + 1) Chebyshev Gauss-Lobatto 

(CGL) points 𝑥𝑖 = −cos (
𝑖𝜋

𝑁
)    , 𝑖 = 0,1, …𝑁, are  

𝑓(𝑥) ≅ ∑ 𝑐𝑛𝑎𝑛𝑄𝑛(𝑥),                                   
𝑁
𝑛=0      (3) 

where 𝑄𝑛(𝑥) is the monic polynomials, 𝑐𝑛 = 1, 𝑛 = 0,1, …𝑁 − 1, 𝑐𝑁 =
1

2
, and  

𝑎𝑛 =

{
 
 

 
 

1

𝑁
∑ 𝜃𝑗𝑓(𝑥𝑗),              𝑛 = 0
𝑁
𝑗=0

2

𝑁
∑ 𝜃𝑗𝑓(𝑥𝑗)𝑥𝑗 ,              𝑛 = 1𝑁
𝑗=0

1

21−2𝑛𝑁
∑ 𝜃𝑗𝑓(𝑥𝑗)𝑄𝑛(𝑥𝑗),              𝑛 = 2,… , 𝑁𝑁
𝑗=0

                     (4) 

Where  𝜃0 = 𝜃𝑁 =
1

2
 , 𝜃𝑗 = 1, 𝑓𝑜𝑟 𝑗 = 0,1, …𝑁 − 1.  Now, the exact relation between Chebyshev functions and 

its first derivatives is expressed as [15]: 

𝑇𝑛
′(𝑥) = ∑

2𝑛

𝑐𝑘
𝑇𝑘(𝑥)                                                                                                                  (5)

𝑛−1

𝑘=0
(𝑛+𝑘)𝑜𝑑𝑑

 

𝑇𝑛
′′(𝑥) = ∑

1

𝑐𝑘
𝑛(𝑛2 − 𝑘2)𝑇𝑘(𝑥)                                                                                           (6) 

𝑛−2

𝑘=0
(𝑛+𝑘)𝑒𝑣𝑒𝑛

 

Then, from relationship (2) between the  monic polynomials 𝑄𝑛and the Chebyshev polynomials 𝑇𝑛  of the first 

kind: 

1

21−𝑛
𝑄𝑛
′ (𝑥) = ∑

2𝑛

𝑐𝑘

𝑛−1

𝑘=0
(𝑛+𝑘)𝑜𝑑𝑑

1

21−𝑛
𝑄𝑛(𝑥)                                                         

𝑄𝑛
′ (𝑥) = ∑

2𝑛

𝑐𝑘

𝑛−1

𝑘=0
(𝑛+𝑘)𝑜𝑑𝑑

𝑄𝑛(𝑥)                                                                                                                (7) 

Similarly 

𝑄𝑛
′′(𝑥) = ∑

1

𝑐𝑘
𝑛(𝑛2 − 𝑘2)𝑄𝑘(𝑥)                                                                                         (8) 

𝑛−2

𝑘=0
(𝑛+𝑘)𝑒𝑣𝑒𝑛

 

Where 𝑐0 = 2 and 𝑐𝑖 = 1 for   𝑖 ≥ 1. In general: 

𝑄𝑛
(𝑚)(𝑥) = ∑ ∏ (𝑛2 − (𝑘 + 𝑖)2)

𝑛

𝑐𝑘

1

(𝑚 − 1)! 2(𝑚−2)

𝑚−2

𝑖=2−𝑚
𝑚>1

𝑛−𝑚

𝑘=0
(𝑛+𝑘+𝑚)𝑒𝑣𝑒𝑛

𝑄𝑘(𝑥),   𝑚 ≥ 1           (9) 

From equation (7) and by differentiation the series in equation (3) term by term 

𝑓′(𝑥) =
2

𝑁
∑𝜃𝑗𝑓(𝑥𝑗)𝑥𝑗 +

1

𝑁
∑∑∑𝐶𝑛𝜃𝑗

2𝑛

𝑐𝑘

1

21−𝑛
𝑓(𝑥𝑗)𝑄𝑛(𝑥𝑗)𝑄𝑘(𝑥),

𝑛−2

𝑘=0

                      

𝑁

𝑗=0

𝑁

𝑛=2

(10)

𝑁

𝑗=0

 

Also 

𝑓′′(𝑥) =
1

𝑁
∑∑ ∑ 𝐶𝑛𝜃𝑗

1

21−𝑛
1

𝑐𝑘
𝑛(𝑛2 − 𝑘2)𝑓(𝑥𝑗)𝑄𝑛(𝑥𝑗)𝑄𝑘(𝑥)                        (11)

