(Λ,M)-Multi Fuzzy Subgroup Of A Group

¹Dr.KR.BALASUBRAMANIAN, ²R.REVATHY ³R.RAJANGAM

¹Assistant Professor in Mathematics, ²Research Scholar in Mathematics, ³Guest Lecturer in Mathematics H.H. The Rajah's college (Affiliated to bharathidasan University, Trichy), Pudukkottai

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May2021

ABSTRACT

In this paper, we have defined (λ,μ) - multi fuzzy subgroups of a group G and discussed some of its properties by using (α,β) – cuts. Also We have defined (λ,μ) -multi fuzzy cosets of a group and proved some related theorems with examples.

Mathematics Subject Classification :03F55, 08A72, 20N25, 03E72, 06F35.

Keywords: (λ,μ) -fuzzy set $((\lambda,\mu)$ -FS), (λ,μ) -multi fuzzy set $((\lambda,\mu)$ -MFS), (λ,μ) -multi fuzzy subgroup $((\lambda,\mu)$ -MFSG), (λ,μ) -multi fuzzy normal subgroup $((\lambda,\mu)$ -MFNSG), (α,β) -cut, Homomorphism.

1.INTRODUCTION

After the presentation of the fluffy set by way of L.A.Zadeh[23] some professionals investigated the speculation of concept of fluffy set. The concept of intuitionistic fluffy set(IFS) became provided by way of Krassimir.T.Atanassov [1] as a hypothesis of Zadeh's fluffy set.

In recent years, some variants and extensions of fuzzy groups emerged. In 1996, Bhakat and Das proposed the concept of an $(\in, \in \lor q)$ -fuzzy subgroup in [6] and investigated their fundamental properties. They showed that *A* is an $(\in, \in \lor q)$ -fuzzy subgroup if and only if $A\alpha$ is a crisp group for any $\alpha \in (0, 0.5]$ provided $A\alpha \neq 0$. A question arises naturally: can we define a type of fuzzy subgroups such that all of their nonempty α -level sets are crisp subgroups for any α in an interval (λ, μ) ? In 2003, Yuan et al. [22,23] answered this question by defining a so-called (λ, μ) -fuzzy subgroups, which is an extension of $(\in, \in \lor q)$ -fuzzy subgroup. As in the case of fuzzy group, some counterparts of classic concepts can be found for (λ, μ) -fuzzy subgroups. For instance, (λ, μ) -fuzzy normal subgroups and (λ, μ) -fuzzy quotient groups are defined and their elementary properties are investigated, and an equivalent characterization of (λ, μ) -fuzzy subgroups was presented in [22,23]. However, there is much more research on (λ, μ) -fuzzy subgroups if we consider rich results both in the classic group theory and the fuzzy group theory in the sense of Rosenfeld.

S. Sabu and T.V. Ramakrishnan [17] proposed the theory of multi fuzzy sets in terms of multi dimentional membership functions and investigated some properties of multi level fuzziness. An element of a multi fuzzy set can occur more than once with possibly [same or different membership values]. R.Muthuraj and S.Balamurugan[15] proposed the intuitionistic multi fuzzy subgroup and its level subgroups. The notion of t-intuitionistic fuzzy set, t-intuitionistic fuzzy group, t-intuitionistic fuzzy coset was introduced by P.K.Sharma[18,19]. And KR.Balasubramanian et al[3]. introduced the notion of t-intuitionistic multi fuzzy subgroup of a group. In this paper we conduct a detailed investigation on (λ, μ) -multi fuzzy subgroups of a group."

2. PRILIMINARIES

Definition 2.1[23]

Let X be a non-empty set .A fuzzy subset A of X is defined by a function $A:X \rightarrow [0,1]$.

Definition 2.3[15,16]

Let X be a non-empty set. A multi fuzzy set A in X is defined as the set of ordered sequences as follows.

 $A = \{(x, A_1(x), A_2(x), ..., A_k(x), ...): x \in X\}$. Where $A_i: X \to [0,1]$ for all i.

Definition 2.5[16]

Let X be a non-empty set. A k-dimensional multi fuzzy set A in X is defined by the set

 $A = \{(x, (A_1(x), A_2(x), \dots, A_k(x))), : x \in X\}$. Where $A_i: X \to [0,1]$ for $i = 1, 2, 3, \dots, k$

Definition 2.6 [16]:For any three MFSs A, B and C, we have:

1.Commutative Law : $A \cap B = B \cap A$ and $A \cup B = B \cup A$

2.Idempotent Law : $A \cap A = A$ and $A \cup A = A$

3.De Morgan's Law : $\neg(A \cup B) = (\neg A \cap \neg B)$ and $(\neg A \cap B) = (\neg A \cup \neg B)$

4. Associative Law : $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

5.Distributive Law : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and

 $A \cap (B \cap C) = (A \cap B) \cup (A \cap C)$

Definition 2 [21,22] Let A be a fuzzy subset of G. A is called a (λ, μ) -fuzzy subgroup of G if, for all $x, y \in G$, (i)A(xy) $\lor \lambda \ge A(x) \land A(y) \land \mu$

(ii)
$$(x^{-1}) \lor \lambda \ge A(x) \land \mu$$

Clearly, a (0, 1)-fuzzy subgroup is just a fuzzy subgroup, and thus a (λ, μ) -fuzzy subgroup is a generalization of fuzzy subgroup .

3. Main Results

Definition .3.1

Let A be a fuzzy subset of G. Then a (λ, μ) - fuzzy subset $A^{(\lambda,\mu)}$ of a fuzzy set A of G is defined as $A^{(\lambda,\mu)} = (x, A \lor \lambda \land \mu : x \in G)$.

Definition .3.2

Let *A* be a multi fuzzy subset of *G*. Then a (λ, μ) - multi fuzzy subset $A^{(\lambda,\mu)}$ of a fuzzy set *A* of *G* is defined as $A^{(\lambda,\mu)} = (x, A \lor \lambda \land \mu : x \in G)$. That is, $A_i^{(\lambda_i,\mu_i)} = (x, A_i \lor \lambda_i \land \mu_i : x \in G)$

Clearly, a (0, 1)-multi fuzzy subset is just a multi fuzzy subset of G, and thus a (λ, μ) - multi fuzzy subgroup is a generalization of fuzzy subgroup. Where (0, 1)-multi fuzzy subset A is defined as $A^{(0,1)} = (A_i^{(0_i,1_i)})$ Definition .3.3

Let *A* be a multi fuzzy subset of *G*. $A = (A_i)$ is called a (λ, μ) -multi fuzzy subgroup of *G* if, for all $x \in G$, $A(xy) \lor \lambda \ge \min\{A(x), A(y)\} \land \mu$,

That is,

 $A_i(xy) \lor \lambda_i \geqslant \min\{A_i(x), \{A_i(y)\} \land \mu_i$

Clearly, a (0, 1)-multi fuzzy subgroup is just a multifuzzy subgroup of G, and thus a (λ , μ)- multi fuzzy subgroup is a generalization of multi fuzzy subgroup.

Definition 3.3

Let $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ be any two (λ,μ) - multi fuzzy sets having the same dimension k of X. Then

(i). $A^{(\lambda,\mu)} \subseteq B^{(\lambda,\mu)}$, iff $A^{(\lambda,\mu)}(x) \le B^{(\lambda,\mu)}(x)$ for all $x \in X$

(ii). $A^{(\lambda,\mu)} = B^{(\lambda,\mu)}$, iff $A^{(\lambda,\mu)}(x) = B^{(\lambda,\mu)}(x)$ for all $x \in X$

(iii).
$$^{A(\lambda,\mu)} = \{(x, 1 - A^{(\lambda,\mu)}) : x \in X\}$$

(iv). $A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)} = \{ (x, (A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)})(x) : x \in X \}, \}$

where
$$(A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)})(x) = \min\{A^{(\lambda,\mu)}(x), B^{(\lambda,\mu)}(x)\} = \min\{A_i^{(\lambda_i,\mu_i)}(x), B_i^{(\lambda_i,\mu_i)}(x)\}$$
 for $i = 1, 2, ..., k$

 $(v). A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)} = \{ (x, A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}(x)) : x \in X \},\$

 $\text{where } \left(A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}\right)(x) = \max\left\{A^{(\lambda,\mu)}(x), B^{(\lambda,\mu)}(x)\right\} = \max\left\{A_i^{(\lambda_i,\mu_i)}(x), B_i^{(\lambda_i,\mu_i)}(x)\right\} \text{ for } i = 1,2, ..., k$

Here, $\{A_i^{(\lambda_i,\mu_i)}(x)\}\$ and $\{B_i^{(\lambda_i,\mu_i)}(x)\}\$ represents the corresponding ith position membership values of $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ respectively (see the definition 4.6,in ref.[17]).

