(Λ, \mathbf{M})-Multi Fuzzy Subgroup Of A Group
${ }^{1}$ Dr.KR.BALASUBRAMANIAN, ${ }^{2}$ R.REVATHY ${ }^{3}$ R.RAJANGAM
${ }^{1}$ Assistant Professor in Mathematics, ${ }^{2}$ Research Scholar in Mathematics, ${ }^{3}$ Guest Lecturer in Mathematics H.H .The Rajah's college (Affiliated to bharathidasan University, Trichy), Pudukkottai

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May2021

ABSTRACT

In this paper, we have defined (λ, μ) - multi fuzzy subgroups of a group G and discussed some of its properties by using (α, β) - cuts . Also We have defined (λ, μ)-multi fuzzy cosets of a group and proved some related theorems with examples.

Mathematics Subject Classification :03F55, 08A72, 20N25, 03E72, 06F35.
Keywords: (λ, μ)-fuzzy set $((\lambda, \mu)$-FS), (λ, μ)-multi fuzzy set $((\lambda, \mu)$-MFS), ($\lambda, \mu)$-multi fuzzy subgroup ((λ, μ)-MFSG), (λ, μ) multi fuzzy normal subgroup $((\lambda, \mu)$-MFNSG), (α, β)-cut, Homomorphism.

1.INTRODUCTION

After the presentation of the fluffy set by way of L.A.Zadeh[23] some professionals investigated the speculation of concept of fluffy set. The concept of intuitionistic fluffy set(IFS) became provided by way of Krassimir.T.Atanassov [1] as a hypothesis of Zadeh's fluffy set.

In recent years, some variants and extensions of fuzzy groups emerged. In 1996, Bhakat and Das proposed the concept of an $(\in, \in \vee q)$-fuzzy subgroup in [6] and investigated their fundamental properties. They showed that A is an $(\in, \in \vee q)$-fuzzy subgroup if and only if $A \alpha$ is a crisp group for any $\alpha \in(0,0.5]$ provided $A \alpha$ $\neq 0$. A question arises naturally: can we define a type of fuzzy subgroups such that all of their nonempty α-level sets are crisp subgroups for any α in an interval (λ, μ]? In 2003, Yuan et al. [22,23] answered this question by defining a so-called (λ, μ)-fuzzy subgroups, which is an extension of $(\epsilon, \in \vee q)$-fuzzy subgroup. As in the case of fuzzy group, some counterparts of classic concepts can be found for (λ, μ)-fuzzy subgroups. For instance, (λ, μ) fuzzy normal subgroups and (λ, μ)-fuzzy quotient groups are defined and their elementary properties are investigated, and an equivalent characterization of (λ, μ)-fuzzy normal subgroups was presented in [22,23]. However, there is much more research on (λ, μ)-fuzzy subgroups if we consider rich results both in the classic group theory and the fuzzy group theory in the sense of Rosenfeld.
S. Sabu and T.V. Ramakrishnan [17] proposed the theory of multi fuzzy sets in terms of multi dimentional membership functions and investigated some properties of multi level fuzziness. An element of a multi fuzzy set can occur more than once with possibly [same or different membership values]. R.Muthuraj and S.Balamurugan[15] proposed the intuitionistic multi fuzzy subgroup and its level subgroups. The notion of tintuitionistic fuzzy set, t-intuitionistic fuzzy group, t-intuitionistic fuzzy coset was introduced by P.K.Sharma[18,19]. And KR.Balasubramanian et al[3]. introduced the notion of t-intuitionistic multi fuzzy set and t-intuitionistic multi fuzzy subgroup of a group. In this paper we conduct a detailed investigation on (λ, μ) multi fuzzy subgroups of a group."

2. PRILIMINARIES

Definition 2.1[23]
Let X be a non-empty set . A fuzzy subset A of X is defined by a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.
Definition 2.3[15,16]
Let X be a non-empty set. A multi fuzzy set A in X is defined as the set of ordered sequences as follows.
$A=\left\{\left(x, A_{1}(x), A_{2}(x), \ldots, A_{k}(x), \ldots\right): x \in X\right\}$.Where $A_{i}: X \rightarrow[0,1]$ for all i.
Definition 2.5[16]
Let X be a non-empty set. A k-dimensional multi fuzzy set A in X is defined by the set
$A=\left\{\left(x,\left(A_{1}(x), A_{2}(x), \ldots A_{k}(x)\right)\right),: x \in X\right\}$. Where $A_{i}: X \rightarrow[0,1]$ for $i=1,2,3, \ldots, k$
Definition 2.6 [16]:For any three MFSs A, B and C, we have:
1.Commutative Law : $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ and $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$
2.Idempotent Law $: \mathrm{A} \cap \mathrm{A}=\mathrm{A}$ and $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
3.De Morgan's Law $: \neg(\mathrm{A} \cup \mathrm{B})=(\neg \mathrm{A} \cap \neg \mathrm{B})$ and $(\neg \mathrm{A} \cap \mathrm{B})=(\neg \mathrm{A} \cup \neg \mathrm{B})$
4.Associative Law : $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$
5.Distributive Law : $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$ and

