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Abstract

The structural properties and construction of quantum codes over Z, using Constacyclic codes over the finite
commutative non-chain ring R =Z,[v,»,y]/<Vv? = 1L, w* = 1,¥* — 1,vw — 0V, wy — yw,yv — vy > where
vV = Lw® = 1,y = Lvw = vo,0y = yw,yv = vy are the focus of htis paperand Z,, is field having p
elements with characteristic p where p is an prime such that p > 2. A Gray map is defined between R and Zg.
Decomposing constacyclic codes into cyclic and negacyclic codes over Z, yields the parameters of quantum

codes over Z,. Some examples of quantum codes of arbitrary length are also obtained as an application.
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1. Introduction

Shor [10] demonstrated the presence of a quantum error correcting code in 1995. In 1998,
Calderbank et. al [1] published a paper in 1998 in which they established a theory for
constructing quantum codes using classical error correcting codes. A substantial literature has
sprung up around quantum error correcting codes in recent years. Using the Gray image of
cyclic codes over some finite rings, some authors created quantum codes. For example, in [5],
Qian proposes a new method for constructing quantum codes from cyclic codes over the finite

ring F, + vF, where v = v. In[2] Dertli et. al. derive quantum codes from cyclic codes over
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F, + uF, + vF, + uvF,. In [7], Ashraf and Mohammad present a quantum code construction
based on cyclic codes over F; + vF; where v2 = 1. Ozen et al. [9] investigated several
ternary quantum codes derived from the cyclic codes over F; 4+ uF; 4+ vF; + uvF; In 2016.
Many researchers have recently obtained new quantum codes over F, derived from classical
cyclic and constacyclic codes, which we refer to as [3, 4, 6, 8].

The rest of the paper is organised as follows: Section 2 is Preliminaries in which some
fundamental properties and definitions are given. Section 3 includes Gray Map from the ring

R to Z} as well as some gray and ring related details. we discussed the development of

quantum codes using constacyclic codes over R in section 4, which are exemplified in section

5. Finally, the given paper is concluded in last section.

2. Preliminaries

Let Z, be a finite filed with p elements for p > 2. Now, we first start with a general
overview of the ring R =Z;[v,w,v]/< vZ—1,02—-1,v%—1,voo — 0V, Yy — YW, YV —
vy > having characteristic p with restrictions v = 1,w? = 1,y? = 1,vo = vo,0y =
yw,yv = vy. R is a commutative but non-chain finite ring with p® elements.

Some of the units of R is v, w,vw for shake of simplicity we consider 9 as unit of R and
also we note that 9= = 9 for each case.

Let us assume a € Z, suchthat 8« = 1 modp and

o1 =a(l+v+w+y+vo+ oy +yv + voy),
0 =a(l+v+w-—vy+vo — oy — yv — voy),
0z =a(l+v—-—w+y—vo — oy + yv — voy),
0 =a(l = v+ w+y—vo + oy —yv — voy),
s =l +v—-—w-—-—Yy—vo + w0y — yv + voy),

06 =l —v—-—w+Yy+vo — oy — yv + voy),
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g7 =al—=-Vv+w—-—yY—vo — oy + yv + voy),

gg =a(l —v—-—w-—vy+ vw + oy + yv — vwy).
It is obvious to obtain that of = g;, eie; =0 and X{; ¢; =1 forall i,j = 1,2,...,8 and
i # j. Now by chinese remainder theorem, the considered ring can be expressed as
R=0Zp © 0Zp © 03Zy, © 04Zp D 05Z, D 06Zp © 072, D sZp.

Therefore, an arbitrary element e = e; + e;v + esw + e,y + esvw + egwy +
e;yv + egvwy of R where e; € Z, can be uniquely expressed as

e = 01Ky + 02Ky + 03k3 + 04Ky + 05ks + 06ke + 07k7 + 0gks
where k; € Z, forall i = 1,2,...,8.
Anonempty subset K of R"™ isalinear code over R of length n. If K isan R-submodule
of K™ and the elements of K are codewords. Let K be acode over R of length n and its
polynomial representation be T(X), that is,

T(X) = (B xit' | (o Xwr -+ Xn-1) € K}

Let Y,A and U are the maps from R" to R"™ defined as

Y(XOI X1ree) Xn—l) = (Xn—l' XO' e Xn—Z)'
A(XO) X1y Xn—l) = (_Xn—l' XO' ey Xn—Z)'