Definition 3.4 :

For any three (MFSs $A^{(\lambda,\mu)}$, $B^{(\lambda,\mu)}$ and $C^{(\lambda,\mu)}$, we have:

1. Commutative Law : $A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)} = B^{(\lambda,\mu)} \cap A^{(\lambda,\mu)}$ and

 $A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)} = B^{(\lambda,\mu)} \cup A^{(\lambda,\mu)}$

2. Idempotent Law : $A^{(\lambda,\mu)} \cap A^{(\lambda,\mu)} = A^{(\lambda,\mu)}$ and $A^{(\lambda,\mu)} \cup A^{(\lambda,\mu)} = A^{(\lambda,\mu)}$

3. De Morgan's Law : $\neg (A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}) = \neg (A^{(\lambda,\mu)} \cap \neg B^{(\lambda,\mu)})$ and $\neg (A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}) = \neg (A^{(\lambda,\mu)} \cup \neg B^{(\lambda,\mu)})$

4. Associative Law : $A^{(\lambda,\mu)} \cup (B^{(\lambda,\mu)} \cup C^{(\lambda,\mu)}) = (A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}) \cup C^{(\lambda,\mu)}$ and $A^{(\lambda,\mu)} \cap (B^{(\lambda,\mu)} \cap C^{(\lambda,\mu)}) = (A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}) \cap A^{(\lambda,\mu)}$

5. Distributive Law : $A^{(\lambda,\mu)} \cup (B^{(\lambda,\mu)} \cap C^{(\lambda,\mu)}) = (A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}) \cap (A^{(\lambda,\mu)} \cap C^{(\lambda,\mu)})$ and $A^{(\lambda,\mu)} \cap (B^{(\lambda,\mu)} \cup C^{(\lambda,\mu)}) = (A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}) \cup (A^{(\lambda,\mu)} \cap C^{(\lambda,\mu)})$

Definition 3.5 :

Let $A^{(\lambda,\mu)} = \{(x, A^{(\lambda,\mu)}(x)): x \in X\}$ be a (λ, μ) –MFS of dimension k and let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k) \in [0,1]^k$, where each $\alpha_i \in [0,1]$ for all i. Then the α – cut of $A^{(\lambda,\mu)}$ is the set of all x such that $A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$, $\forall i$ and is denoted by $[A^{(\lambda,\mu)}]_{(\alpha)}$. Clearly it is a crisp set.

Definition 3.6 :

Let $A^{(\lambda,\mu)} = \{(x, A^{(\lambda,\mu)}(x)): x \in X\}$ be a (λ, μ) –MFS of dimension k and let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k) \in [0,1]^k$, where each $\alpha_i \in [0,1$ for all i. Then the strong α – cut of $A^{(\lambda,\mu)}$ is the set of all x such that $A_i^{(\lambda,\mu)}(x) > \alpha_i, \forall i$ and is denoted by $[A^{(\lambda,\mu)}]_{\alpha^*}$. Clearly it is also a crisp set.

Theorem 3.7 (ref.[19]):

Let A and B are any two (λ, μ) –MFSs of dimension k taken from a non –empty set X. Then A \subseteq B if and only if $[A^{(\lambda,\mu)}]_{(\alpha)} \subseteq [B^{(\lambda,\mu)}]_{(\alpha)}$ for every $\in [0,1]^k$.

Definition 3.8 :

A MFS A = {(x, A(x)): x \in X} of a group G is said to be a (λ, μ) -multifuzzy sub group of G (MFSG), if it satisfies the following: For $\lambda, \mu \in [0,1]^k$, $0 \le \lambda_i \le \mu_i \le 1$, $0 \le \lambda_i + \mu_i \le 1$

(i) $A(xy) \lor \lambda \ge \min\{A(x), A(y)\} \land \mu$

(ii) $A(x^{-1}) \lor \lambda \ge A(x) \land \mu$ for all x, y \in G. That is,

(i) $A_i(xy) \lor \lambda_i \ge \min\{A_i(x), A_i(y)\} \land \mu_i$

(ii) $A_i(x^{-1}) \lor \lambda_i \ge A_i(x) \land \mu_i$ for all $x, y \in G$.

Clearly, a (0, 1)-multi fuzzy subgroup is just a multi fuzzy subgroup of G, and thus a (λ , μ)- multi fuzzy subgroup is a generalization of multi fuzzy subgroup.

An alternative definition for (λ, μ) -MFG is as follows:

Definition 3.9:

A MFS A of a group G is said to be a (λ, μ) -multi-fuzzy sub group of G $((\lambda, \mu)$ -MFSG), if it satisfies.

 $A(xy^{-1}) \lor \lambda \ge \min\{A(x), A(y)\} \land \mu \text{ for all } x, y \in G$

Where, $A(xy^{-1}) \lor \lambda = (A_1(xy^{-1}) \lor \lambda_1, A_2(xy^{-1}) \lor \lambda_2, \dots, A_k(xy^{-1}) \lor \lambda_k)$ and $\min\{A(x), A(y)\} \land \mu = (\min\{A_1(x), A_1(y)\} \land \mu_1, \min\{A_2(x), A_2(y)\} \land \mu_2, \dots, \min\{A_k(x), A_k(y)\} \land \mu_k)$ for all x, y and xy^{-1} in G.

Remark 3.10 :

(i) If A is a (λ, μ) –MFSG of G, then the complement of A need not be an (λ, μ) – MFSG of G

(ii) A is a MFSG of a group \Leftrightarrow each (λ, μ) -FS $A^{(\lambda_i, \mu_i)}(A^{(\lambda_i, \mu_i)})$: $x \in G_{i=1,2,\dots,k}$ is a (λ, μ) -FSG of G.

Definition 3.11(ref.[6,9,12]) :

A (λ, μ) – MFSG A^{(λ, μ)} of a group G is said to be an (λ, μ) –multi fuzzy normal subgroup $((\lambda, \mu)$ – MFNSG) of G, it satisfies

 $A^{(\lambda,\mu)}(xy) = A^{(\lambda,\mu)}(yx)$ for all $x, y \in G$

Theorem 3.12 :

A (λ, μ) –MFSG A^{(λ, μ)} of a group G is normal, it satisfies

 $A^{(\lambda,\mu)}(g^{-1}xg) = A^{(\lambda,\mu)}(x)$ for all $x, y \in G$ and $g \in G$

Proof :Let $x \in A^{(\lambda,\mu)}$ and $g \in G$.

Then $A^{(\lambda,\mu)}(g^{-1}xg) = A^{(\lambda,\mu)}(g^{-1}(xg)) = A^{(\lambda,\mu)}((xg)g^{-1})$, since $A^{(\lambda,\mu)}$ is normal.

$$A^{(\lambda,\mu)}((xg)g^{-1}) = A^{(\lambda,\mu)}(x(gg^{-1})) = A^{(\lambda,\mu)}(xe) = A^{(\lambda,\mu)}(x), \text{ Hence (i) is true.}$$

Definition 3.13 :

Let (G, .) be a Groupoid and $A^{(\lambda,\mu)}, B^{(\lambda,\mu)}$ be any two (λ, μ) –MFSs having same dimension k of G.Then the product of $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$, denoted by $A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}$ and is defined as:

$$A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}(x) = \begin{cases} \max[\min\{A^{(\lambda,\mu)}(y), B^{(\lambda,\mu)}(z)\} : yz = x, \forall y, z \in G] \\ \lambda_k = (\lambda, \lambda, ..., \lambda_k \text{ times}), \text{ if } x \text{ is not expressible sa } x = yz \end{cases}, \forall x \in G$$

That is $\forall x \in G$,

$$A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}(x) = \begin{cases} (\max[\min\{A^{(\lambda,\mu)}(y), B^{(\lambda,\mu)}(z)\} : yz = x, \forall y, z \in G] \\ (\lambda_k) , \text{ if } x \text{ is not expressible as } x = yz \end{cases}$$

Definition 3.14 :

Let X and Y be any two non-empty sets and $f: X \to Y$ be a mapping. Let $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ be any two (λ,μ) –MFSs of X and Y respectively having the same dimension k. Then the image of $A^{(\lambda,\mu)} (\subseteq X)$ under the map f is denoted by $f(A^{(\lambda,\mu)})$, is defined as $:\forall y \in Y$,

$$f(A^{(\lambda,\mu)})(y) = \begin{cases} \max\{A^{(\lambda,\mu)}(x) : x \in f^{-1}(y) \\ \lambda_k, & \text{otherwise} \end{cases}$$

Also, the pre – image of $B^{(\lambda,\mu)}(\subseteq Y)$ under the map f is denoted by $f^{-1}(B^{(\lambda,\mu)})$ and it is defined as: $f^{-1}(B^{(\lambda,\mu)})(x) = (B^{(\lambda,\mu)}(f(x)), \forall x \in X.$

4. Properties of α –cuts of the (λ,μ) –MFSGs of a group

In this section, we have proved some theorems on (λ, μ) –MFSGs of a group G by using some of their α – cuts.