𝑛−2

𝑘=0
(𝑛+𝑘)𝑒𝑣𝑒𝑛

 

𝑁

𝑗=0

𝑁

𝑛=2

 

Now, rewrite equations (10) and (11) by the following relations: 
[𝑓′] = 𝐷1⌈𝑓⌉,   [𝑓

′′] = 𝐷2⌈𝑓⌉, 
where 𝐷1and 𝐷2are square matrices of order (N+1) and the elements of the column matrices [𝑓′′] , [𝑓′] , [𝑓] are 

given by 𝑓𝑖
′′ = 𝑓′′(𝑥𝑖), 𝑓𝑖

′ = 𝑓′(𝑥𝑖), 𝑓𝑖 = 𝑓(𝑥𝑖),𝑖 = 0,1, … . . 𝑁 respectively. The first and second derivatives of 

the function 𝑓(𝑥)at the point 𝑥𝑘 are given by 

𝑓′(𝑥𝑘) = ∑𝑑𝑘𝑗
1 𝑓(𝑥𝑗)                                                                                                                 (12)

𝑁

𝑗=0

 

𝑓′′(𝑥𝑘) = ∑𝑑𝑘𝑗
2 𝑓(𝑥𝑗)                                                                                                                (13)  

𝑁

𝑗=0
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the coefficients 𝑑𝑘𝑗
1  and 𝑑𝑘𝑗

2  , 𝑗 = 0,1, …𝑁 are the elements of the kth row of the matrices 𝐷1and 𝐷2 respectively.  

𝑑𝑘,𝑗
(1) =

2

𝑁
𝜃𝑗𝑥𝑗 +

1

𝑁
∑  

𝑁

𝑛=0

∑ 𝐶𝑛𝜃𝑗
2𝑛

𝑐𝑘

1

21−𝑛
𝑄𝑛(𝑥𝑗)𝑄𝑙(𝑥𝑘),     𝑘, 𝑗 = 0,1, …𝑁,          (14)  

 

𝑛−1

𝑙=0
(𝑛+𝑙)𝑜𝑑𝑑

 

𝑑𝑘,𝑗
(2) =

1

𝑁
∑  

𝑁

𝑛=0

∑ 𝐶𝑛𝜃𝑗
1

21−𝑛
1

𝑐𝑘
𝑛(𝑛2 − 𝑘2)𝑄𝑛(𝑥𝑗)𝑄𝑘(𝑥𝑘), 𝑘, 𝑗 = 0,1, …𝑁,

 

𝑛−2

𝑙=0
(𝑛+𝑙)𝑒𝑣𝑒𝑛

 (15) 

3. Differentiation matrices of Two-dimensional monic polynomial 

Let 𝑢: [−1,1] × [−1,1] a continuous function and of bounded variation in the interval 𝐼 = [−1,1] × [−1,1] , if 
one of its partial derivatives exists and is bounded in I, the function f has a bivariate tow dimension Chebyshev 

expansion 

u (x, y) =∑  

∞

𝑖=0

∑𝑒𝑖𝑒𝑗𝑎𝑖𝑗  𝑄𝑖(𝑥) 𝑄𝑗(𝑦)

∞

𝑗=0

                                                                                (16) 

for the truncated polynomial at degrees n and m with respect to 𝑥 and 𝑦 respectively 

u (x, y) =∑  

𝑛

𝑖=0

∑𝑒𝑖𝑒𝑗𝑎𝑖𝑗  𝑄𝑖(𝑥) 𝑄𝑗(𝑦)

𝑚

𝑗=0

                                                                               (17) 

Where  𝑎𝑖𝑗  is defend by the following case : 

𝑎00 =
1

𝑁𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)                                                                            

𝑀

𝐿=0

 

𝑎01 =
2

𝑁𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑦𝐿                                                                         

𝑀

𝐿=0

 

𝑎0𝑗 =
1

𝑁21−2𝑛𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑄𝑗(𝑦𝐿)                   𝑓𝑜𝑟 𝑗 = 2,…𝑀     

𝑀

𝐿=0

 

𝑎10 =
2

𝑁𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑥𝐾                                                              

𝑀

𝐿=0

          

𝑎11 =
4

𝑁𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑥𝐾𝑦𝐿                                                                    

𝑀

𝐿=0

 