O(Xos X1+ -+ Xn-1) = (OXn-1,Xo0s-++» Xn-2)»
respectively. Then X is a cyclic, negacyclic, 9-constacyclic if Y(K) =K, A(X) =X,
U(X) = K respectively. A code K over R of length n is cyclic, negacyclic and 9-
constacyclic if and only if T(X) is an ideal of R[t]/<t"—1>, R[t]/<t"+1> and
R[t]/< t" — 9 > respectively.
For the arbitrary elements x = (X0, X4,---»Xn—1) and ¥ = (Yo, ¥q,..., Uy—1) of R, the
inner product is defined as
XU = T xibs.
If x.¢ =0, then x and { are orthogonal. If K is a linear code over R of length n, then
the dual code of XK is defined as
Kt={x € R:x.¢y=0forall y € X}.
which is also a linear code over the ring R of length n. A code K is said to be self
orthogonal if % € K+ and said to be self dual if & = K*.
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3. Gray Map over R

The hamming weight wy(x) for any codeword x = (X0, X1,---»Xn—1) € R" is defined as
the number of all non-zero components in x = (Xo, X1,---»Xn—1)- The minimum weight of a
code X, that is, wy(XK) is the least weight among all of its non zero codewords. The
Hamming distance between two codes x = (X0, X1,---»Xn—1) and X = Ko, X1,--+»Xn—1) Of
R, denoted by dy (), %) = wy(x —X) and is defined as

da( ) = [{i|xi # $i}l-
Minimum distance of X, denoted by dy and is given by minimum distance between the
different pairs of codewords of the linear code X . For any codeword x = (Xo, X1,--+»Xn-1) €
R", the lee weight is defined as wy (%) = X5 wi(xi) and lee distance of (x,g) is given by
dLOe) = wilx— % = 25 wil — R0
Minimum lee distance of X is denoted by d; and is given by minimum lee distance of
different pairs of codewords of the linear code K.
The Gray map ¢ from R to Z3, thatis, ¢: R — Z3 is defined as

(p(k = ?:1 Qiki) = (Bl' BZ' BBI 641 BSI BGI 671 BB)
Where

Bl (kl + kz + k3 + k4 + k5 + k6 + k7 + kSL
B = (ks + ky + k3 — ks + ks — kg — k; — Kkg),

Bs = (ky + k; — k3 + k4 — ks — kg + k; — kg),
By = (ky — k; + k3 + kg — ks + kg — k; — kg),
Bs = (ky + k; — ks — ky — ks + kg — k; + kg),
Be = (ky — k; — k3 + kg + ks — kg — k; + kg),
B, = (ky — k; + ks — ks — ks — kg + k; + kg),

Bs = (kg — ky — k3 — k4 + ks + k¢ + k; — kg).

Theorem 3.1 The Gray map « is linear and distance preserving isometry map from (R",d;)
to (Zgn, dy), where d;, and dy are the lee distance and hamming distance in R™ and Zgn
respectively.

Proof. Let ky,k, € R and a € Z, then

@(kky +ky) = kp(ky) + @(ky)
So, ¢ is linear map.
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Now we show that ¢ is distance preserving map.

By the above definitions, d,(x.X) = wo(x —%) = wu(eX—X)) = wu(eX) — ¢(X)) =
du (@0, @(X))-

Hence ¢ is distance preserving map from (R",d;) to (Zgn, dy).

Theorem 3.2 If X is a linear code over the ring R of length n with |X| = p¥, d,(¥) =

d, then @(¥X) isa linear code having parameters [8n,k, d].

Theorem 3.3 Let K be a linear code over the ring R of length n. If K is self orthogonal,
then @(X) is also self orthogonal.

Proof. Let X be a self orthogonal code and n;,m, € X such that n; = Y2, o;k; and
n, = X9, oiki where k, ki € Z, for i = 1,2,...,8 from the definition of self
orthogonality, n;.m, = 0, that is, >3, o;kik{ = 0, it follows that k;k{ = 0 for i =
1,2,...,8. Now, applying ¢ on n;,n, we have @(n.).@(m,) = X2, 8kk{ = 0 that
implies @(X) is self orthogonal.

Theorem 3.4 [4] Let K be a linear code over the ring R of length n. Then @(X*) =
(@(F))*. Further, K is self dual if and only if @ (%) is self dual.

4. Quantum codes obtained through 9-constacyclic codes
Let S;'s be the linear codes for i = 1,2,...,8. we denote
S DS, B S3D S5, DS D Se ®S; D S
={s; + S, +S3+54 +55+5S¢+5s;+sg|s; €S;fori = 1,2,...,8}
and
S ®S; @S35, QS5 QS QS; Q Sg
= {(s1,S2,S3,54 Ss5,56,57,Sg)|s; € S;jfori = 1,2,...,8}
For a linear code K of length n over R, we define

Ky = {s; € Zp such that ¥8 | si0; € X, for some kj€Zy,j # land1< j< 8},
K, = {s; € Z}suchthat X3, s;0; € K, forsomek; € Z},j # 2and1< j < 8},

Ks = {s3 € Z}suchthat X3, s;0; € K, forsomek; € Z},j # 3and1< j< 8},
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K4 ={s, € Zpsuchthat ¥}, sio; € K, forsomek; € Z,j # 4and1< j< 8},
Ks = {ss € Zp such that >8 | sioi € X, for some ki €Z5,j # 5and1< j< 8},
K¢ = {s¢ € Zp such that >8 | sioi € X, for some ki €Z5,j # 6and1 < j< 8},
K, ={s; € Zpsuchthat ¥}, s;o; € K, forsomek; € Z,j # 7and1 < j < 8},

Kg = {sg € Zpsuchthat ¥}, s;o; € K, for somek; € Z,j # 8and1 < j < 8}.