Proposition 4.1:

If $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are any two (λ,μ) –MFSs of a universal set X

Then the following are hold good :

(i) $[A^{(\lambda,\mu)}]_{\alpha} \subseteq [A^{(\lambda,\mu)}]_{\delta}$ if $\alpha \ge \delta$

(ii) $A^{(\lambda,\mu)} \subseteq B^{(\lambda,\mu)}$ implies $[A^{(\lambda,\mu)}]_{\alpha} \subseteq [B^{(\lambda,\mu)}]_{\delta}$

(iii) $\left[A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)} \right]_{\alpha} = \left[A^{(\lambda,\mu)} \right]_{\alpha} \cap \left[B^{(\lambda,\mu)} \right]_{\alpha}$

 $(iv) [A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}]_{\alpha} \supseteq [A^{(\lambda,\mu)}]_{\alpha} \cup [B^{(\lambda,\mu)}]_{\alpha} \text{ (here equality holds if } \alpha_{i} = 1, \forall i)$

(v) $[\cap {A_i}^{(\lambda,\mu)}]_\alpha = \cap [{A_i}^{(\lambda,\mu)}]_\alpha$, where $\,\alpha \in [0,1]^k$

Proposition 4.2 : Let (G,.) be a groupoid and $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are any two (λ,μ) –MFSs of *G*. Then we have

$$\left[A^{(\lambda,\mu)}\circ B^{(\lambda,\mu)}\right]_{\alpha}=\left[A^{(\lambda,\mu)}\right]_{\alpha}\left[B^{(\lambda,\mu)}\right]_{\alpha}, where \ \alpha\in[0,1]^{k}.$$

Theorem 4.3 :

If $A^{(\lambda,\mu)}$ is $a(\lambda,\mu)$ –multi fuzzy subgroup of G and $\alpha \in [0,1]^k$, then $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G, where $A^{(\lambda,\mu)}(e) \ge \alpha$, and 'e' is the identity element of G.

Proof :

Since $A^{(\lambda,\mu)}(e) \ge \alpha, e \in [A^{(\lambda,\mu)}]_{\alpha}$. There fore $[A^{(\lambda,\mu)}]_{\alpha} \neq \emptyset$.

Let $x, y \in [A^{(\lambda,\mu)}]_{\alpha}$. Then $A^{(\lambda,\mu)}(x) \ge \alpha$ and $A^{(\lambda,\mu)}(y) \ge \alpha$.

Then for all $i, A_i^{(\lambda_i, \mu_i)}(x) \ge \alpha_i$ and $A_i^{(\lambda_i, \mu_i)}(y) \ge \alpha_i$,

 $\Rightarrow \min\{A_i^{(\lambda_i,\mu_i)}(x), A_i^{(\lambda_i,\mu_i)}(y)\} \ge \alpha_i, \forall i \dots \dots \dots \dots (1)$

 $\Rightarrow A_i^{(\lambda_i,\mu_i)}(xy^{-1}) \ge \min\{A_i^{(\lambda_i,\mu_i)}(x), A_i^{(\lambda_i,\mu_i)}(y)\} \ge \alpha_i, \forall i, \text{ since } A^{(\lambda,\mu)} \text{ is a } (\lambda,\mu) - \text{multi fuzzy subgroup of a group } G \text{ and by (1).}$

$$\Longrightarrow A_i^{(\lambda_i,\mu_i)}(xy^{-1}) \ge \alpha_i , \forall i.$$

$$\Rightarrow A^{(\lambda,\mu)}(xy^{-1}) \ge \alpha$$

$$\Rightarrow xy^{-1} \in [A^{(\lambda,\mu)}]_{\alpha}$$

 $\Rightarrow [A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of *G*.

Theorem 4.4 :

If $A^{(\lambda,\mu)}$ is a (λ,μ) -multi fuzzy subset of a group *G*, then $A^{(\lambda,\mu)}$ is a (λ,μ) -multi fuzzy subgroup of $G \Leftrightarrow$ each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of *G*, for all $\alpha \in [0,1]^k$ for all *i*.

Proof : (\Rightarrow) Let $A^{(\lambda,\mu)}$ be a (λ,μ) – multi-fuzzy subgroup of a group G.Then by the theorem 3.4, each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G for all $\alpha \in [0,1]^k$.

(⇐) Conversely, let $A^{(\lambda,\mu)}$ be a (λ,μ) -multifuzzy subset of a group *G* such that each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of *G* for all $\alpha \in [0,1]^k$, $\forall i$.

To prove that $A^{(\lambda,\mu)}$ is a (λ,μ) -multi fuzzy subgroup of G, we must prove that : (i) $A^{(\lambda,\mu)}(xy) \ge min\{A^{(\lambda,\mu)}(x), A^{(\lambda,\mu)}(y)\}, \forall x, y \in G$

$$(ii) A^{(\lambda,\mu)}(x^{-1}) = A^{(\lambda,\mu)}(x)$$

Let $x, y \in G$ and for all i, let $\alpha_i = min\{A_i^{(\lambda_i, \mu_i)}(x), A_i^{(\lambda_i, \mu_i)}(y)\}$. Then $\forall i$,

We have $A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$, $A_i^{(\lambda_i,\mu_i)}(y) \ge \alpha_i$

That is, $\forall i$, we have $A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$, and $A_i^{(\lambda_i,\mu_i)}(y) \ge \alpha_i$

Then we have $A^{(\lambda,\mu)}(x) \ge \alpha$ and $A^{(\lambda,\mu)}(y) \ge \alpha$. That is, $x \in [A^{(\lambda,\mu)}]_{\alpha}$ and $y \in [A^{(\lambda,\mu)}]_{\alpha}$ therefore, $xy \in [A^{(\lambda,\mu)}]_{\alpha}$, since each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup by hypothesis.

Therefore, $\forall i$, we have $A_i^{(\lambda_i,\mu_i)}(xy) \ge \alpha_i = \min\{A_i^{(\lambda_i,\mu_i)}(x), A_i^{(\lambda_i,\mu_i)}(y)\}$.

That is, $A^{(\lambda,\mu)}(xy) \ge \min \{A^{(\lambda,\mu)}(x), A^{(\lambda,\mu)}(y)\}$ hence (i) is true.

Now, let $x \in G$ and $\forall i$, let $A_i^{(\lambda_i,\mu_i)}(x) = \alpha_i$. Then $A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$ is true for all *i*. Therefore $A^{(\lambda,\mu)}(x) \ge \alpha$. Thus, $x \in [A^{(\lambda,\mu)}]_{\alpha}$.

Since each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G for all $\alpha, \beta \in [0,1]^k$ and $x \in [A^{(\lambda,\mu)}]_{(\alpha,\beta)}$, we have $x^{-1} \in [A^{(\lambda,\mu)}]_{\alpha}$ which implies that $A_i^{(\lambda_i,\mu_i)}(x^{-1}) \ge \alpha_i$ is true $\forall i$. Which implies that $A_i^{(\lambda_i,\mu_i)}(x^{-1}) \ge A_i^{(\lambda_i,\mu_i)}(x)$ is true $\forall i$. Thus, $\forall i, A_i^{(\lambda_i,\mu_i)}(x) = A_i^{(\lambda_i,\mu_i)}((x^{-1})^{-1}) \ge A_i^{(\lambda_i,\mu_i)}(x^{-1}) \ge A_i^{(\lambda_i,\mu_i)}(x)$ which implies that $A_i^{(\lambda_i,\mu_i)}(x^{-1}) = A_i^{(\lambda_i,\mu_i)}(x)$. Hence $A^{(\lambda,\mu)}$ is a (λ,μ) – multifuzzy subgroup of G.

Theorem 4.5 :

If $A^{(\lambda,\mu)}$ is a (λ,μ) -multi fuzzy normal subgroup of a group *G* and for every $\alpha \in [0,1]^k$, then $[A^{(\lambda,\mu)}]_{\alpha}$ is a normal subgroup of *G*, where $A^{(\lambda,\mu)}(e) \ge \alpha$ and 'e' is the identity element of *G*.