𝑎𝑖0 =
1

𝑀21−2𝑛𝑁
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑄𝑖(𝑥𝐾)                 𝑓𝑜𝑟 𝑖 = 2,…𝑁        

𝑀

𝐿=0

 

𝑎1𝑗 =
2

𝑁21−2𝑚𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑥𝐾𝑄𝑗(𝑦𝐿)         𝑓𝑜𝑟 𝑗 = 2,…𝑀         

𝑀

𝐿=0

 

𝑎𝑖1 =
2

𝑀21−2𝑛𝑁
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑦𝐿𝑄𝑖(𝑥𝐾)          𝑓𝑜𝑟 𝑖 = 2,…𝑁           

𝑀

𝐿=0

 

𝑎𝑖𝑗 =
2

21−2𝑛21−2𝑚𝑁𝑀
∑  

𝑁

𝐾=0

∑𝜃𝐾𝜃𝐿𝑓(𝑥𝐾 , 𝑦𝐿)𝑄𝑖(𝑥𝐾)𝑄𝑗(𝑦𝐿)                      𝑓𝑜𝑟 𝑖 ≥ 2, 𝑗 ≥ 2

𝑀

𝐿=0

 

Where 𝜃0 = 𝜃𝑁 =
1

2
  , 𝜃𝑗 = 1     𝑓𝑜𝑟 𝑗 = 0,1, …𝑁 − 1. 𝑐𝑛 = 1,   𝑛 = 0,1, …𝑁 − 1    𝑎𝑛𝑑 𝑐𝑁 =

1

2
. 

Now, suppose that N=M and  

𝑏𝑖 =∑𝑒𝑖𝑒𝑗  𝑎𝑖𝑗𝑄𝑗(𝑦)

𝑀

𝑗=0

                     𝑖 = 0,1, …𝑁                                                                  (18) 

𝑐𝑖 =∑𝑒𝑖𝑒𝑗  𝑎𝑖𝑗𝑄𝑖(𝑥)

𝑁

𝑖=0

                     𝑗 = 0,1, …𝑁                                                                   (19) 

Then, equation (17) can be interpreted in the form: 

𝑢(𝑥, 𝑦) = ∑𝑏𝑖

𝑁

𝑖=0

𝑄𝑖(𝑥)                                                                                                               (20) 

  or 
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 𝑢(𝑥, 𝑦) =∑𝑐𝑗

𝑀

𝑗=0

𝑄𝑗(𝑦)                                                                                                              (21) 

Extensions of the results of sections (2) together with the extension of the above notation to series for the partial 

derivatives of 𝑢, are simple when finding the partial derivative with respect to 𝑥 , 𝑏𝑖 are constant terms. 

By using equation (7) with (20), we obtain: 

𝑢𝑥 =∑𝑏𝑖 ∑
2𝑖

𝑐𝑘

𝑖−1

𝑘=0
(𝑖+𝑘)𝑜𝑑𝑑

𝑁

𝑖=0

𝑄𝑘(𝑥)                                                                                                  (22) 

Rewrite the equation (22) and by consider that 𝑏𝑖 have constant terms 

𝑢𝑥(𝑥𝐿 , 𝑦 ) =
2

𝑁
∑𝑏1𝜃𝐿𝑢(𝑥𝐿 , 𝑦 )𝑥𝐿 +∑𝑏𝑖  ∑  

𝑁

𝐿=0

𝑁

𝑖=2

∑𝑐𝑖𝜃𝐿
2𝑖

𝑐𝑘

1

21−𝑖
𝑢(𝑥𝐿 , 𝑦 )𝑄𝑖(𝑥𝐿)𝑄𝑘(𝑥)

𝑖−1

𝑘=0

𝑁

𝐿=0

                       

𝑢𝑥(𝑥𝐿 , 𝑦 ) =∑𝑑𝑘,𝑖
1

𝑁

𝑖=0

𝑢(𝑥𝑖 , 𝑦 )              𝐿 = 0,1, …𝑁                                                              (23) 

then 
[𝑢𝑥] = [𝐷𝑥

1] [𝑢]            
Where 𝑢 is a square matrix of order (𝑁 + 1) × (𝑁 + 1)   

[𝑢] = [

𝑢(𝑥0, 𝑦0) 𝑢(𝑥0, 𝑦1)     …             𝑢(𝑥0, 𝑦𝑁)

𝑢(𝑥1, 𝑦0) …                        …

𝑢(𝑥𝑁 , 𝑦0) …                    𝑢(𝑥𝑁 , 𝑦𝑁)
]