Clearly, Ky,K;, K3, Ky, Ks, K, K7, Kg are the linear codes over Z, of length n.

Theorem 4.1 [4] Let K be a linear code over the ring R of length n. Then @(¥)= K; ®
K, ® Ks ® Ky ® Ks ® Kg @ K; Q Kg and |7C| =
|K1 1Kz ||K3|Kqy|[Ks][Ke|[K7|Kg].

Corollary 42 [4] If o(KX) = K; ® K, @ K3 Q@ K, @ Ky ® Ky ® K; ® Kg then
K= 0:K; @ 0:K; @ 03Kz D 04Ky @ 05Ks D 06K D 07K7 D 0sKs.
By the help of Theorem 4.1 and Corollary 4.2, we say that the linear code K can be uniquely

expressed as the linear code K can be uniquely expressed as

K =01K; @ 0:K; D 03Kz D 01Ky D 05Ks D 06K D 0/K; D 05Kg
and also
|71 = K1 [IK2|[K3|Kq|[Ks[[Ke|[K7[Kg].
If Gq,Gy, G3,Gy,Gs,G6,G;, and Gg are the generator matrices of the linear codes

K, K, K3, Ky, Kg, Kg, K, and Kg respectively. Then, the generator matrix of K is

G = [Q1G1 22G2 @3G3 @4Gs 05Gs @G 0767 QSGS]T

and that of @ (%K) is

0(G) = [@(QlGl) ¢(0:G2) ©(03G3) 9(04Gs) ®(esGs) P(sGe) P(07G7) @(2sGa)]"

Note: Now, we consider different cases of 9.
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Casel. 9 = vw

Theorem 4.3 Let KX = 0:K; @ 0K, @D 03K; D 0.Ky D 05Kz D 04K D 0,K; D
ogKg be a linear code over the ring R of length n where K; for i = 1,2,...8 are the
linear code over Z,. Then, X isa vw-constacyclic codes overthering R of length n ifand
onlyif K; for i = 1,2,6,8 arecyclicand K; for j = 3,4,5,7 are negacyclic codes over Z,

of length n.

Proof. Let,
e = (0.,0i,...,81_) € K;, fori = 1,2,...,8.
For an arbitrary element ¢; € X, uniquely expressed as
G = 16] + 0,07 + 0367 + a6 + 0567 + 0667 + 0,07 + 0567 = T, 0:6],

where 6] € Z, for j = 0,1,...,n— 1.

Let,

¢ = (G0, 01+, Cn1) € R
First we assume that K is vw-constacyclic codes over the ring R of length n, then
0@ = (vo)Tn-1,%0, -+, Cn—2)
= (Q10h-1 + Q2031 — 03031 — 04051 — 05651 + Q6051 — 07071 + 071,
0101 + 0267 + 0367 + 0407 + 0567 + 0607 + 0,67 +

0g08,..,,
01052 + 02055 + 0305, + 0407, + 0565, + @605, +
01652 +
s05-2)
= 0:Y(8Y) + @2 Y(0?) + 23A(8°) + 4A(8*) + @5A(6°) + 26 Y(8°)
+0,A(87) +
esY(8°)

which is an element of the linear code K. Therefore, K; for i = 1,2,6,8 are cyclic and K;
for j = 3,4,5,7 are negacyclic codes over the ring Z, of length n respectively.

Conversely, forany ¢ = (y,3s,...,30—1) € K, Where g = Y%, 0,6, and where 6] € Z,
for j = 0,1,...,n—1. If K; for i = 1,2,6,8 are cyclic and K; for j = 3,4,57 are
negacyclic codes over the ring Z, of length n respectively, then Y(6') € K, Y(8%) €

K,,A(8%) € K;, A(0*) € K, A(8°) € K, Y(08%) € K¢, A(B7) € K,,Y(08) € Kg.
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Hence, we have
01 Y(8") + 02Y(8%) + 03A(8%) + 4 A(8*) + 5A(8%) + 06 Y(8°) + ,A(87) + Y (6°)
E X
where it given that
U@ = 0,Y(8") +0,Y(6%) + 3A(8°) + 4A(6*) + @5A(8°) + @6Y(6°) + ,A(87)
+05Y(8%),
which implies that U(0) € XK.
Therefore, K isa vw-constacyclic codes over the ring R of length n .
Case2. 9 = v
Theorem 4.4 Let X = 0;K; @ 0:K; @ 03Kz @ 04Ky D 05Ks @D 06Ke D 07K; D
0gKg be a linear code over the ring R of length n where K; for i = 1,2,...8 are the
linear code over Z,. Then, X isa v-constacyclic codes over the ring R of length n if and
onlyif K; for i = 1,2,3,5 arecyclicand K; for j = 4,6,7,8 are negacyclic codes over Z,

of length n.