Proof :

Let $x \in [A^{(\lambda,\mu)}]_{\alpha}$ and $g \in G$. Then, $A^{(\lambda,\mu)}(e) \ge \alpha$.

That is, $A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$, $\forall i$ (1)

Since $A^{(\lambda,\mu)}$ is a (λ,μ) –MFNSG of G,

$$\begin{aligned} A_i^{(\lambda_i,\mu_i)}(g^{-1}xg) &= A_i^{(\lambda_i,\mu_i)}(x) , \forall i. \\ \Rightarrow A_i^{(\lambda_i,\mu_i)}(g^{-1}xg) &= A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i, \forall i, \text{by using (1).} \\ \Rightarrow A_i^{(\lambda_i,\mu_i)}(g^{-1}xg) \ge \alpha_i, \forall i \\ \Rightarrow A^{(\lambda,\mu)}(g^{-1}xg) \ge \alpha \\ \Rightarrow g^{-1}xg \in [A^{(\lambda,\mu)}]_{\alpha} \\ \Rightarrow [A^{(\lambda,\mu)}]_{\alpha} \text{ is normal subgroup of } G \end{aligned}$$

Theorem 4.6 :

If $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are any two (λ,μ) –multi fuzzy subgroups $((\lambda,\mu)$ –MFSGs) of a group *G*, then $(A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)})$ is also a (λ,μ) –multi fuzzy subgroup of *G*.

Proof:

By the above theorem 4.6, $A^{(\lambda,\mu)}$ is a (λ,μ) – multi fuzzy subgroup of $G \Leftrightarrow \text{each } [A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G for all $\alpha \in [0,1]^k$ with $\leq \alpha_i \leq 1, \forall i$. But, since $[A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}]_{\alpha} = [A^{(\lambda,\mu)}]_{\alpha} \cap [B^{(\lambda,\mu)}]_{\alpha}$ and both $[A^{(\lambda,\mu)}]_{\alpha}$ and $[B^{(\lambda,\mu)}]_{\alpha}$ are subgroups of G (as $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are (λ,μ) – multi fuzzy subgroups) and the intersection of any two subgroups is also a subgroup of G, which implies that $[A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G and hence $(A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)})$ is a (λ,μ) – multi fuzzy subgroup of G.

Remark 4.7 :

The union of two (λ, μ) – multi fuzzy subgroups of a group G need not be a (λ, μ) – MFSG of the group G.

Proof: Consider the Klein's four group G={e, a, b, ab }, where $a^2 = e = b^2$ and ba = ab. For $0 \le i \le 5$, let $t_i, s_i \in [0,1]^k$ such that $r_0 > r_1 > \ldots > r_5$ and $s_0 < s_1 < \ldots < s_5$. Define $(\lambda, \mu) - MFSs \ A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ of dimension k as follows: $A^{(\lambda,\mu)} = \{(x, A^{(\lambda,\mu)}(x)): x \in G\}$ and $B^{(\lambda,\mu)} = \{(x, B^{(\lambda,\mu)}(x)): x \in G\}$, where $A_i^{(\lambda_i,\mu_i)}(e) = r_1 \lor \lambda_i \land \mu_i, A_i^{(\lambda_i,\mu_i)}(a) = r_3 \lor \lambda_i \land \mu_i, A_i^{(\lambda_i,\mu_i)}(b) = r_4 \lor \lambda_i \land \mu_i = A_i^{(\lambda_i,\mu_i)}(ab)$ and $B_i^{(\lambda_i,\mu_i)}(e) = r_0 \lor \lambda_i \land \mu_i, B_i^{(\lambda_i,\mu_i)}(a) = r_5 \lor \lambda_i \land \mu_i = B_i^{(\lambda_i,\mu_i)}(ab), B_i^{(\lambda_i,\mu_i)}(b) = r_2 \lor \lambda_i \land \mu_i$.

Clearly $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are (λ,μ) – multi fuzzy subgroups of G.

Now $(A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)})(x) = max\{A^{(\lambda,\mu)}(x), A^{(\lambda,\mu)}(x)\} = (max\{A_i^{(\lambda_i,\mu_i)}(x), B_i^{(\lambda_i,\mu_i)}(x)\})_{i=1}^k$

 $(A_i^{(\lambda_i,\mu_i)} \cup B_i^{(\lambda_i,\mu_i)})(e) = r_0 \vee \lambda_i \wedge \mu_i, (A_i^{(\lambda_i,\mu_i)} \cup B_i^{(\lambda_i,\mu_i)})(a) = r_3 \vee \lambda_i \wedge \mu_i, (A_i^{(\lambda_i,\mu_i)} \cup B_i^{(\lambda_i,\mu_i)})(b) = r_3 \vee \lambda_i \wedge \mu_i, (A_i^{(\lambda_i,\mu_i)})(b) = r_3 \vee \lambda$ $r_2 \vee \lambda_i \wedge \mu_i$; $A_i^{(\lambda_i,\mu_i)}(ab) = r_4 \vee \lambda_i \wedge \mu_i$.

$$[A_i^{(\lambda_i,\mu_i)}]_{r_3} = \{x: x \in G \text{ such that } A_i^{(\lambda_i,\mu_i)}(x) \ge r_3\} = \{e, a\}$$

$$[B_i^{(\lambda_i,\mu_i)}]_{r_3} = \{x: x \in G \text{ such that } B_i^{(\lambda_i,\mu_i)}(x) \ge r_3\} = \{e\}$$

$$[A_{i}^{(\lambda_{i},\mu_{i})} \cup B_{i}^{(\lambda_{i},\mu_{i})}]_{r_{3}} = \{x: x \in G \text{ such that } A_{i}^{(\lambda_{i},\mu_{i})}(x) \ge r_{3}\}$$
$$= \{x: x \in G \text{ such that } \max\{A_{i}^{(\lambda_{i},\mu_{i})}(x), B_{i}^{(\lambda_{i},\mu_{i})}(x)\} \ge r_{3}\} = \{e, a, b\}$$

Since {e,a,b} is not a subgroup of G, $[A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}]_{r_3}$ is not a subgroup of G.Hence $[A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}]$ is not a subgroup of G and there fore $[A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}]$ is not a (λ,μ) –MFSG of the group G.

Example 4.8 : There are two cases needed to clarify the previous theorem 3.7 and remark.

Case (i): Consider the abelian group $G = \{e, a, b, ab\}$ with usual multiplication such that $a^2 = e = b^2$ and $A^{(\lambda,\mu)} = \{ < e_1(0.6 \lor \lambda_1 \land \mu_1, 0.8 \lor \lambda_2 \land \mu_2) > < a_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) > < < e_1(0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_1 \land \mu_1(0.4 \lor \lambda_1 \land \mu_1) > < < e_1(0.4 \lor \lambda_1) > < < e_1(0.4 \lor$ ab = ba. Let $b, (0.3 \lor \lambda_1 \land \mu_1, 0.3 \lor \lambda_2 \land \mu_2) >, < ab, (0.3 \lor \lambda_1 \land \mu_1, 0.3 \lor \lambda_2 \land \mu_2) > \} \text{ and } B^{(\lambda,\mu)} = \{ < e, (0.7 \lor \lambda_1 \land \mu_2) \land \mu_2 \land \mu_2 > \}$ $\mu_1, 0.7 \lor \lambda_2 \land \mu_2) >, < a, (0.2 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < b, (0.4 \lor \lambda_1 \land \mu_2) >, < b, (0.4 \lor \lambda_2) >, < b, (0.4 \lor \lambda$ $ab, (0.2 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) > be$ two (λ, μ) –MFSs having dimension two of G. Clearly $A^{(\lambda,\mu)}$ and $A^{(\lambda,\mu)}$ are $(\lambda,\mu) - MFSGs$ of G.

Then

Then
$$A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)} = \left\{ \langle e, (0.6 \lor \lambda_1 \land \mu_1, 0.7 \lor \lambda_2 \land \mu_2) \rangle, \langle a, (0.2 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2), \langle b, (0.3 \lor \lambda_1 \land \mu_1, 0.3 \lor \lambda_2 \land \mu_2) \rangle, \langle ab, \begin{pmatrix} 0.2 \lor \lambda_1 \land \mu_1, \\ 0.2 \lor \lambda_2 \land \mu_2 \end{pmatrix} \rangle \right\}$$

and
$$A^t \cup B^t = \{ < e, (0.7 \lor \lambda_1 \land \mu_1, 0.8 \lor \lambda_2 \land \mu_2) >, < a, \begin{pmatrix} 0.4 \lor \lambda_1 \land \mu_1, \\ 0.4 \lor \lambda_2 \land \mu_2 \end{pmatrix} >,$$

 $< b, (0.4 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < ab, (0.3 \lor \lambda_1 \land \mu_1, 0.3 \lor \lambda_2 \land \mu_2) > \}$

Therefore it is easily verified that in this case $A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFSG$ of G and $A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}$ is not a $(\lambda, \mu) - MFSG$ of G. Hence case(i)."