(𝑁+1) ×(𝑁+1) 

 

Similarly 

𝑢𝑦 =∑𝑐𝑗 ∑
2𝑗

𝑐𝑘

𝑗−1

𝑘=0
(𝑗+𝑘)𝑜𝑑𝑑

𝑁

𝑗=0

𝑄𝑘(𝑦)                                                                                                         (24) 

 This leads to  

[𝑢𝑦] = [𝑢] [𝐷𝑦
1]𝑇                         

Where [𝐷𝑦
1]𝑇 = [𝐷𝑥

1] are defined in equation (14). Subsituiting equation (8) in equation (20), the second 

derivative for 𝑢(𝑥, 𝑦): 

𝑢𝑥𝑥 =∑𝑏𝑖 ∑
1

𝑐𝑘
𝑛(𝑛2 − 𝑘2)𝑄𝑘(𝑥)                                                                                (25)

𝑛−2

𝑘=0
(𝑖+𝑘)𝑒𝑣𝑒𝑛

𝑁

𝑖=0

 

Rewrite equation (25) 

𝑢𝑥𝑥(𝑥𝐿 , 𝑦 ) =
1

𝑁
∑′′

 
𝑏𝑖∑

′′
 

𝑁

𝐿=0

∑𝑐𝑖𝜃𝐿
1

𝑐𝑖
𝑖(

𝑖−2

𝑘=0

𝑁

𝑖=2

(𝑖2 − 𝑘2)
1

21−𝑖
𝑢(𝑥𝐿 , 𝑦 )𝑄𝑖(𝑥) 𝑄𝑘(𝑥)  

𝑢𝑥𝑥(𝑥𝐿 , 𝑦 ) = ∑𝑑𝑘,𝑖
2

𝑁

𝑖=0

𝑢(𝑥𝑖 , 𝑦 ) = [𝐷𝑥
2] [𝑢]              𝐿 = 0,1, …𝑁                                             (26) 

Similarly  

𝑢𝑦𝑦(𝑥, 𝑦𝐿 ) = ∑ 𝑑𝑘,𝑗
2𝑁

𝑗=0 𝑢 (𝑥, 𝑦𝑗 ) =
[𝑢] [𝐷𝑦

2]𝑇         𝐿 = 0,1,…𝑁                                         (27)  

Where [𝐷𝑦
2]𝑇 = [𝐷𝑥

2] are defined in equation (15). Now  

𝑢𝑥𝑦(𝑥𝐿 , 𝑦𝐿 ) = ∑ 𝑑𝑘,𝑖
1 𝑢𝑦(𝑥𝑖 , 𝑦 )                                 𝐿 = 0,1, …𝑁                                         (28)

𝑁
𝑖=0   

By subsituation equation (24) in (28) 

𝑢𝑥𝑦(𝑥𝐿 , 𝑦𝐿 ) =∑𝑑𝑘,𝑖
1

𝑁

𝑖=0

∑𝑑𝑘,𝑗
1

𝑁

𝑗=0

𝑢 (𝑥𝑖 , 𝑦𝑗 )                𝐿 = 0,1, …𝑁                                            (29) 

𝑢𝑥𝑦(𝑥𝐿 , 𝑦𝐿 ) =∑𝑑𝑘,𝑖
1

𝑁

𝑖=0

∑𝑑𝑘,𝑗
1

𝑁

𝑗=0

𝑢 (𝑥𝑖 , 𝑦𝑗 ) = [𝐷𝑥
1] [𝑢] [𝐷𝑦

1]𝑇                                                  (30) 

 

4.  Two- dimensional monic polynomial for solving non- linear partial differential equations 

The general form of a second order non-liner and non-homogeneous partial differential equation is: 

𝑎
𝜕2𝑢

𝜕𝑥2
+ 𝑏

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑐

𝜕2𝑢

𝜕𝑦2
+ 𝑑

𝜕𝑢

𝜕𝑥
+ 𝑒

𝜕𝑢

𝜕𝑦
+ 𝑓𝑢 + 𝑔(𝑢) = ℎ(𝑥, 𝑦)                                       (31) 
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Where a,b,c,d,e,f,h  are functions of independent variables x,y or constants and g(u) are linear and non-linear 

terms. The numerical solution for equation (31) using the differentiation operational matrices for two-

dimensional Monic polynomial by equations (22) -(30) , equation (31) becomes: 

𝐴 [𝐷𝑥𝑥
2 ] 𝑈𝑠+1 + 𝐵 [𝐷𝑥

1] 𝑈𝑠+1 [𝐷𝑦
1] + 𝐶 𝑈𝑠+1 [𝐷𝑦𝑦

2 ] + 𝐷 [𝐷𝑥
1] 𝑈𝑠+1 + 𝐸 𝑈𝑠+1 [𝐷𝑦

1] + 𝐹 𝑈𝑠+1 + 𝐺(𝑢𝑠) =

𝐻                                                                                                                                       (32)  
Where 𝐷𝑥𝑥

2  …. 𝐷𝑦
1  are calculate from equations (14) and (15). 