Proof. Let,
e = (0.,0i,...,061_,) € K;, fori = 1,2,...,8.
For an arbitrary element ; € X, uniquely expressed as
G = 010] + 0267 + 036 + 046] + 0567 + 06} + ;6] + 6] = EiL; 06},
where 6] € Z, for j = 0,1,...,n— 1.
Let,
¢ = (G,C1---»Cn-1) € R
First we assume that & is v-constacyclic codes over the ring R of length n, then
00 = ((vw)Tn-1,%0,---,Cn-2)
= (Q10h-1 + 2031 + 03051 — 04081 + 05651 — Q6051 — 0,071 —
0s0n-1, 0161 + 0267 + 0367 + 0407 + 0567 + 0667 + 0,67 + 56%,..,
Q16h-2 + 2055 + @305, + 0408, + 0505, + @605, + 0165, +
30n-2)
= 0,Y(8") + @2Y(6%) + 3Y(6%) + 04A(8%) + 5Y(6°) + g A(8°) + 0,A(87)
+0gA(6%)
which is an element of the linear code X. Therefore, K; for i = 1,2,3,5 are cyclic and K;

for j = 4,6,7,8 are negacyclic codes over the ring Z, of length n respectively.
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Conversely, forany ¢ = (5,3y,...,30—1) € K, where g = Y%, 0,6}, and where 6] € Z,
for j = 0,1,...,n—1. If K; for i = 1,2,3,5 are cyclic and K; for j = 4,6,7,8 are
negacyclic codes over the ring Z, of length n respectively, then Y(6') € K;,Y(6?%) €
K,, Y(83) € K3, A(6*) € K, Y(8%) € Ks,A(B%) € K4, A7) € K5, A(B®) € Kg.
Hence, we have
01 Y(8") + @2 Y(8%) + 03Y(8°) + 04A(8%) + @5Y(8°) + @6 A(8°) + @;A(87) + s A(6®)
€E X
where it given that
U@ =e1Y(8Y) +0,Y(6%) + 03Y(8%) + 04A(8%) + 05Y(8%) + 6A(8°) + 0,A(87) +
esA(89),
which implies that U(0) € X.
Therefore, K isa v-constacyclic codes over the ring R of length n .
Case3. § = w
Theorem 4.5 Let X' = 0:K; @D 0:K; D 03K5 @ 04Ky D 05Ks D 06Ke D 0/K; D
0gKg be a linear code over the ring R of length n where K; for i = 1,2,...8 are the
linear code over Z,. Then, K isa w-constacyclic codes over the ring R of length n if and
onlyif K; for i = 1,2,4,7 arecyclicand K; for j = 3,5,6,8 are negacyclic codes over Z,

of length n.
Proof. The proof of this theorem is similar to proof of Theorem 4.4.
The following Theorem is Similar to Theorem 7 [4].

Theorem 4.6 Let K be a 9-constacyclic codes over the ring R of length n. Then
K =<0181(1),0282(1), 0383(1), 0484(1), @585(1), 0686 (1), 0787 (1), @g8s (L) >
= < 0181(1) + @282(t) + 2383(t) + 0484(1) + @585(t) + Q686 () + 0787 (D) +

s8s(t) >
where g;(t) are the generator polynomials of K; for i = 1,2,...,8 respectively.

Moreover, |K| = p8n-2?=1deg(gi(t))

Theorem 4.7 Let K be a 9-constacyclic codes over the ring R of length n. Then K+ is

also a 9-constacyclic codes over the ring R of length n. Moreover,
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LKLY = 0Ky @ 0Kz @ 03Kz @ oKz D QsKé’ D 0Kz D /K7 @ 03Kz
2.1 = < i81(1), 0283(1), 2383 (1), 0484 (1), 0585 (D), 2685 (1), 0787 (1), 2885 (D) >
= < 0181(0) + 285 (1) + 0383 (0) + 2484(1) + 0585(1) + 686(0) + 0787 (D) +
885 (1)
>
3.|Kt| = pEitideg@®)

x0-1 x"+1

where gi(t) are the reciprocal polynomial of
ere gi(t) are the reciprocal polynomial o 5® 5O

for different i and j for different

case of 9 respectively.

Lemma 4.8 [1] If ¥ is a cyclic or negacyclic code over the ring Z, with a generator
polynomial g(t). Then, K contains its dual code if and only if

x" — 1= 0mod(g(t)g*(t)
where = +1.