Case(*ii*): Consider the abelian group $G = \{e, a, b, ab\}$ "with usual multiplication such that $a^2 = e = b^2$ and ab = ba. Let $A^{(\lambda,\mu)} = \{ < e, (0.5 \lor \lambda_1 \land \mu_1, 0.9 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_2) >, < a, (0.4 \lor \lambda_2 \land \mu_2) >, < a$ $b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < ab, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) > \} \text{ and } A^{(\lambda,\mu)} = \{ < e, (0 \lor \lambda_1 \land \mu_1, 0.7 \lor \lambda_1 \land \mu_1, 0.7 \lor \lambda_1 \land \mu_1, 0.7 \lor \lambda_2 \land \mu_2) > \}$ $\lambda_2 \wedge \mu_2) >, < a, (0 \lor \lambda_1 \wedge \mu_1, 0.4 \lor \lambda_2 \wedge \mu_2) >, < b, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \lambda_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_1, 0.1 \lor \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge \mu_2 \wedge \mu_2) >, < ab, (0 \lor \lambda_1 \wedge$ $\lambda_2 \wedge \mu_2$ >} be two (λ, μ) –MFSs having dimension two of G. Clearly $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ are (λ, μ) – MFSGs of G.

 $A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)} = \{ < e, (0 \lor \lambda_1 \land \mu_1, 0.7 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_1, 0.4 \lor \lambda_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \lambda_1 \land \mu_2 \land \mu_2) >, < a, (0 \lor \mu_2 \land \mu_2) >, < a, (0 \lor$ Then $b, (0 \lor \lambda_1 \land \mu_1, 0.1 \lor \lambda_2 \land \mu_2) >, < ab, (0 \lor \lambda_1 \land \mu_1, 0.1 \lor \lambda_2 \land \mu_2) > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cup B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2) \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \lambda_1 \land \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e, (0.5 \lor \mu_2 > \} and A^t \cap B^t = \{ < e,$ $\mu_1, 0.9 \lor \lambda_2 \land \mu_2) >, < a, (0.4 \lor \lambda_1 \land \mu_1, 0.6 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) >, < b, (0.1 \lor \lambda_1 \land \mu_2) >, < b, (0.1 \lor \lambda_2 \lor \mu_2) >, < b, (0.1 \lor \lambda_2 \lor \lambda_2 \lor \lambda_2 \lor \mu_2) >, < b, (0.1 \lor \lambda_2 \lor \mu_2) >, < b, (0.1 \lor \lambda_2 \lor \mu_2) >,$ *ab*, $(0.1 \lor \lambda_1 \land \mu_1, 0.2 \lor \lambda_2 \land \mu_2) > \}$.

Here, it can be easily verified that both $A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}$ and $A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}$ are $(\lambda,\mu) - MFSGs$ of G. Hence case (ii).

From the conclusion of the above example, we come to the point that there is an uncertainty in verifying whether or not $A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFSG$ of G.

Theorem 4.9:

If $A^{(\lambda,\mu)}$ and $B^{(\lambda,\mu)}$ be any two (λ,μ) –MFSGs of a group G. Then $A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}$ is a (λ,μ) –MFSG of G $\Leftrightarrow A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)} = B^{(\lambda,\mu)} \circ A^{(\lambda,\mu)}$

Suppose $A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}$ is a (λ,μ) –MFSG of G \Leftrightarrow each $[A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}]_{\alpha}$ are subgroups of $G, \forall \alpha \in [0,1]^k$ with $0 \le \alpha_i \le 1, \forall i$.

Now, from (1), $[A^{(\lambda,\mu)}]_{\alpha} \circ [B^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of $G \Leftrightarrow [A^{(\lambda,\mu)}]_{\alpha} \circ [B^{(\lambda,\mu)}]_{\alpha} = [B^{(\lambda,\mu)}]_{\alpha} \circ [A^{(\lambda,\mu)}]_{\alpha}$, since if H and K are any two subgroups of G, then HK is a subgroup of $G \Leftrightarrow HK=KH \Leftrightarrow [A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)}]_{\alpha} = [B^{(\lambda,\mu)} \circ A^{(\lambda,\mu)}]_{\alpha}$, $\forall \alpha \in [0,1]^k$ with $0 \le \alpha_i \le 1, \forall i. \Leftrightarrow A^{(\lambda,\mu)} \circ B^{(\lambda,\mu)} = B^{(\lambda,\mu)} \circ A^{(\lambda,\mu)}$.

Theorem 4.10:

If $A^{(\lambda,\mu)}$ is any (λ,μ) –MFSG of a group G, then $A^{(\lambda,\mu)} \circ A^{(\lambda,\mu)} = A^{(\lambda,\mu)}$.

Proof: Since $A^{(\lambda,\mu)}$ is a (λ,μ) –MFSG of a group G, each $[A^{(\lambda,\mu)}]_{\alpha}$ is a subgroup of G, $\forall \alpha \in [0,1]^k$ with $0 \le \alpha_i \le 1, \forall i$.

$$\Rightarrow [A^{(\lambda,\mu)}]_{\alpha} \circ [A^{(\lambda,\mu)}]_{\alpha} = [A^{(\lambda,\mu)}]_{\alpha}, \text{ since H is a subgroup of G} \Rightarrow \text{HH=H.}$$

$$\Rightarrow [A^{(\lambda,\mu)} \circ A^{(\lambda,\mu)}]_{\alpha} = [A^{(\lambda,\mu)}]_{\alpha}, \forall \alpha \in [0,1]^k \text{ with } 0 \le \alpha_i \le 1, \forall i.$$

 $\Rightarrow A^{(\lambda,\mu)} \circ A^{(\lambda,\mu)} = A^{(\lambda,\mu)}.$

5. (λ, μ) –multi fuzzy cosets of a group

Definition 5.1 :

Let G be a group and $A^{(\lambda,\mu)}$ be a $(\lambda,\mu) - MFSG$ of G. Let $x \in G$ be a fixed element. Then the set $xA^{(\lambda,\mu)} = \{(g, xA^{(\lambda,\mu)}(g)) : g \in G\}$ where $xA^{(\lambda,\mu)}(g) = A^{(\lambda,\mu)}(x^{-1}g), \forall g \in G$ is called the (λ,μ) – multi fuzzy left coset of G determined by $A^{(\lambda,\mu)}$ and x.

Similarly, the set $A^{(\lambda,\mu)}x = \{(g, A^{(\lambda,\mu)}x(g)) : g \in G\}$ where $A^{(\lambda,\mu)}x(g) = A^{(\lambda,\mu)}(gx^{-1}), \forall g \in G$ is called the (λ,μ) –multifuzzy right coset of G determined by $A^{(\lambda,\mu)}$ and x.

Remark 5.2 :

It is clear that if $A^{(\lambda,\mu)}$ is a (λ,μ) -multi fuzzy normal subgroup of G, then the (λ,μ) - multi fuzzy left coset and the (λ,μ) -multi fuzzy right coset of $A^{(\lambda,\mu)}$ on G coincides and in this case, we simply call it as (λ,μ) -multi fuzzy coset.

Example 5.3 :

Let G be a group. Then $A^{(\lambda,\mu)} = \{ (x, A^{(\lambda,\mu)}(x)) : x \in G/A^{(\lambda,\mu)}(x) = A^{(\lambda,\mu)}(e) \}$ is a (λ,μ) –multi fuzzy normal subgroup of G.

Theorem 5.4 :

Let $A^{(\lambda,\mu)}$ be a (λ,μ) – multifuzzy subgroup of G and x be any fixed element of G. Then the following hold :

(*i*) $x[A^{(\lambda,\mu)}]_{\alpha} = [x A^{(\lambda,\mu)}]_{\alpha}$

(*ii*)
$$[A^{(\lambda,\mu)}]_{\alpha} x = [A^{(\lambda,\mu)}x]_{\alpha}, \forall \alpha \in [0,1]^k \text{ with } 0 \le \alpha_i \le 1, \forall i.$$

Proof:

(i)
$$[x A^{(\lambda,\mu)}]_{\alpha} = \{g \in G : x A^{(\lambda,\mu)}(g) \ge \alpha\}$$
 with $0 \le \alpha_i \le 1, \forall i$.