$$
A \cap(B \cap C)=(A \cap B) \cup(A \cap C)
$$

Definition 2 [21,22] Let A be a fuzzy subset of G. A is called a (λ, μ)-fuzzy subgroup of G if, for all $x, y \in G$,
(i) $A(x y) \vee \lambda \geqslant A(x) \wedge A(y) \wedge \mu$

$$
\text { (ii) }\left(x^{-1}\right) \vee \lambda \geqslant A(x) \wedge \mu
$$

Clearly, a $(0,1)$-fuzzy subgroup is just a fuzzy subgroup, and thus a (λ, μ)-fuzzy subgroup is a generalization of fuzzy subgroup .

3. Main Results

Definition .3.1

Let A be a fuzzy subset of G. Then a (λ, μ) - fuzzy subset $\mathrm{A}^{(\lambda, \mu)}$ of a fuzzy set A of G is defined as $\mathrm{A}^{(\lambda, \mu)}=$ ($\mathrm{x}, \mathrm{A} \vee \lambda \wedge \mu: \mathrm{x} \in \mathrm{G}$).
Definition .3.2
Let A be a multi fuzzy subset of G. Then a (λ, μ) - multi fuzzy subset $A^{(\lambda, \mu)}$ of a fuzzy set A of G is defined as $A^{(\lambda, \mu)}=(x, A \vee \lambda \wedge \mu: x \in G)$. That is, $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}=\left(x, A_{i} \vee \lambda_{i} \wedge \mu_{i}: x \in G\right)$
Clearly, a $(0,1)$-multi fuzzy subset is just a multi fuzzy subset of G, and thus a (λ, μ) - multi fuzzy subgroup is a generalization of fuzzy subgroup. Where (0,1)-multi fuzzy subset A is defined as $A^{(0,1)}=\left(\mathrm{A}_{\mathrm{i}}{ }^{\left({ }_{\mathrm{i}}, 1_{\mathbf{i}}\right)}\right)$
Definition .3.3
Let A be a multi fuzzy subset of $G . \mathrm{A}=\left(\mathrm{A}_{\mathrm{i}}\right)$ is called a (λ, μ)-multi fuzzy subgroup of G if, for all $x \in G$,

$$
\mathrm{A}(\mathrm{xy}) \vee \lambda \geqslant \min \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y})\} \wedge \mu,
$$

That is,
$A_{i}(x y) \vee \lambda_{i} \geqslant \min \left\{A_{i}(x),\left\{A_{i}(y)\right\} \wedge \mu_{i}\right.$
Clearly, a $(0,1)$-multi fuzzy subgroup is just a multifuzzy subgroup of G, and thus a (λ, μ) - multi fuzzy subgroup is a generalization of multi fuzzy subgroup.
Definition 3.3
Let $\mathrm{A}^{(\lambda, \mu)}$ and $\mathrm{B}^{(\lambda, \mu)}$ be any two (λ, μ) - multi fuzzy sets having the same dimension k of X . Then
(i). $A^{(\lambda, \mu)} \subseteq B^{(\lambda, \mu)}$, iff $A^{(\lambda, \mu)}(x) \leq B^{(\lambda, \mu)}(x)$ forall $x \in X$
(ii). $\mathrm{A}^{(\lambda, \mu)}=\mathrm{B}^{(\lambda, \mu)}$, iff $\mathrm{A}^{(\lambda, \mu)}(\mathrm{x})=\mathrm{B}^{(\lambda, \mu)}(\mathrm{x})$ forall $\mathrm{x} \in \mathrm{X}$
(iii). $\wedge^{\wedge} A^{(\lambda, \mu)}=\left\{\left(x, 1-A^{(\lambda, \mu)}\right): x \in X\right\}$
(iv). $A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}=\left\{\left(x,\left(A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right)(x): x \in X\right\}\right.$,

$$
\text { where }\left(A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right)(x)=\min \left\{A^{(\lambda, \mu)}(x), B^{(\lambda, \mu)}(x)\right\}=\min \left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x), B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x)\right\} \text { for } i=1,2, \ldots, k
$$