Casel. 9 = v
Theorem 4.9 Let X = 0,:K; @ 0K, @D 03K; D 0.Ks D 0Kz D 0K D 0,K; D
0gKg isa 9-constacyclic code over the ring R of length n. Then, X+ < X if and only if
x"—1 = 0mod(g;(t)g; (1)
and
x"+1 = 0mod(g;(H)g; (1))
fori = 1,2,6,8 and j = 3,4,5,7.

Proof. Let X = <g(t)> = <Y, 0;g;(t) > be a 9-constacyclic code over R of
length n. Then, K = 0:K; @ 0:K; @ 03Kz D 04Ky D 05Ks D 06Ks D 0/K; @D
0gKg where g;(t) are the generator polynomial of K; for i = 1,2,...,8 respectively.
First we consider

x" —1 = 0mod(g;(t)g; (1)
and

x"+1 = 0mod(g;(t)g; (V).
for i = 1,2,6,8 and j = 3,4,5,7. Then by above lemma, we have

Ki € K,K3 € K, K3 € K3,Ki € Ky, Ke € K, Kg € K¢, Ki € K, Kg ©

Kg,
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and therefore

N

Q1 Kf

N
N
N

01Ky, QZK%— 02Ky, Q3K§ 03K3, Q4Ki
0sKs S 05Ks, 06Kg S 06Ke, 07K7 S 0/K7, 05K3
which implies that

Q4K4'
0sKg

N

0iKi @ 0Kz @ 03Kz @ 0Kz @ 05Kz D 0eKg D /K7 D Kz
C 0:K; @ 02Kz D 23Kz @ 04Ky D 05Ks D e6Ke D 0/K7 D
2gKs
Thus, we have

Kt cx
Conversely let us consider
Kt c X,
then
0:KT @ ;K7 @ 23Kz @ Ky @ 0sKs D 0sKs D /K7 D 0sKs
C 01K @ 02Kz @ 03Kz @ 04Ky D 05Ks D 0K D /K7 D
2gKs
which implies that
0:iKi € 0:Ky, 0Kz € 02Ky, 03Kz S 03K3, 0.Ki € 04Ky,
0sKs S 05Ks, 06Ks S 06Ke 07K7 S 07K7,05Ks S 05Ks
that implies
Ki € K,K3 € K,, K3 € K3,Ki € K, K € K, K € K¢, KE € K, Ki ©
Kg,

Then by above lemma,

xt—1

0 mod(g;(D)g; (1)
and

x"+1 = 0mod(g;(t)g; (1))
fori = 1,2,6,8 and j = 3,4,5,7.

Case2. 9 = v

Theorem 410 Let X =0;K; @ 0:K; @ 03K5 © 04Ky D 05Ks D 06Ke D
0;K,; @D ogKg is a 9-constacyclic code over the ring R of length n. Then, X+ < K if
and only if
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x"—1

0 mod(g;(D)g; (1))
and

x"+1 = 0mod(g;(t)g; (1))
fori = 1,2,3,5 and j = 4,6,7,8.

Proof. Let X = <g(t)> = <Y, 0;gi(t) > be a 9-constacyclic code over R of
length n. Then, X =0;K; @ 0:K; @ 03Kz @ 0Ky D 05Ks @ 0K D 0;K; D
0gKg where g;(t) are the generator polynomial of K; for i = 1,2,...,8 respectively.

First we consider

xt—1

0 mod(g;(Dg; (1)
and

x"+1 = 0mod(g;(t)g; (1))
for i = 1,2,3,5 and j = 4,6,7,8. Then by above lemma, we have
Ki € K;,K3 € K,, K3 € K3,Ki € K, K € K, K € K¢, KE € K, Kz ©
Kg,

and therefore

N
N
N
N

22Ky, Q3K§ 03Ks, Q4Ki
0sKe, 07K7 S 07K7, 0Kz

01Ky, QZKé_
0sKs, QeKé

0: K7
esKs
which implies that

Q4K4'
0sKg

N
N
N

0:KT @ 0:K3 @ 03K3 D 0Kz D 0sK: D 0sKe D 0/K7 D 0gK3
C 0:1K; © 0K, @D e3K3 D Ky D esKs D 0cKg D 07K; D

2gKs
Thus, we have
Kt c X.
Conversely let us consider
Kt c X,
then
21K @ K7 @ 03K3 @ .Ki @ 5Kz @ esKg @ o/K7 @ gKg
C 01Ky @ 0:K; @D 03Kz @ 04Ky D 05Ks D 06Ke D 07K; D
0gKs

which implies that

0:Ki S 01Ky, 0:K7 € 02Kz, 03K3 S 03K3,04K5 S 04Ky,
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0sKs S 0sKs, 06Kg S 06Ke, 07K7 S 07K, 05Kg S 04K
that implies
Ki € K, K3 € K,,Ki € K3,Ki € K, Ke € K, K € K, KE € K, Ki ©
Kg,
Then by above lemma,
x" =1 = 0 mod(gi(tg} (t))
and

x"+1

0 mod(g;(D)g;j (1)
fori = 1,2,3,5 and j = 4,6,7,8.