Also $x[A^{(\lambda,\mu)}]_{\alpha} = x\{y \in G : A^{(\lambda,\mu)}(y) \ge \alpha\}$

Put $xy = g \Rightarrow y = x^{-1}g$. Then (1) can be written as,

$$x[A^{(\lambda,\mu)}]_{\alpha} = \left\{g \in G : A^{(\lambda,\mu)}(x^{-1}g) \ge \alpha\right\} = \left\{g \in G : xA^{(\lambda,\mu)}(g) \ge \alpha\right\} = [xA^{(\lambda,\mu)}]_{\alpha}$$

Therefore, $x[A^{(\lambda,\mu)}]_{\alpha} = [x A^{(\lambda,\mu)}]_{\alpha}, \forall \alpha \in [0,1]^k$ with $0 \le \alpha_i \le 1, \forall i$.

(*ii*) Now $[A^{(\lambda,\mu)}x]_{\alpha} = \{g \in G : A_x^{(\lambda,\mu)}(g) \ge \alpha\}$ with $0 \le \alpha_i \le 1, \forall i\}$. Also

 $[A^{(\lambda,\mu)}]_{\alpha}x = \{y \in G : A^{(\lambda,\mu)}(y) \ge \alpha\}x$

Set $yx = g \Rightarrow y = gx^{-1}$. Then (2) can be written as $[A^{(\lambda,\mu)}]_{\alpha}x = \{g \in G : A^{(\lambda,\mu)}(gx^{-1}) \ge \alpha\}$

$$= \left\{ g \in G : A_x^{(\lambda,\mu)}(g) \ge \alpha \right\} = [A_x^{(\lambda,\mu)}]_\alpha$$

Therefore, $[A^{(\lambda,\mu)}]_{\alpha}x = [A_x^{(\lambda,\mu)}]_{\alpha}, \ \forall \ \alpha \in [0,1]^k \text{ with } 0 \le \alpha_i \le 1, \forall i.$

Theorem 5.5 :

Let $A^{(\lambda,\mu)}$ be a $(\lambda,\mu) - MFSG$ of a group G. Let x, y be any two elements of G such that $= min\{A^{(\lambda,\mu)}(x), A^{(\lambda,\mu)}(y)\}$. Then the following hold :

$$\begin{split} (i) \ xA^{(\lambda,\mu)} &= yA^{(\lambda,\mu)} \Leftrightarrow x^{-1}y \in [A^{(\lambda,\mu)}]_{\alpha} \\ (ii) \ A^{(\lambda,\mu)}x &= A^{(\lambda,\mu)}y \Leftrightarrow yx^{-1} \in [A^{(\lambda,\mu)}]_{\alpha} \\ \text{Proof:} \\ (i)xA^{(\lambda,\mu)} &= yA^{(\lambda,\mu)} \Leftrightarrow [xA^{(\lambda,\mu)}]_{\alpha} = [yA^{(\lambda,\mu)}]_{\alpha}, \forall \ \alpha \in [0,1]^k \text{ with } 0 \le \alpha_i \le 1, \forall i. \end{split}$$

 $\Leftrightarrow x[A^{(\lambda,\mu)}]_{\alpha} = y[A^{(\lambda,\mu)}]_{\alpha}, \text{ by Theorem 4.5 (i)}.$

 $\Leftrightarrow x^{-1}y \in [A^{(\lambda,\mu)}]_{\alpha}, \text{ since each } [A^{(\lambda,\mu)}]_{\alpha} \text{ is a subgroup of G.}$

$$(ii) A^{(\lambda,\mu)}x = A^{(\lambda,\mu)}y \Leftrightarrow [A^{(\lambda,\mu)}x]_{\alpha} = [A^{(\lambda,\mu)}y]_{\alpha}, \forall \alpha \in [0,1]^k \text{ with } 0 \le \alpha_i \le 1, \forall i.$$

 $\Leftrightarrow [A^{(\lambda,\mu)}]_{\alpha} x = [A^{(\lambda,\mu)}]_{\alpha} y$, by Theorem 4.5 (ii).

 $\Leftrightarrow xy^{-1} \in [A^{(\lambda,\mu)}]_{\alpha}, \text{ since each } [A^{(\lambda,\mu)}]_{\alpha} \text{ is a subgroup of G}.$

6. Homomorphisms of (λ, μ) – Multi fuzzy subgroup

In this section we shall prove some theorems on (λ, μ) –MFSGs of a group by homomorphism.

Preposition 6.1:

Let $f: X \to Y$ be an onto map. If A and B are multi-fuzzy sets with dimension k of X and Y respectively, then the following hold :

(i)
$$f\left(\left[A^{(\lambda,\mu)}\right]_{\alpha}\right) \subseteq \left[f(A^{(\lambda,\mu)})\right]_{\alpha}$$

(ii) $f^{-1}\left(\left[B^{(\lambda,\mu)}\right]_{\alpha}\right) = \left[f^{-1}\left(B^{(\lambda,\mu)}\right)\right]_{\alpha}\right], \forall \alpha \in [0,1]^{k} \text{ with } 0 \le \alpha_{i} \le 1, \forall i.$

Proof :

(i) Let $y \in f\left(\left[A^{(\lambda,\mu)}\right]_{\alpha}\right)$. Then there exist an element $x \in \left[A^{(\lambda,\mu)}\right]_{\alpha}$ such that f(x) = y. Then we have $A^{(\lambda,\mu)}(x) \ge \alpha$, Since $x \in \left[A^{(\lambda,\mu)}\right]_{\alpha}$ $\Rightarrow A_i^{(\lambda_i,\mu_i)}(x) \ge \alpha_i$ $\Rightarrow max\{A_i^{(\lambda_i,\mu_i)}(x): x \in f^{-1}(y)\} \ge \alpha_i, \forall i.$ $\Rightarrow max\{A^{(\lambda,\mu)}(x): x \in f^{-1}(y)\} \ge \alpha$ $\Rightarrow f\left(A^{(\lambda,\mu)}\right)(y) \ge \alpha \Rightarrow y \in \left[f\left(f(A^{(\lambda,\mu)})\right)\right]_{\alpha}$ Therefore, $\left(\left[A^{(\lambda,\mu)}\right]_{\alpha}\right) \subseteq \left[f(A^{(\lambda,\mu)})\right]_{\alpha}, \forall A^{(\lambda,\mu)} \in (\lambda,\mu) - MFS(X).$ (ii) Let $x \in \left[f^{-1}(B^{(\lambda,\mu)})\right]_{\alpha} \Leftrightarrow \{x \in X : f^{-1}(B^{(\lambda,\mu)})(x) \ge \alpha\}$ $\Leftrightarrow \{x \in X : f^{-1}(B_i^{(\lambda_i,\mu_i)})(x) \ge \alpha_i\}, \forall i.$ $\Leftrightarrow \{x \in X : B_i^{(\lambda,\mu_i)}(f(x)) \ge \alpha\}, \forall i.$ $\Leftrightarrow \{x \in X : f(x) \in [B^{(\lambda,\mu)}]_{\alpha} \Leftrightarrow \{x \in X : x \in f^{-1}([B^{(\lambda,\mu)}]_{\alpha})\}$ $\Leftrightarrow f^{-1}([B^{(\lambda,\mu)}]_{\alpha})$

Theorem 6.2

Let $f: G_1 \to G_2$ be an onto homomorphism and if $A^{(\lambda,\mu)}$ is a (λ,μ) -MFSG of G_1 , then $f(B^{(\lambda,\mu)})$ is a (λ,μ) -MFSG of group G_2 .

Proof :

By theorem 4.4, it is enough to prove that each $[f(A^{(\lambda,\mu)})]_{\alpha}$ is a subgroup of G_2 . $\forall \alpha \in [0,1]^k$ with $0 \le \alpha_i \le 1, \forall i$. Let $y_1, y_2 \in [f(A^{(\lambda,\mu)})]_{\alpha}$.