(v). $A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}=\left\{\left(x, A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}(x)\right): x \in X\right\}$,

$$
\text { where }\left(A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right)(x)=\max \left\{A^{(\lambda, \mu)}(x), B^{(\lambda, \mu)}(x)\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}{ }^{\left(\lambda_{\mathrm{i}}, \mu_{\mathrm{i}}\right)}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}{ }^{\left(\lambda_{\mathrm{i}}, \mu_{\mathrm{i}}\right)}(\mathrm{x})\right\} \text { for } \mathrm{i}=1,2, \ldots, \mathrm{k}
$$

Here, $\left\{\mathrm{A}_{\mathrm{i}}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(\mathrm{x})\right\}$ and $\left\{\mathrm{B}_{\mathrm{i}}{ }^{\left(\lambda_{i}, \mu_{\mathrm{i}}\right)}(\mathrm{x})\right\}$ represents the corresponding $\mathrm{i}^{\text {th }}$ position membership values of $\mathrm{A}^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ respectively (see the definition 4.6,in ref.[17]).

Definition 3.4 :

For any three (MFSs $A^{(\lambda, \mu)}, B^{(\lambda, \mu)}$ and $C^{(\lambda, \mu)}$, we have:

1. Commutative Law : $\mathrm{A}^{(\lambda, \mu)} \cap \mathrm{B}^{(\lambda, \mu)}=\mathrm{B}^{(\lambda, \mu)} \cap \mathrm{A}^{(\lambda, \mu)}$ and

$$
\mathrm{A}^{(\lambda, \mu)} \cup \mathrm{B}^{(\lambda, \mu)}=\mathrm{B}^{(\lambda, \mu)} \cup \mathrm{A}^{(\lambda, \mu)}
$$

2. Idempotent Law : $\mathrm{A}^{(\lambda, \mu)} \cap \mathrm{A}^{(\lambda, \mu)}=\mathrm{A}^{(\lambda, \mu)}$ and $\mathrm{A}^{(\lambda, \mu)} \cup \mathrm{A}^{(\lambda, \mu)}=\mathrm{A}^{(\lambda, \mu)}$
3. De Morgan's Law : $\neg\left(A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right)=\neg\left(A^{(\lambda, \mu)} \cap \neg B^{(\lambda, \mu)}\right)$ and $\neg\left(A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right)=\neg\left(A^{(\lambda, \mu)} \cup \neg B^{(\lambda, \mu)}\right)$
4. Associative Law : $A^{(\lambda, \mu)} \cup\left(B^{(\lambda, \mu)} \cup C^{(\lambda, \mu)}\right)=\left(A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right) \cup C^{(\lambda, \mu)}$ and $A^{(\lambda, \mu)} \cap\left(B^{(\lambda, \mu)} \cap C^{(\lambda, \mu)}\right)=$ $\left(A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right) \cap A^{(\lambda, \mu)}$
5. Distributive Law : $A^{(\lambda, \mu)} \cup\left(B^{(\lambda, \mu)} \cap C^{(\lambda, \mu)}\right)=\left(A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right) \cap\left(A^{(\lambda, \mu)} \cap C^{(\lambda, \mu)}\right)$ and $A^{(\lambda, \mu)} \cap\left(B^{(\lambda, \mu)} \cup\right.$ $\left.\mathrm{C}^{(\lambda, \mu)}\right)=\left(\mathrm{A}^{(\lambda, \mu)} \cap \mathrm{B}^{(\lambda, \mu)}\right) \cup\left(\mathrm{A}^{(\lambda, \mu)} \cap \mathrm{C}^{(\lambda, \mu)}\right)$

Definition 3.5 :
Let $A^{(\lambda, \mu)}=\left\{\left(x, A^{(\lambda, \mu)}(x)\right): x \in X\right\}$ be a $(\lambda, \mu)-$ MFS of dimension k and let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in[0,1]^{\mathrm{k}}$, where each $\alpha_{i} \in[0,1]$ for all i. Then the α - cut of $A^{(\lambda, \mu)}$ is the set of all x such that $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq \alpha_{i}, \forall i$ and is denoted by $\left[\mathrm{A}^{(\lambda, \mu)}\right]_{(\alpha)}$. Clearly it is a crisp set.

Definition 3.6 :
Let $\mathrm{A}^{(\lambda, \mu)}=\left\{\left(\mathrm{x}, \mathrm{A}^{(\lambda, \mu)}(\mathrm{x})\right): \mathrm{x} \in \mathrm{X}\right\}$ be a $(\lambda, \mu)-$ MFS of dimension k and let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{k}}\right) \in[0,1]^{\mathrm{k}}$, where each $\alpha_{i} \in\left[0,1\right.$ for all i. Then the strong α - cut of $A^{(\lambda, \mu)}$ is the set of all x such that $A_{i}{ }^{(\lambda, \mu)}(x)>\alpha_{i}, \forall i$ and is denoted by $\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\alpha^{*}}$. Clearly it is also a crisp set.