Case3. 9 = w
Theorem 411 Let X =0:K; @ 0K, D 03K5 @ 04Ky D 05Ks D 06K D
0;K; @ ogKg is a 9-constacyclic code over the ring R of length n. Then, X+ < K if
and only if

x"—1 = 0mod(g;(t)g; (1))

and

x"+1 = 0mod(g;(t)g; (1))

fori = 1,2,4,7 and j = 3,5,6,8.
Proof. The proof of this theorem is similar to proof of Theorem 4.10.

By above Theorems, we have the following Corollary.
Corollary 412 Let X =0K; @D 0:K; D 03K5 D 04Ky D 05Ks D 06Kg D
07K, @ o0gKg be a 9-constacyclic code over R of length n where K; for i = 1,2,...8

are the linear code over Z,. Then, X+ < X ifand only if Kt € K; fori = 1,2,...,8.

Lemma 4.13 [1](CSS Construction) Let X be a linear code over the ring Z, having
parameters [n,k,d]. Then a quantum code having parameters [n,2k —n,> d]; can be
obtained if X+ € XK.

The following theorem defines the construction of quantum codes by the use of Corollary 4.12
and Lemma 4.13.
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Theorem 4.14 If K = g;K; @ 0:K; @ 03K3 D 04Ky D 0sKs D 0sKg D 0,K; D

esKs = < 0181(1), 0282(1), @383 (1), €484 (1), @585 (1), Q686(1), 0787(1), 2888 (1) > s a 9-
constacyclic code over the ring R of length n where g;(t) are the generator polynomials of

K; for i = 1,2,...,8 respectively. If K{ € K; for i = 1,2,...,8, then X+ < X and
there exists a quantum code having parameters [8n, 2k — 8n, > d; ], where K is the dimension

of linear code @(K) and d;, is minimum lee distance of a linear code X.

5. Examples

In this section some examples are provided to illustrate the main result. Here, the quantum
codes through 9-constacyclic codes over the ring R = Z,[v,w,y]/<V* =1, 0* — 1,y* -
1, vw — v, Wy — Yyw,yv — vy > where v = 1,w? = 1,y% = ,vw = vo,wy =

Yw,yv = vy are obtains.

Example 5.1 In Z3(t), t¥°—1 = t+2)3t*+3+2+t+1)% and t¥+1 = (t—
23 +283+t2+2t+1)3. Now, let K be a vw -constacyclic code over R =
Zs[v, w,v]/< V2 — 1, 0% — 1,y%2 — 1,vw — wv, 0y — Yyw,yv — vy > of length 15. Let
g1() = g2() = ge() = ge() = t+2 and g3(t) = g,(H = gs() = g,(H) = (t—
2)? then g(t) = i(t+2) 4+ 0a(t+2) 4+ 03(t — 2)% + 04(t — 2)* + o5(t — 2)* + e (t +
2) + 0,(t— 2)? + gg(t + 2) be the generator polynomials of . Since g;(t)g;(D)|t!> —1
for i = 1,2,6,8 respectively and g]-(t)g]i*(t)|t15 + 1 for j = 3,4,5,7 respectively, then by
the use of Theorem 4.9, we get K1 < . Further @(X) is a linear code over Z; having
parameters [120, 108, 3]. Then, by the application of Theorem 4.14, we obtain the quantum

codes having parameters [120,96, > 3];.

Example5.21In Zz(t), t?1—1 = t— D3t + 2 +t*+ 3 +t2+t+1)3 and t?1 + 1 =
(t+ 13t +2t° +t* + 2t3 + t2 + 2t + 1)3. Now, let K be a v-constacyclic codes over
the ring R = Z3[v, w,y]/< V¢ — 1, w? — 1,y? — 1,vo — wv, wy — yw, yv — vy > of length
21 Let gi(t) = g2(t) = g3() = gs(t) = t—1 and gu(t) = ge(t) = g7(1) =
gs( = (t+1)? then g(t) = ei(t—1) +ea(t—1) +e3(t—1) +s(t+1)* +os(t -
1) +0e(t+ 12+ g,(t+ 1)% + gg(t+ 1)? be the generator polynomial of X . Since
gi(Dg;(OIt*' =1 for i = 1,2,3,5 respectively and g;()g; (D[t*' +1 for j = 4,6,7,8
respectively, then by the use of Theorem 4.10, we get K+ < K Further @(K) is a linear
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code over the ring Z; having parameters [168, 156, 3]. Then, by the application of Theorem

4.14, we obtain the quantum codes having parameters [168, 144, > 3];.