𝐴 = [

𝑎(𝑥0, 𝑦0) 𝑎(𝑥0, 𝑦1) … 𝑎(𝑥0, 𝑦𝑁)
 𝑎(𝑥1, 𝑦1) ⋯  
⋮ ⋮ ⋱ ⋮

𝑎(𝑥𝑁 , 𝑦0)  ⋯ 𝑎(𝑥𝑁 , 𝑦𝑁)

]

(𝑁×1)×(𝑁×1)

 

Similarly, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐻 are defined.    we convert the nonlinear equation into a linear system of equations 

using the initial condition in the approximation of nonlinear terms. using Kronecker product [16] , the equation 

(32) divides in the form  

[(𝐴[𝐷𝑥𝑥
2 ] + 𝐷[𝐷𝑥

1] + 𝐹 + 𝐺(𝑢𝑠)) ⊗ 𝐼)] 𝑈𝑠+1 + [𝐼  ⊗ (𝐵[𝐷𝑥
1][𝐷𝑦

1] + 𝐶[𝐷𝑦𝑦
2 ] + 𝐸 [𝐷𝑦

1])
𝑇
 ] 𝑈𝑠+1

          
= 𝐻                                                                                                                       (33)  

Where the capacity of the matrices doubles to(𝑁 × 1)2 × (𝑁 × 1)2. 𝐻 becomes the vector (𝑁 × 1)2 × 1 as well 

𝑈𝑠+1. 

Equation (33) It produces a linear system that solves by one of the methods for solving linear equations, such as 

the Gaussian elimination or Gauss -Gordon method, to get the new repetition 𝑈𝑠+1. Repeat the steps until we get 

a minimum step. 
|𝑈𝑠+1 − 𝑈𝑠| < ∈ 

Where ∈ a very small value. The maple program was used in solving types of partial differential equations, as 

described in Numerical examples. 

 

5. Numerical examples 

In this section, three linear and nonlinear partial differential problems are solved by Two- dimensional 

monic method mentioned above.  

Example 1: Let us have non homogenous linear partial differential equation:  

𝜕2𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑦
+ 10 𝑢 = 12𝑒𝑥+𝑦        − 1 ≤ 𝑥 ≤ 1  , −1 ≤ 𝑦 ≤ 1                                              (34) 

With initial condition 𝑢(−1, 𝑦) = 𝑒𝑦−1 . 

Solution: 

By application the equations (24) and (26), We obtain a system of linear equations as follows: 

  𝐷𝑥𝑥
2  𝑈 + 𝑈 𝐷𝑦

1𝑇 + 10 𝐼 𝑈 = 𝐹                                                                                                   (35) 

𝐼 is identity matrix, F is a nonhomogeneous term matrix: 

𝐹 = [

𝑓(𝑥0, 𝑦0) 𝑓(𝑥0, 𝑦1)     …             𝑓(𝑥0, 𝑦1)

𝑓(𝑥1, 𝑦0) …                        …

𝑓(𝑥𝑁 , 𝑦0) …                    𝑓(𝑥𝑁 , 𝑦𝑁)
] 

𝑈 = [

𝑢(𝑥0, 𝑦0) …        …                       𝑢(𝑥0, 𝑦𝑁)

𝑢(𝑥1, 𝑦0) …                                    …

𝑢(𝑥𝑁 , 𝑦0) …                                  𝑢(𝑥𝑁 , 𝑦𝑁)
] 

using Kronecker tensor products, denoted by ⊗, and a Lexicographic reordering, or reshaping of U and F [16], 

we may write equation (35) as:  

     (𝐷𝑥𝑥
2 + 10 𝐼)  ⊗ 𝐼 +  𝐼 ⊗ 𝐷𝑦

1𝑇)𝑈 = 𝐹                                                                              (36) 

The solution to equation (36) produces a linear system contains (𝑁 + 1) × (𝑁 + 1)equations and (𝑁 + 1) ×
(𝑁 + 1)  of the unknown variables and solving this system we get on The numerical solution 𝑈 is explain in 

table (12) where the exact solution is: 

𝑢 = 𝑒𝑥+𝑦                                                                        
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Table (1): the comparison between numerical solution using Monic polynomial and the exact solution for 

equation (34) When N=4,8. 