Theorem 3.7 (ref.[19]):
Let A and B are any two (λ, μ)-MFSs of dimension k taken from a non -empty set X . Then $\mathrm{A} \subseteq \mathrm{B}$ if and only if $\left[\mathrm{A}^{(\lambda, \mu)}\right]_{(\alpha)} \subseteq\left[\mathrm{B}^{(\lambda, \mu)}\right]_{(\alpha)}$ for every $\in[0,1]^{\mathrm{k}}$.

Definition 3.8 :
A MFS $A=\{(x, A(x)): x \in X\}$ of a group G is said to be a (λ, μ)-multifuzzy sub group of G (MFSG), if it satisfies the following: For $\lambda, \mu \in[0,1]^{k}, 0 \leq \lambda_{i} \leq \mu_{i} \leq 1,0 \leq \lambda_{i}+\mu_{i} \leq 1$
(i) $\mathrm{A}(\mathrm{xy}) \vee \lambda \geq \min \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y})\} \wedge \mu$
(ii) $A\left(x^{-1}\right) \vee \lambda \geq A(x) \wedge \mu$ for all $x, y \in G$. That is,
(i) $A_{i}(x y) \vee \lambda_{i} \geq \min \left\{A_{i}(x), A_{i}(y)\right\} \wedge \mu_{i}$
(ii) $A_{i}\left(x^{-1}\right) \vee \lambda_{i} \geq A_{i}(x) \wedge \mu_{i}$ for all $x, y \in G$.

Clearly, a $(0,1)$-multi fuzzy subgroup is just a multi fuzzy subgroup of G , and thus a (λ, μ) - multi fuzzy subgroup is a generalization of multi fuzzy subgroup.

An alternative definition for (λ, μ)-MFG is as follows:
Definition 3.9 :
A MFS A of a group G is said to be a (λ, μ)-multi-fuzzy sub group of $G((\lambda, \mu)$-MFSG $)$, if it satisfies.
$A\left(x y^{-1}\right) \vee \lambda \geq \min \{A(x), A(y)\} \wedge \mu$ for all $x, y \in G$
Where, $\quad A\left(x y^{-1}\right) \vee \lambda=\left(A_{1}\left(x y^{-1}\right) \vee \lambda_{1}, A_{2}\left(x^{-1}\right) \vee \lambda_{2}, \ldots, A_{k}\left(x^{-1}\right) \vee \lambda_{k}\right)$ and $\min \{A(x), A(y)\} \wedge \mu=$ $\left(\min \left\{A_{1}(x), A_{1}(y)\right\} \wedge \mu_{1}, \min \left\{A_{2}(x), A_{2}(y)\right\} \wedge \mu_{2}, \ldots, \min \left\{A_{k}(x), A_{k}(y)\right\} \wedge \mu_{k}\right)$ for all x, y and $x y^{-1}$ in G.

Remark 3.10 :
(i) If A is a $(\lambda, \mu)-$ MFSG of G,then the complement of A need not be an $(\lambda, \mu)-$ MFSG of G
(ii) A is a MFSG of a group $\left.\Leftrightarrow \operatorname{each}(\lambda, \mu)-\mathrm{FSA}^{\left(\lambda_{\mathrm{i}}, \mu_{\mathrm{i}}\right)}\left(\mathrm{A}^{\left(\lambda_{i}, \mu_{i}\right)}\right): \mathrm{x} \in \mathrm{G}\right\}_{\mathrm{i}=1,2, \ldots, \mathrm{k}}$ is a $(\lambda, \mu)-\mathrm{FSG}$ of G .

Definition 3.11(ref.[6,9,12]) :
A (λ, μ) - MFSG $A^{(\lambda, \mu)}$ of a group G is said to be an (λ, μ)-multi fuzzy normal subgroup ((λ, μ) - MFNSG) of G, it satisfies
$A^{(\lambda, \mu)}(x y)=A^{(\lambda, \mu)}(y x)$ for all $x, y \in G$
Theorem 3.12:
A $(\lambda, \mu)-\operatorname{MFSG} A^{(\lambda, \mu)}$ of a group G is normal, it satisfies
$A^{(\lambda, \mu)}\left(g^{-1} x g\right)=A^{(\lambda, \mu)}(x)$ for all $x, y \in G$ and $g \in G$
Proof :Let $x \in A^{(\lambda, \mu)}$ and $g \in G$.
Then $A^{(\lambda, \mu)}\left(g^{-1} x g\right)=A^{(\lambda, \mu)}\left(g^{-1}(x g)\right)=A^{(\lambda, \mu)}\left((x g) g^{-1}\right)$, since $A^{(\lambda, \mu)}$ is normal.
$A^{(\lambda, \mu)}\left((x g) g^{-1}\right)=A^{(\lambda, \mu)}\left(x\left(g g^{-1}\right)\right)=A^{(\lambda, \mu)}(x e)=A^{(\lambda, \mu)}(x)$, Hence (i) is true.
Definition 3.13 :
Let ($G,$. .) be a Groupoid and $A^{(\lambda, \mu)}, B^{(\lambda, \mu)}$ be any two (λ, μ)-MFSs having same dimension k of G.Then the product of $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$, denoted by $A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}$ and is defined as:

$$
\mathrm{A}^{(\lambda, \mu)} \circ \mathrm{B}^{(\lambda, \mu)}(\mathrm{x})=\left\{\begin{array}{c}
\max \left[\min \left\{\mathrm{A}^{(\lambda, \mu)}(\mathrm{y}), \mathrm{B}^{(\lambda, \mu)}(\mathrm{z})\right\}: \mathrm{yz}=\mathrm{x}, \forall \mathrm{y}, \mathrm{z} \in \mathrm{G}\right] \\
\lambda_{\mathrm{k}}=\left(\lambda, \lambda, \ldots, \lambda_{\text {k times }}\right), \text { if } \mathrm{x} \text { is not expressible sa } \mathrm{x}=\mathrm{yz}
\end{array}, \forall \mathrm{x} \in \mathrm{G}\right.
$$

That is, $\forall \mathrm{x} \in \mathrm{G}$,
$\mathrm{A}^{(\lambda, \mu)} \circ \mathrm{B}^{(\lambda, \mu)}(\mathrm{x})=\left\{\begin{array}{c}\left(\max \left[\min \left\{\mathrm{A}^{(\lambda, \mu)}(\mathrm{y}), \mathrm{B}^{(\lambda, \mu)}(\mathrm{z})\right\}: \mathrm{yz}=\mathrm{x}, \forall \mathrm{y}, \mathrm{z} \in \mathrm{G}\right]\right. \\ \left(\lambda_{\mathrm{k}}\right) \quad, \text { if } \mathrm{x} \text { is not expressible as } \mathrm{x}=\mathrm{yz}\end{array}\right.$

Definition 3.14 :
Let X and Y be any two non-empty sets and $f: X \rightarrow Y$ be a mapping. Let $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ be any two (λ, μ)-MFSs of X and Y respectively having the same dimention k.Then the image of $A^{(\lambda, \mu)}(\subseteq X)$ under the map f is denoted by $f\left(A^{(\lambda, \mu)}\right)$, is defined as : $\forall y \in Y$,
$f\left(A^{(\lambda, \mu)}\right)(y)=\left\{\begin{array}{cc}\max \left\{A^{(\lambda, \mu)}(x): x \in f^{-1}(y)\right. \\ \lambda_{k}, & \text { otherwise }\end{array}\right.$
Also, the pre - image of $B^{(\lambda, \mu)}(\subseteq Y)$ under the map f is denoted by $f^{-1}\left(B^{(\lambda, \mu)}\right)$ and it is defined as: $\mathrm{f}^{-1}\left(\mathrm{~B}^{(\lambda, \mu)}\right)(\mathrm{x})=\left(\mathrm{B}^{(\lambda, \mu)}(\mathrm{f}(\mathrm{x})), \forall \mathrm{x} \in \mathrm{X}\right.$.

4. Properties of α-cuts of the ($\lambda, \mu)$-MFSGs of a group

In this section, we have proved some theorems on $(\lambda, \mu)-\mathrm{MFSGs}$ of a group G by using some of their $\alpha-$ cuts.

Proposition 4.1 :
If $\mathrm{A}^{(\lambda, \mu)}$ and $\mathrm{B}^{(\lambda, \mu)}$ are any two (λ, μ)-MFSs of a universal set X
Then the following are hold good:
(i) $\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\alpha} \subseteq\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\delta}$ if $\alpha \geq \delta$
(ii) $\mathrm{A}^{(\lambda, \mu)} \subseteq \mathrm{B}^{(\lambda, \mu)}$ implies $\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\alpha} \subseteq\left[\mathrm{B}^{(\lambda, \mu)}\right]_{\delta}$
(iii) $\left[\mathrm{A}^{(\lambda, \mu)} \cap \mathrm{B}^{(\lambda, \mu)}\right]_{\alpha}=\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\alpha} \cap\left[\mathrm{B}^{(\lambda, \mu)}\right]_{\alpha}$
(iv) $\left[\mathrm{A}^{(\lambda, \mu)} \cup \mathrm{B}^{(\lambda, \mu)}\right]_{\alpha} \supseteq\left[\mathrm{A}^{(\lambda, \mu)}\right]_{\alpha} \cup\left[\mathrm{B}^{(\lambda, \mu)}\right]_{\alpha}$ (here equality holds if $\alpha_{\mathrm{i}}=1, \forall \mathrm{i}$)
(v) $\left[\cap \mathrm{A}_{\mathrm{i}}{ }^{(\lambda, \mu)}\right]_{\alpha}=\cap\left[\mathrm{A}_{\mathrm{i}}{ }^{(\lambda, \mu)}\right]_{\alpha}$, where $\alpha \in[0,1]^{\mathrm{k}}$