Example5.31In Zg(t), t1° —1 = (t+ 45?2 +t+1)5 and t15+1 = (t—4)°(t2 + 4t +
1)°. Now, let K be a w-constacyclic codes over the ring R = Zs[v, w,y]/< v? — 1, w? —
1,y? —1,vw — wv,0y — yw,yv —vy > of length 15. Let g;(t) = g,(t) = gu(t) =
g;(0 = (t+4H? and  gz(t) = gs(0) = ge(t) = gg() = (t—4)* then g(t) =
01(t+4)2 4+ 0a(t+4)% + 03(t—4)% + u(t +4)% + 05(t — 4)% + g (t — 4)? + g, (t +

4)? + gg(t — 4)? be the generator polynomial of X . Since g;(t)gi(D|tt>—1 for i =
1,2,4,7 respectively and gj(t)g;‘(t)|t15 + 1 for j = 3,5,6,8 respectively, then by the use of
Theorem 4.11, we get K1 S K Further @(X) is a linear code over the ring Zg having
parameters [120,104, 3]. Then, by the application of Theorem 4.14, we obtain the quantum

codes having parameters [120,88, > 3]s.

Example 5.4 In Zs(t), t2°—1 = (t+ 1)°(t+2)°(t+3)°(t+4)° and t?°+1 = (2 +
2)5(t? + 3)5. Now, let K be a vw-constacyclic codes over the ring R = Z:[v, w,v]/<
vi—1,w? -1,y - 1,voo — wv,wy — yw,yv — vy > of length 20. Let g,(t) = g,(t) =
ge() = gs() = (t+4)* and gz(t) = g4(t) = gs(t) = g7(v) = (t*+2) then
g(t) = ou(t+4)% + 02(t + 4% + 03(t? + 2) + 04 (t? + 2) + 05 (t* + 2) + ga(t + 4)* +

07(t? + 2) + og(t + 4)? be the generator polynomials of % . Since g;(t)g; (t)|t?° —1 for
i =1,2,6,8 respectively and gj(t)g]?‘(t)|t2° + 1 for j = 3,4,5,7 respectively, then by the
use of Theorem 4.9, we get K+ < K. Further @(X) is a linear code over the ring Zs
having parameters [160, 144, 3]. Then, by the application of Theorem 4.14, we obtain the

quantum codes having parameters [160,128,> 3]s.

Example 5.5 In Zg(t), t3°—1 = (t+ D5t + 4)°(t2 + t + 1)5(t2 + 4t + 1)° and t3° +
1 = (t+2)5(t+3)°(t% + 2t + 4)5(t? + 3t + 4)°. Now, let K be a w-constacyclic codes
over the ring R = Zs[v,w,v]/<Vv? -1, 0% - 1,y? — 1,vo — wv, wy — yw,yv — vy > of
length 30. Let gi(t) = g,(t) = g4(t) = g,(t) = t>+t+1 and gz(t) = gs(t) =
go() = gg(t) = t2+3t+4 then g(t) = o (t2+t+ 1)+ (2 +t+ 1)+ o5(t2 +
3t+4)+ (2 +t+ 1)+ 0s(t2 +3t+4) + 0g(t2 + 3t +4) + o, (t2 +t+ 1) + gg(t? +

3t+4) be the generator polynomial of # . Since g;()g/(D)|t3°—1 for i = 1,2,4,7
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respectively and g;(Dg/(D[t*®+1 for j = 3,56,8 respectively, then by the use of
Theorem 4.11, we get X1 < K Further @(X) is a linear code over the ring Zg having
parameters [240,224,3]. Then, by the application of Theorem 4.14, we obtain the quantum

codes having parameters [120, 208, > 3]s.

Example 5.6 In Z,(t), t?° =1 = (t+ D(t+6)(t*+ Dt *+ 3 +t2 +t+ D(t* + 33 +
462 + 4t 4+ D+ 483 + 42 + 3t+ D+ 683 +t2 +6t+1) and t204+1 = (24
3t+ D)(t? +4t+ D(t* + 3 + 6t%2 + 3t+ D) (t* + 33 + 6t2 + t + 1) (t* + 4t3 + 6t2 +

6t + 1)(t* + 6t3 + 6t + 4t + 1). Now, let K be a v-constacyclic codes over the ring R =
Z;[v,w,v]/<V?— 1,02 —1,y? — 1,vw — v,y — yw,yv —vy > of length 20. Let
g1() = g2(t) = g3(t) = gs(t) = t+6 and g4(t) = ge(t) = g,(t) = gs(®) = t* +
3t+1 then g(t) = o (t+6) + 0(t+6) + 03(t+6) + 04 (t2 +3t+ 1) + 05(t + 6) +
06(t> + 3t + 1) + 0, (t? + 3t + 1) + gg(t? + 3t + 1) be the generator polynomial of X .
Since g;(Hgi(VIt*° —1 for i = 1,2,3,5 respectively and g;(t)gj(D[t** +1 for j =
4,6,7,8 respectively, then by the use of Theorem 4.10, we get K+ < K Further @(X) is
a linear code over the ring Z, having parameters [160, 148, 2]. Then, by the application of

Theorem 4.14, we obtain the quantum codes having parameters [160,136, > 2].