X Y Numerical 

solution 

Exact Absolute error N=4 Absolute error N=8 

-1 -1 0.135379 0.135335 1.848545 × 10−4 4.417800 × 10−5 

-1 -0.92388 0.146062 0.146039  2.338526 × 10−5 

  

-1 -0.7071 0.181390 0.181399 7.368398 × 10−4 3.124276 × 10−6  

-1 -0.382683 0.250892 0.250904  1.266115 × 10−5  

-1 0 0.367860 0.367879 1.275875 × 10−3 1.895931 × 10−5  

-1 0.382683 0.539362 0.53939  2.782946 × 10−5 

-1 0.7071 0.746063 0.746102 3.013476 × 10−3 3.853095 × 10−5 

-1 0.92388 0.926657 0.926705  4.756205 × 10−5 

-1 1 0.999948 1  3.708234 × 10−3  5.123444 × 10−5 

1 -1 1.000081 1  4.235145 × 10−3 8.062928 × 10−5 

1 -0.92388 1.079142 1.079093  4.894825 × 10−5 

1 -0.7071 1.340308 1.34030 1.099981 × 10−3 8.171712 × 10−6 

1 -0.382683 1.853942 1.853946  4.435004 × 10−6 

1 0 2.718274 2.718282 3.982650 × 10−4 7.739769 × 10−6 

1 0.382683 3.985570 3.985582  1.145497 × 10−5 

1 0.7071 5.512972 5.5130 3.934866 × 10−3 1.593591 × 10−5 

1 0.92388 6.847452 6.847472  1.955793 × 10−5 

1 1 7.3890352 7.389056 2.817195 × 10−3 2.093001 × 10−5 

MSE    4.577032 × 10−5 1.191513 × 10−9 
 

Figure (1): illustrates comparing the numerical solution with the exact solution using monic polynomial for 

equation (34)  when N=8, x = −1 and x = 1  respectivaly. 

 
From table (1), we see that the results using monic polynomial approach from the exact solution when N is 

increasing. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

y
-a

x
is

 

 

Numerical solution

Exact

1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

y
-a

x
is

 

 

Numerical solution

Exact



Marina Shirwan 1, Ahmed Farooq Qasim 2, 

6547 

Example 2: If we have the non-homogeneous and nonlinear partial difference equation  

𝜕2𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑦
+ 10 𝑢 + 𝑢2 = 12𝑒𝑥+𝑦 + 𝑒2(𝑥+𝑦)     − 1 ≤ 𝑥, 𝑦 ≤ 1                                              (37) 

With initial and boundary conditions  

𝑢(−1, 𝑦) = 𝑒𝑦−1  

 𝑢(𝑥, −1) = 𝑒𝑥−1 

 𝑢(𝑥, 1) = 𝑒𝑥+1    

                                                                                                                              (38)   

By application the equations (24) and (26), we convert the nonlinear equation into a linear system of equations 

using the initial condition (38) in the approximation of nonlinear terms. Then the equation (37) becomes: 

𝐷𝑥𝑥
2 𝑈𝑠+1 + 𝑈𝑠+1 𝐷𝑦

1𝑇 + 10 𝐼 𝑈𝑠+1 + 𝑢𝑠𝑈𝑠+1 = 𝐹       𝑠 = 0,1,…                                           (39) 

Such that  𝑈𝑠  when 𝑠 = 0  is the initial condition (38): 

𝑢0 = [
𝑢(−1, 𝑦0)  ⋯ 0 

 ⋮  ⋮ 
0 ⋯ 𝑢(−1, 𝑦𝑁)

] 

Then, using Kronecker tensor products, we have:  

((𝐷𝑥𝑥
2 + 10 𝐼 + 𝑢𝑠)  ⊗  𝐼 + 𝐼 ⊗ 𝐷𝑦

1𝑇) 𝑈𝑠+1 = 𝐹     𝑠 = 0,1, …                                          (40) 

The exact solution is:  

𝑢 = 𝑒𝑥+𝑦        
Table (2): the comparison between numerical solution using Monic polynomial and the exact solution for 

equation (37) When N=4,8. 