Then $f(A^{(\lambda,\mu)})(y_1) \ge \alpha$ and $f(A^{(\lambda,\mu)})(y_2) \ge \alpha$

$$\Rightarrow f(A_i^{(\lambda_i,\mu_i)})(y_1) \ge \alpha_i$$

$$\Rightarrow f(A_i^{(\lambda_i,\mu_i)})(y_2) \ge \alpha_i, \forall i \dots \dots (1)$$

By the proposition 6.1(i), we have $f\left(\left[f\left(A^{(\lambda,\mu)}\right)\right]_{\alpha}\right) \subseteq \left[f\left(f\left(A^{(\lambda,\mu)}\right)\right)\right]_{\alpha}\right), \forall f\left(A^{(\lambda,\mu)}\right) \in (\lambda,\mu) - MFS(G_1).$

Since f is onto, there exists some x_1 and x_2 in G_1 such that $f(x_1)=y_1$ and $f(x_2)=y_2$. Therefore, (1) can be written as $f(A_i^{(\lambda_i,\mu_i)})(f(x_1)) \ge \alpha_i$ and $f(A_i^{(\lambda_i,\mu_i)})(f(x_2)) \ge \alpha_i$, $\forall i$.

$$\Rightarrow f(A_i^{(\lambda_i,\mu_i)})(x_1) \ge f(A_i^{(\lambda_i,\mu_i)})(f(x_1)) \ge \alpha_i \text{ and } A_i^{(\lambda_i,\mu_i)}(x_2) \ge f(A_i^{(\lambda_i,\mu_i)})(f(x_2)) \ge \alpha_i, \forall i.$$

$$\Rightarrow A_i^{(\lambda_i,\mu_i)}(x_1) \ge \alpha_i \text{ and } A_i^{(\lambda_i,\mu_i)}(x_2) \ge \alpha_i, \forall i.$$

$$\Rightarrow A^{(\lambda,\mu)}(x_1) \ge \alpha \text{ and } A^{(\lambda,\mu)}(x_2) \ge \alpha .$$

$$\Rightarrow \min\{A^{(\lambda,\mu)}(x_1), A^{(\lambda,\mu)}(x_2)\} \ge \alpha .$$

$$\Rightarrow A^{(\lambda,\mu)}(x_1x_2^{-1}) \ge \min\{A^{(\lambda,\mu)}(x_1), A^{(\lambda,\mu)}(x_2)\} \ge \alpha, \text{ since } A^{(\lambda,\mu)} \in (\lambda,\mu) - MFSG(G_1).$$

 $\Rightarrow A^{(\lambda,\mu)}(x_1 x_2^{-1}) \ge \alpha$

 $\Rightarrow x_1 x_2^{-1} \in [A^{(\lambda,\mu)}]_{\alpha} \Rightarrow f(x_1 x_2^{-1}) \in f([A^{(\lambda,\mu)}]_{\alpha}) \subseteq [f(A^{(\lambda,\mu)})]_{\alpha}$

 $\Rightarrow f(x_1)f(x_2^{-1}) \in [f(A^{(\lambda,\mu)})]_{\alpha} \Rightarrow f(x_1)f(x_2)^{-1} \in [f(A^{(\lambda,\mu)})]_{\alpha} \Rightarrow y_1y_2^{-1} \in [f(A^{(\lambda,\mu)})]_{\alpha} \Rightarrow [f(A^{(\lambda,\mu)})]_{\alpha}$ is a subgroup of $G_2, \forall \alpha \in [0,1]^k \Rightarrow f(A^{(\lambda,\mu)}) \in (\lambda,\mu) - MFSG(G_2)$

Corollary 6.3 :

If $f: G_1 \to G_2$ be a homomorphism of a group G_1 onto a group G_2 and $\{A_i^{(\lambda_i,\mu_i)}: i \in I\}$ be a family of $(\lambda,\mu) - MFSG$ s of G_1 , then $f(\cap A_i^{(\lambda_i,\mu_i)})$ is an $(\lambda,\mu) - MFSG$ of G_2 .

Theorem 6.4 :

Let $f: G_1 \to G_2$ be a homomorphism of a group G_1 into a group G_2 . If $B^{(\lambda,\mu)}$ is an $(\lambda,\mu) - MFSG$ of G_2 , then $f^{-1}(B^{(\lambda,\mu)})$ is also a $(\lambda,\mu) - MFSG$ of G_1 .

Proof :

By theorem 4.4, it is enough to prove that $[f^{-1}(B^{(\lambda,\mu)})]_{\alpha}$ is a subgroup of G_1 , with $0 \le \alpha_i \le 1, \forall i$.

Let $x_1, x_2 \in [f^{-1}(B^{(\lambda,\mu)})]_{\alpha}$. Then $f^{-1}(B^{(\lambda,\mu)})(x_1) \ge \alpha$ and $f^{-1}(B^{(\lambda,\mu)})(x_2) \ge \alpha \implies B^{(\lambda,\mu)}(f(x_1)) \ge \alpha$ α and $B^{(\lambda,\mu)}(f(x_2)) \ge \alpha$

$$\Rightarrow \min\{B^{(\lambda,\mu)}(f(x_1)), B^{(\lambda,\mu)}(f(x_2))\} \ge \alpha$$

$$\Rightarrow B^{(\lambda,\mu)}(f(x_1)f(x_2)^{-1} \ge \min\{B^{(\lambda,\mu)}(f(x_1)), B^{(\lambda,\mu)}(f(x_2))\} \ge \alpha, \text{ since } B^{(\lambda,\mu)} \in (\lambda,\mu) - MFSG(G_2).$$

$$\Rightarrow (f(x_1)f(x_2)^{-1} \in [B^{(\lambda,\mu)}]_{\alpha} \Rightarrow f(x_1x_2^{-1}) \in [B^{(\lambda,\mu)}]_{\alpha} \text{ ,since } f \text{ is a homomorphism.}$$

$$\Rightarrow x_1x_2^{-1} \in f^{-1}([B^{(\lambda,\mu)}]_{\alpha}) = [f^{-1}(B^{(\lambda,\mu)})]_{\alpha} \text{ by the preposition } 6.1(\text{ii}).$$

$$\Rightarrow x_1x_2^{-1} \in [f^{-1}(B^{(\lambda,\mu)})]_{\alpha} \Rightarrow [f^{-1}(B^{(\lambda,\mu)})]_{\alpha} \text{ is a subgroup of } G_1.$$

$$\Rightarrow f^{-1}(B^{(\lambda,\mu)}) \text{ is a } (\lambda,\mu) - MFSG \text{ of } G_1.$$

Theorem 6.5 :

Let $f: G_1 \to G_2$ be a surjective homomorphism and if $A^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFSG$ of a group G_1 , then $f(A^{(\lambda,\mu)})$ is also a $(\lambda,\mu) - MFNSG$ of a group G_2 .

Proof :

Let $g_2 \in G_2$ and $y \in f(A^{(\lambda,\mu)})$. Since f is surjective, there exists $g_1 \in G_1$ and $x \in A^{(\lambda,\mu)}$, such that f(x) = y and $f(g_1) = g_2$.

Also, since $A^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFNSG$ of $G_1, A^{(\lambda,\mu)}(g_1^{-1}xg_1) = A^{(\lambda,\mu)}(x), \forall x \in A^{(\lambda,\mu)}$ and $g_1 \in G_1$.

Now consider, $f(A^{(\lambda,\mu)})(g_2^{-1}xg_2) = f(A^{(\lambda,\mu)})(f(g_1^{-1}xg_1)) = f(A^{(\lambda,\mu)})(y')$, since f is a homomorphism, where $y' = f(g_1^{-1}xg_1) = g_2^{-1}yg_2 = max \{A^{(\lambda,\mu)}(x') : f(x') = y' \text{ for } x' \in G_1\} = max \{A^{(\lambda,\mu)}(x') : f(g_1^{-1}xg_1) \text{ for } x' \in G_1\} = max \{A^{(\lambda,\mu)}(g_1^{-1}xg_1) : f(g_1^{-1}xg_1) = y'\} = g_2^{-1}yg_2 \text{ for } x \in A^{(\lambda,\mu)}, g_1 \in G_1\} = max \{A^{(\lambda,\mu)}(x) : f(g_1^{-1}xg_1) = y'\} = g_2^{-1}yg_2 \text{ for } x \in A^{(\lambda,\mu)}, g_1 \in G_1\} = max \{A^{(\lambda,\mu)}(x) : f(g_1^{-1}xg_1) = y'\} = g_2^{-1}yg_2 \text{ for } x \in A^{(\lambda,\mu)}, g_1 \in G_1\} = max \{A^{(\lambda,\mu)}(x) : f(g_1^{-1}xg_1) = y'\} = g_2^{-1}yg_2 \text{ for } x \in A^{(\lambda,\mu)}, g_1 \in G_1\} = max \{A^{(\lambda,\mu)}(x) : g_2^{-1}f(x)g_2 = g_2^{-1}yg_2 \text{ for } x \in G_1\} = max \{A^{(\lambda,\mu)}(x) : f(x) = y \text{ for } x \in G_1\} = f(A^{(\lambda,\mu)})(y).$ Hence $f(A^{(\lambda,\mu)})$ is a $(\lambda,\mu) - MFNSG$ of G_2 .