Example 5.7 In Z,(t), t*1 =1 = (t+3)’(t+5)7(t+6)” and t*°*+1 = (t+ 1)’ (t+
2)7(t+4)7. Now, let % be a vw-constacyclic codes over the ring R = Z;[v, w,y]/< v? —
1,w? -1,y —1,vo —wv,wy —yw,yv—vy > of length 15. Let g,;(t) = g,(t) =
g6() = gs() = (t+3)* and gz(t) = ga(t) = gs(V) = g,() = (t+4)* then
g(t) = @i(t+3)* +0a(t+3)* +3(t+4)* + @u(t +4)* + s (t + 4)* + g6 (t +3)* +

07(t+4)% + gg(t+ 3)? be the generator polynomials of % . Since g;(t)g;(t)|t** —1 for
i = 1,2,6,8 respectively and g;(t)gj ()|t*' + 1 for j = 3,4,5,7 respectively, then by the
use of Theorem 4.9, we get K+ < XK. Further @(X) is a linear code over Z, having
parameters [168,152,3]. Then, by the application of Theorem 4.14, we obtain the quantum

codes having parameters [168,136,> 3],.

Example 5.8 In Z;;(t), t'¥—1 = (t+ D+ 10)(t2+t+ 1)(t?> + 10t + 1) (t° +t3 +
D +10t3+1) and t1¥8+1 = (2 + 1)(t* +5t+ 1)(t* + 6t + 1)(t® + 583 + 1)(t® +

6t3 + 1). Now, let K be a vw-constacyclic codes over the ring R = Z;[v, w,y]/< v? —
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1, w2 -1,y —1,vo —wv,wy —yw,yv—vy > of length 18. Let g,;(t) = g,(t) =
ge() = gg() = t+10 and gz(t) = g4(t) = gs(t) = g,() = 2 +5t+1 then
g(t) = 01(t+ 10) + ga(t + 10) + o3 (t? + 5t + 1) + g4 (t* + 5t + 1) + g5 (t?> + 5t + 1) +
0e(t+ 10) + @,(t? + 5t + 1) + gg(t + 10) be the generator polynomials of . Since
gi(Ogi(M|t*® —1 for i = 1,2,6,8 respectively and g;(t)gj(D[t*® +1 for j = 3,457
respectively, then by the use of Theorem 4.9, we get K1 < XK. Further @(X) is a linear
code over Z;; having parameters [144,132,3]. Then, by the application of Theorem 4.14,

we obtain the quantum codes having parameters [144, 120, > 3];.

Example 59 In Z;;(t), t3 -1 = (t+10)*1t*+t+ D and t3+1 = (t+
DM(t? 4+ 10t+ 1) . Now, let K be a v -constacyclic codes over the ring R =
Z1[v, 0,7]/< V2 — 1, 0?2 — 1,y — 1,vo — wv,wy — yw,yv — vy > of length 33. Let
g1() = g2(t) = g3(t) = gs(t) = (t+10)* and gu() = ge(t) = g,() = gs(V) =
t2+10t+1 then g(t) = oi(t+ 10)% + g, (t+ 10)? + o3(t + 10)? + ,(t? + 10t +
1) + @s(t+ 10)? + gg(t% + 10t + 1) + @, (t? + 10t + 1) + gg(t? + 10t + 1) be the
generator polynomial of . Since g;(Dgi(t)|t>3>—1 for i = 1,2,3,5 respectively and
gi(Hgf (MIt** + 1 for j = 4,6,7,8 respectively, then by the use of Theorem 4.10, we get
KL < K Further @(X) is a linear code over the ring Z;; having parameters
[264, 248, 3]. Then, by the application of Theorem 4.14, we obtain the quantum codes having
parameters [264,232,> 3]44.

6. Conclusion

In this work, we have given a construction for quantum codes through 9-constacyclic codes
over the finite non-chain ring R =Z,[v,w,y]/<V* = 1,0° - 1,y* = 1,vw — wv, 0y —
yo,yv—vy > where Vv = 1,w? = 1,y? = 1,vo = vo,wy = yw,yv = vy for
different case of 9. We have derived self-orthogonal codes over the ring Z, as Gray images
of linear codes over the ringZ,[v, w,y]/< Vv* — 1, w* = 1,y* = 1,vw — wv, 0y — Y®, YV —
vy >. In particular, the parameters of quantum codes over the ring Z, are obtained by
decomposing constacyclic codes into cyclic and negacyclic codes over the ring Z,. Also, it
can be interesting to look at other classes of constacyclic codes over Zy[v, w,y]/< vZ —

1, w?— 1,y — 1,voo — 0V, wy — Y0, YV — Vy >.
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