Proposition 4.2 : Let (G,.) be a groupoid and $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are any two $(\lambda, \mu)-\mathrm{MFSs}$ of G. Then we have
$\left[A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}\right]_{\alpha}=\left[A^{(\lambda, \mu)}\right]_{\alpha}\left[B^{(\lambda, \mu)}\right]_{\alpha}$, where $\alpha \in[0,1]^{k}$.
Theorem 4.3 :
If $A^{(\lambda, \mu)}$ is $\mathrm{a}(\lambda, \mu)$-multi fuzzy subgroup of G and $\alpha \in[0,1]^{k}$, then $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G , where $A^{(\lambda, \mu)}(e) \geq \alpha$, and ' e ' is the identity element of G.

Proof :
Since $A^{(\lambda, \mu)}(e) \geq \alpha, e \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$. There fore $\left[A^{(\lambda, \mu)}\right]_{\alpha} \neq \emptyset$.
Let $x, y \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$.Then $A^{(\lambda, \mu)}(x) \geq \alpha$ and $A^{(\lambda, \mu)}(y) \geq \alpha$.
Then for all $i, A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq \alpha_{i}$ and $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(y) \geq \alpha_{i}$,
$\Rightarrow \min \left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x), A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(y)\right\} \geq \alpha_{i}, \forall i$.
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x y^{-1}\right) \geq \min \left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x), A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(y)\right\} \geq \alpha_{i}, \forall i$, since $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy subgroup of a group G and by (1).
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x y^{-1}\right) \geq \alpha_{i}, \forall i$.
$\Rightarrow A^{(\lambda, \mu)}\left(x y^{-1}\right) \geq \alpha$
$\Rightarrow x y^{-1} \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$
$\Rightarrow\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G.
Theorem 4.4 :
If $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy subset of a group G, then $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy subgroup of $G \Leftrightarrow$ each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G, for all $\alpha \in[0,1]^{k}$ for all i.

Proof : (\Rightarrow) Let $A^{(\lambda, \mu)}$ be a (λ, μ) - multi-fuzzy subgroup of a group G.Then by the theorem 3.4, each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G for all $\alpha \in[0,1]^{k}$.
(\Longleftarrow) Conversely, let $A^{(\lambda, \mu)}$ be a (λ, μ)-multifuzzy subset of a group G such that each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G for all $\alpha \in[0,1]^{k}, \forall i$.

To prove that $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy subgroup of G, we must prove that : (i) $A^{(\lambda, \mu)}(x y) \geq \min \left\{A^{(\lambda, \mu)}(x), A^{(\lambda, \mu)}(y)\right\}, \forall x, y \in G$
(ii) $A^{(\lambda, \mu)}\left(x^{-1}\right)=A^{(\lambda, \mu)}(x)$

Let $x, y \in G$ and for all i, let $\alpha_{i}=\min \left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x), A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(y)\right\}$. Then $\forall i$,
We have $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x) \geq \alpha_{i}, A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(y) \geq \alpha_{i}$
That is, $\forall i$,we have $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x) \geq \alpha_{i}$, and $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(y) \geq \alpha_{i}$
Then we have $A^{(\lambda, \mu)}(x) \geq \alpha$ and $A^{(\lambda, \mu)}(y) \geq \alpha$. That is, $x \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$ and $y \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$ therefore, $x y \in$ $\left[A^{(\lambda, \mu)}\right]_{\alpha}$, since each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup by hypothesis .

Therefore, $\forall i$, we have $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x y) \geq \alpha_{i}=\min \left\{A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x), A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(y)\right.$.
That is, $A^{(\lambda, \mu)}(x y) \geq \min \left\{A^{(\lambda, \mu)}(x), A^{(\lambda, \mu)}(y)\right\}$ hence (i) is true.
Now, let $x \in G$ and $\forall i$, let $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x)=\alpha_{i}$. Then $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x) \geq \alpha_{i}$ is true for all i. Therefore $A^{(\lambda, \mu)}(x) \geq \alpha$. Thus, $x \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$.