X Y Numerical 

solution 

Exact Absolute error N=4 Absolute error N=8 

-0.92388 -1 0.146005 .1460392976 3.719274 × 10−3 3.396977 × 10−5 

-0.92388 -0.92388 0.157557 .1575899197  3.315623 × 10−5 

-0.92388 -0.7071       0.195715 .1957364213 8.713930 × 10−4 2.189909 × 10−5 

-0.92388 -0.382683 0.270754 .2707490329  4.982108 × 10−6 

-0.92388 0 0.396997 .3969759686 2.630886 × 10−3  2.054764 × 10−5 

-0.92388 0.382683 0.582060 .5820516436  8.281601 × 10−6 

-0.92388 0.7071 0.805105 .8051129092 2.923752 × 10−3 7.467376 × 10−6 

-0.92388 0.92388 0.999988 1  1.226586 × 10−5 

-0.92388 1 1.079080 1.079093 1.819082 × 10−3  1.239371 × 10−5 

0.92388 -1 0.926572 0.926705 1.136674 × 10−2 1.329385 × 10−4 

0.92388 -0.92388 0.999889 1  1.108533× 10−4 

0.92388 -0.7071 1.242035 1.242062 4.041806 × 10−3 2.650721 × 10−5 

0.92388 -0.382683 1.718139 1.718061  7.924835 × 10−5 

0.92388 0 2.519113 2.519044 6.915305 × 10−3 6.894340 × 10−5 

0.92388 0.382683 3.693430 3.693458  2.709530 × 10−5 

0.92388 0.7071 5.108855 5.108911 9.188658 × 10−3 5.633941 × 10−5 

0.92388 0.92388 6.345553 6.345584  3.062698 × 10−5 

0.92388 1 6.847455 6.847472 2.385984 × 10−3 1.660832 × 10−5 

MSE    

 
5.669695 × 10−5 5.202151 × 10−9 

Figure (2): illustrates comparing the numerical solution with the exact solution using monic polynomial for 

equation (37) when N=8, x = −0.92388 and x = 0.92388  respectivaly. 
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Tables (1) and (2), show that two-dimensional monic polynomial is very close to exact solution in solving linear 

and nonlinear partial differential equations where the mean sequare error is 10−5  when N=4 and  10−9  when 

N=8 . The results using monic polynomial approach from the exact solution when N is increasing. 

Example 3: let non homogenous and nonlinear burger equations:[17] 

𝜕𝑢

𝜕𝑡′
+ 𝛼

𝜕2𝑢

𝜕𝑥′2
+ 𝛽𝑢

𝜕𝑢

𝜕𝑥′
= 𝑓(𝑥′, 𝑡′)                               0 ≤ 𝑡′, 𝑥′ ≤ 1                                          (41) 

With initial conditions: 

𝑢(𝑡0
′ , 𝑥′) = 𝑔(𝑥′)                                                         0 ≤ 𝑡′, 𝑥′ ≤ 1                                               (42) 

For solving the equation (41) using three method in chapter three, the interval of [0,1] should be transferred to 

the interval of [-1,1] by suppose [17]  

𝑡′ = 2𝑡 − 1          𝑎𝑛𝑑            𝑥′ = 2𝑥 − 1  

The equation (41) and the boundary conditions (42) become: 

𝜕𝑢

𝜕𝑡
+ 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝛽𝑢

𝜕𝑢

𝜕𝑥
= 𝑓(𝑥, 𝑡)                             − 1 ≤ 𝑡, 𝑥 ≤ 1                                                 (43) 

And the initial conditions: 

𝑢(𝑡0, 𝑥) = 𝑔(𝑥)                                                                                                                                     (44) 
By application equation (23), (24) and (27), the nonlinear burger’s equations (43) into a linear system of 

equation using the initial conditions (44) in the approximation of non-linear term. Then the equation (43 ) 

become: 

𝐷𝑡
1𝑈𝑠+1 + 𝛼𝑈𝑠+1𝐷𝑥𝑥

2 𝑇
+ 𝛽𝑈𝑠𝑈𝑠+1𝐷𝑥

1𝑇 = 𝐹                      𝑠 = 0,1                                             (45) 
Such that  𝑈𝑠 when 𝑠 = 0 is the initial conditions. Using Kronecker products, we have: 