Theorem 6.6 :

If $A^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFNSG$ of a group G, then there exists a natural homomorphism $f: G \to G/A^{(\lambda,\mu)}$ defined by $f(x) = xA^{(\lambda,\mu)}, \forall x \in G$.

Proof :

Let $f: G \to G/A^{(\lambda,\mu)}$ defined by $(x) = xA^{(\lambda,\mu)}, \forall x \in G$. Claim 1: *f* is a homomorphism That is, to prove that : $f(xy) = f(x)f(y), \forall x, y \in G, or (xy)A^{(\lambda,\mu)} = (xA^{(\lambda,\mu)})(yA^{(\lambda,\mu)}), \forall x, y \in G$ Since $A^{(\lambda,\mu)}$ is a $(\lambda,\mu) - MFNSG$ of G, we have $A^{(\lambda,\mu)}(g^{-1}xg) = A^{(\lambda,\mu)}(x)$, $\forall x \in A^{(\lambda,\mu)}$ and $g \in G$. Equivalently, $A^{(\lambda,\mu)}(xy) = A^{(\lambda,\mu)}(yx), \forall x, y \in G$. Also, $\forall g \in G$, we have $(xA^{(\lambda,\mu)})(g) = (A^{(\lambda,\mu)}(x^{-1}g))$ $(yA^{(\lambda,\mu)})(g) = (A^{(\lambda,\mu)}(y^{-1}g))$ $[(xy)A^{(\lambda,\mu)}](g) = \left(A^{(\lambda,\mu)}((xy)^{-1}g)\right), \forall g \in G.$ By definition 3.13, we have $[(xA^{(\lambda,\mu)})(yA^{(\lambda,\mu)})](g) = (min\{xA^{(\lambda,\mu)}(r), yA^{(\lambda,\mu)}(s)\}; g = rs)$ =[min{ $A^{(\lambda,\mu)}(x^{-1}r), A^{(\lambda,\mu)}(y^{-1}s)$ }: g = rs] Claim 2 : $A^{(\lambda,\mu)}[(xy)^{-1}g] = max[min \{A^{(\lambda,\mu)}(x^{-1}r), A^{(\lambda,\mu)}(y^{-1}s)\} : g = rs], \forall g \in G.$ Consider $A^{(\lambda,\mu)}[(xy)^{-1}g] = A^{(\lambda,\mu)}[y^{-1}x^{-1}g] = A^{(\lambda,\mu)}[y^{-1}x^{-1}rs]$, since g = rs. $= A^{(\lambda,\mu)}[y^{-1}(x^{-1}rsy^{-1})y] = A^{(\lambda,\mu)}[x^{-1}rsy^{-1}]$, since $A^{(\lambda,\mu)}$ is normal. $\geq \min\{A^{(\lambda,\mu)}(x^{-1}r), A^{(\lambda,\mu)}(sy^{-1})\}$, since $A^{(\lambda,\mu)}$ is $(\lambda,\mu) - MFSG$. = min{ $A^{(\lambda,\mu)}(x^{-1}r), A^{(\lambda,\mu)}(y^{-1}s)$ }, $\forall g = rs \in G$, since $A^{(\lambda,\mu)}$ is normal. Therefore, $A^{(\lambda,\mu)}[(xy)^{-1}g] = \max[\min \{A^{(\lambda,\mu)}(x^{-1}r), A^{(\lambda,\mu)}(y^{-1}s)\} : g = rs], \forall g \in G.$ Which proves the Claim 2. Thus, $[(xy)A^{(\lambda,\mu)}](g) = [(xA^{(\lambda,\mu)})(yA^{(\lambda,\mu)})](g), \forall g \in G \Longrightarrow (xy)A^{(\lambda,\mu)} = (xA^{(\lambda,\mu)})(yA^{(\lambda,\mu)})$

 \Rightarrow f(xy) = f(x)f(y) \Rightarrow f is a homomorphism. This proves the Claim 1 and hence the Theorem .

REFERENCES

- 1. Atanassov. K.T., "Intuitionistic fuzzy sets,"Fuzzy sets and fuzzy systems, 20(1), 87-96(1986)
- 2. Atanassov. K.T., "New operation defined Over the intuitionistic fuzzy sets," Fuzzy sets and fuzzy systems, 61(2), 137-142(1994)
- 3. Balasubramanian. KR and Rajangam. R," t- intuitionistic multi fuzzy subgroup of a group", Journal of Applied Science and Computations, Volume 5, Issue 11, ISSN NO: 1076- 5131, November/2018
- 4. Basnet.D.K. & Sarma.N.K," A note on Intuitionistic Fuzzy Equivalence Relation", International Mathematical Forum, Vol.5,No.67,3301-3307(2010).
- 5. Beaula.T. & Christinal Gunaseeli.S(2014),"On Intuitionistic Fuzzy Metric Spaces", International Journal Of Applications of Fuzzy Sets and Artificial Intelligence,4,83-93(2014)
- 6. Bhakat. S. K. and Das. P, " $(\in, \in \lor q)$ -fuzzy subgroup," Fuzzy Sets and Systems, vol. 80, no. 3, pp. 359–368, 1996.
- 7. Biswas.R, Vague Groups", International Journal of Computational Cognition, Vol. 4, No. 2, 20-23(2006)

- Das.P.S, "Fuzzy groups and level subgroups," Journal Pf Mathematical Analysis and Applications, 84, 262-269 (1981)
- 9. J.A. Goguen, "L-fuzzy set", Journal of Mathematical analysis and Applications, 18 (1967), 145-174.
- 10. Hur.K, Jang.S.Y and Kang.H.W,"Intuitionistic Fuzzy Subgroups and Fuzzy subrings", Honam Math J,25(1):19-41(2003)
- 11. Kul.H,and Su Youn.J," The Lattice of Intuitionistic Fuzzy Congruences ",International Mathematical Forem,Vol.1,No.5,211-236 (2006).
- 12. Mukharjee.N.P, and Bhattacharya.P,"Fuzzy Normal Subgroups and Fuzzy Cosets", Information Sciences, 34, 225-239
- 13. Muthuraj.R, and Balamurugan.S", A Study on Intuitionistic Multi-Fuzzy Subgroups", International Journal of Applications of Fuzzy sets and Artificial Intelligence, Vol.4,153-172 (2014)
- 14. Muthuraj.R, and Balamurugan.S", Multi-Fuzzy Group and its level Subgroup, Gen. Math. Notes, Vol.17, No.1, pp.74-81 (2013)
- 15. Rosenfeld.A," Fuzzy Group", Journal of Mathematical Analysis and Applications, 3, 12-17 (1971).
- 16. Sabu.S,Ramakrishnan.T.V,"MultiFuzzy Sets",International Mathematical Forum, 50, 2471-2476 (2010)
- 17. Sabu.S and Ramakrishnan.T.V,"Multi-Fuzzy Topology",International Journal of Applied Mathematics,Vol.24,No.1,117-129,(2011)
- Sabu.S,Ramakrishnan.TV," MultiFuzzy SubGroups", Int.J. Contemp. Math. Sciences, Vol.6,No.8, 365-372(2011)
- 19. Sharma.P.K ," t-intuitionistic fuzzy subgroups", International journal of Fuzzy Mathematics and System,(submitted)
- 20. Sharma.P.K ,"t-intuitionistic fuzzy Quotient group", Advances in Fuzzy Mathematics,7(1): 1-9(2012)
- 21. Sinoj.T.K, and Sunil.J.J.," Intuitionistic Fuzzy Multi-Sets", International Journal of Engineering Sciences and Innovaive Technology, Vol.2, No.6, 1-24 (2013)
- 22. Yao. B, " (λ, μ) -fuzzy normal subgroups and (λ, μ) -fuzzy quotient subgroups," The Journal of Fuzzy Mathematics, vol. 13, no. 3, pp. 695–705, 2005.
- 23. Yuying Li, Xuzhu Wang, and Liqiong Yang," A Study of (λ, μ) -Fuzzy Subgroups", Journal of Applied Mathematics Volume 2013
- 24. Yuan. X, Zhang. C, and Ren. Y, "Generalized fuzzy groups and many-valued implications," Fuzzy Sets and Systems, vol. 138, no. 1, pp. 205–211, 2003.
- 25. L.A. Zadeh., Fuzzy set, Information and Control 8,(1965) 338-353