Since each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G forall $\alpha, \beta \in[0,1]^{k}$ and $x \in\left[A^{(\lambda, \mu)}\right]_{(\alpha, \beta)}$, we have $x^{-1} \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$ which implies that $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\left(x^{-1}\right) \geq \alpha_{i}$ is true $\forall i$. Which implies that $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\left(x^{-1}\right) \geq A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x)$ is true $\forall i$. Thus, $\forall i, A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x)=A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(\left(x^{-1}\right)^{-1}\right) \geq A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x^{-1}\right) \geq A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x)$ which implies that $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x^{-1}\right)=$ $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x)$. Hence $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-$ multifuzzy subgroup of G.

Theorem 4.5 :
If $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy normal subgroup of a group G and for every $\alpha \in[0,1]^{k}$, then $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a normal subgroup of G, where $A^{(\lambda, \mu)}(e) \geq \alpha$ and ' e ' is the identity element of G.

Proof :
Let $x \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$ and $g \in G$.Then, $A^{(\lambda, \mu)}(e) \geq \alpha$.
That is , $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq \alpha_{i}, \forall i$
Since $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-$ MFNSG of G,
$A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\left(g^{-1} x g\right)=A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x), \forall i$.
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(g^{-1} x g\right)=A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq \alpha_{i}, \forall i$,by using (1).
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(g^{-1} x g\right) \geq \alpha_{i}, \forall i$
$\Rightarrow A^{(\lambda, \mu)}\left(g^{-1} x g\right) \geq \alpha$
$\Rightarrow g^{-1} x g \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$
$\Rightarrow\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is normal subgroup of G
Theorem 4.6 :
If $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are any two (λ, μ) -multi fuzzy subgroups $\left((\lambda, \mu)\right.$-MFSGs) of a group G, then $\left(A^{(\lambda, \mu)} \cap\right.$ $\left.B^{(\lambda, \mu)}\right)$ is also a (λ, μ)-multi fuzzy subgroup of G.

Proof:
By the above theorem 4.6, $A^{(\lambda, \mu)}$ is a (λ, μ) - multi fuzzy subgroup of $G \Leftrightarrow$ each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G for all $\alpha \in[0,1]^{k}$ with $\leq \alpha_{i} \leq 1, \forall i$. But, since $\left[A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right]_{\alpha}=\left[A^{(\lambda, \mu)}\right]_{\alpha} \cap\left[B^{(\lambda, \mu)}\right]_{\alpha}$ and both $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ and $\left[B^{(\lambda, \mu)}\right]_{\alpha}$ are subgroups of G (as $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are (λ, μ) - multi fuzzy subgroups) and the intersection of any two subgroups is also a subgroup of G , which implies that $\left[A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G and hence $\left(A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}\right)$ is a (λ, μ) - multi fuzzy subgroup of G.

Remark 4.7 :
The union of two (λ, μ) - multi fuzzy subgroups of a group G need not be a (λ, μ) - MFSG of the group G.
Proof: Consider the Klein's four group $\mathrm{G}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{b}\right.$, ab \}, where $a^{2}=e=b^{2}$ and $b a=a b$. For $0 \leq i \leq 5$, let $t_{i}, s_{i} \in[0,1]^{\mathrm{k}}$ such that $r_{0}>r_{1}>\ldots \ldots>r_{5}$ and $s_{0}<s_{1}<\ldots \ldots<s_{5}$. Define $(\lambda, \mu)-\operatorname{MFSs} A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ of dimension k as follows : $A^{(\lambda, \mu)}=\left\{\left(x, A^{(\lambda, \mu)}(x)\right): x \in G\right\}$ and $B^{(\lambda, \mu)}=\left\{\left(x, B^{(\lambda, \mu)}(x)\right): x \in G\right\}$, where $A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(e)=$ $r_{1} \vee \lambda_{i} \wedge \mu_{i}, A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(a)=r_{3} \vee \lambda_{i} \wedge \mu_{i}, A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(b)=r_{4} \vee \lambda_{i} \wedge \mu_{i}=A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(a b) \quad$ and $\quad B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(e)=$ $r_{0} \vee \lambda_{i} \wedge \mu_{i}, B_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(a)=r_{5} \vee \lambda_{i} \wedge \mu_{i}=B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(a b), B_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(b)=r_{2} \vee \lambda_{i} \wedge \mu_{i}$.