((𝐷𝑡
1⊗ 𝐼) + (𝐼 ⊗ (𝛼𝐷𝑥𝑥

2 𝑇
𝑈𝑠+1 + 𝛽𝑈𝑠𝐷𝑥

1𝑇)) 𝑈𝑠+1 = 𝐹                 𝑠 = 0,1      
 Then  

𝑈𝑠+1 = ((𝐷𝑡
1⊗ 𝐼) + (𝐼 ⊗ (𝛼𝐷𝑥𝑥

2 𝑇
𝑈𝑠+1 + 𝛽𝑈𝑠𝐷𝑥

1𝑇)))−1 𝐹                   𝑠 = 0,1                    (46) 
Table (3): the comparison between numerical solution for non-linear burger’s equations (43) using Monic 

polynomial and the exact solution When N=4 𝛼 = 1 , 𝛽 = 5 and 𝑓(𝑥, 𝑦) = 2𝑡 + 6𝑥 + 15𝑥2 + 15𝑡2𝑥2 with the 

exact solution 𝑢 = 𝑡2 + 𝑥3 . 
 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

y
-a

x
is

 

 

Numerical solution

Exact

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

y
-a

x
is

 

 

Numerical solution

Exact



Marina Shirwan 1, Ahmed Farooq Qasim 2, 

6549 

t x Numerical 

solution 

Exact Absolute error 

-1 -1 -1.097662e-7         0  1.097662 × 10−7 

-1 -0.7071 -0.5 -0.5 8.245888 × 10−8  

-1 0 -1 -1 4.044429 × 10−8 

-1 0.7071 -0.5 -0.5 1.968263 × 10−8 

-1 1 -1.485202e-8 0 1.485202 × 10−8 

0.7071 -1 1.353553 1.353553 1.827112 × 10−7 

0.7071 -0.7071 0.853554 0.853553 1.328207 × 10−7 

0.7071 0 0.353553 0.353553 6.206178 × 10−8 

0.7071 0.7071 0.853553 0.853553 3.108642 × 10−8 

0.7071 1 1.353553 1.353553 2.393065 × 10−8 

MSE   5.884756 × 10−15 

 

Table (4): the comparison between numerical solution for non-linear burger’s equations (43) using Monic 

polynomial and the exact solution when N=6 𝛼 = 1 , 𝛽 = 5 𝑥2⁄  and 𝑓(𝑥, 𝑦) = 2𝑡 + 6𝑥 + 15𝑥2 + 15𝑡2𝑥2 with 

the exact solution 𝑢 = 𝑡2 + 𝑥3. 

 

t x Numerical 

solution 

Exact Absolute error 

-0.5 -1 0.875 0.875 5.536512 × 10−9 

-0.5 -0.866025 0.625 0.625 6.350168 × 10−9 

-0.5 -0.5 0.125 0.125 4.940979 × 10−9 

-0.5 0 -0.124999 -0.125 3.658193 × 10−9 

-0.5 0.5 0.125 0.125 4.629090 × 10−9 

-0.5 0.866025 0.625 0.625 5.330051 × 10−9 

-0.5 1 0.875 0.875 6.433931 × 10−9 

1 -1 2 2 1.491832 × 10−8 

1 -0.866025 1.75 1.75 1.150322 × 10−8 

1 -0.5 1.25 1.25 6.285726 × 10−9 

1 0 1 1 2.494040 × 10−9 

1 0.5 1.25 1.25 2.353412 × 10−9 

1 0.866025 1.75 1.75 3.741889 × 10−9 

1 1 2 2 4.479909 × 10−9 

MSE    3.761572 × 10−17 

 

6. Conclusion 

It is well known that polynomials are used in solving nonlinear ordinary and partial differential 

equations It requires converting differential equations into nonlinear systems from polynomial transactions, and 

thus solving these systems with one of the methods of solving nonlinear systems requires additional time and 

effort. In this paper the differentiation matrix based on the monic Chebyshev polynomials 𝑄𝑛(𝑥) is presented for 

solving partial nonlinear ordinary differential equations by relying on operational matrices for derivatives of 

polynomials and dispensing with the step of finding coefficients and then substituting to find numerical 

solutions. The main advantage of these polynomials is that the size of the monic polynomial is 
1

2𝑛−1
, 𝑛 ≥ 1 and 

this becomes smaller as the degree 𝑛 increases. The degree n monic polynomial with the smallest maximum on 

[−1,1] is the modified Chebyshev polynomial 𝑇𝑛(𝑥). This result is used in approximate higher-order differential 

applications and can be applied to obtain an improvement interpolation scheme. MAPLE 15 has been used in 

programming and solving examples. 
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