Clearly $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are (λ, μ) - multi fuzzy subgroups of G.
$\operatorname{Now}\left(A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right)(x)=\max \left\{A^{(\lambda, \mu)}(x), A^{(\lambda, \mu)}(x)\right\}=\left(\max \left\{A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x), B_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}(x)\right\}\right)_{i=1}^{k}$
$\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)} \cup B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)(e)=r_{0} \vee \lambda_{i} \wedge \mu_{i},\left(A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)} \cup B_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\right)(a)=r_{3} \vee \lambda_{i} \wedge \mu_{i},\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)} \cup B_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\right)(b)=$ $r_{2} \vee \lambda_{i} \wedge \mu_{i} ; A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(a b)=r_{4} \vee \lambda_{i} \wedge \mu_{i}$.

$$
\begin{gathered}
{\left[A_{i}^{\left(\lambda_{i}, \mu_{i}\right)}\right]_{r_{3}}=\left\{x: x \in G \text { such that } A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq r_{3}\right\}=\{e, a\}} \\
{\left[B_{i}^{\left(\lambda_{i}, \mu_{i}\right)}\right]_{r_{3}}=\left\{x: x \in G \text { such that } B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq r_{3}\right\}=\{e\}} \\
{\left[A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)} \cup B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right]_{r_{3}}=\left\{x: x \in G \text { such that } A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq r_{3}\right\}} \\
=\left\{x: x \in G \text { such that max }\left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x), B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x)\right\} \geq r_{3}\right\}=\{e, a, b\}
\end{gathered}
$$

Since $\{\mathrm{e}, \mathrm{a}, \mathrm{b}\}$ is not a subgroup of $\mathrm{G},\left[A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right]_{r_{3}}$ is not a subgroup of G.Hence $\left[A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right]$ is not a subgroup of G and there fore $\left[A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}\right]$ is not a $(\lambda, \mu)-$ MFSG of the group G .

Example 4.8 : There are two cases needed to clarify the previous theorem 3.7 and remark.
Case (i): Consider the abelian group $G=\{e, a, b, a b\}$ with usual multiplication such that $a^{2}=e=b^{2}$ and $a b=b a$. Let $\left.\quad A^{(\lambda, \mu)}=\left\{<e,\left(0.6 \vee \lambda_{1} \wedge \mu_{1}, 0.8 \vee \lambda_{2} \wedge \mu_{2}\right)\right\rangle,<a,\left(0.4 \vee \lambda_{1} \wedge \mu_{1}, 0.4 \vee \lambda_{2} \wedge \mu_{2}\right)\right\rangle,<$ $\left.b,\left(0.3 \vee \lambda_{1} \wedge \mu_{1}, 0.3 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a b,\left(0.3 \vee \lambda_{1} \wedge \mu_{1}, 0.3 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\} \quad$ and $\quad B^{(\lambda, \mu)}=\left\{<e,\left(0.7 \vee \lambda_{1} \wedge\right.\right.$ $\left.\mu_{1}, 0.7 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0.2 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>,<b,\left(0.4 \vee \lambda_{1} \wedge \mu_{1}, 0.4 \vee \lambda_{2} \wedge \mu_{2}\right)>,<$
$\left.a b,\left(0.2 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\}$ be two $(\lambda, \mu)-$ MFSs having dimension two of G. Clearly $A^{(\lambda, \mu)}$ and $A^{(\lambda, \mu)}$ are $(\lambda, \mu)-M F S G s$ of G.

Then $\quad A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}=\left\{<e,\left(0.6 \vee \lambda_{1} \wedge \mu_{1}, 0.7 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0.2 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right),<\right.$
$\left.\left.\left.b,\left(0.3 \vee \lambda_{1} \wedge \mu_{1}, 0.3 \vee \lambda_{2} \wedge \mu_{2}\right)\right\rangle,<a b,\binom{0.2 \vee \lambda_{1} \wedge \mu_{1} \prime}{0.2 \vee \lambda_{2} \wedge \mu_{2}}\right\rangle\right\}$

$$
\text { and } \left.A^{t} \cup B^{t}=\left\{<e,\left(0.7 \vee \lambda_{1} \wedge \mu_{1}, 0.8 \vee \lambda_{2} \wedge \mu_{2}\right)\right\rangle,<a,\binom{0.4 \vee \lambda_{1} \wedge \mu_{1},}{0.4 \vee \lambda_{2} \wedge \mu_{2}}\right\rangle
$$

$\left.<b,\left(0.4 \vee \lambda_{1} \wedge \mu_{1}, 0.4 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a b,\left(0.3 \vee \lambda_{1} \wedge \mu_{1}, 0.3 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\}$
Therefore it is easily verified that in this case $A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F S G$ of G and $A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}$ is not a $(\lambda, \mu)-M F S G$ of G. Hence case (i)."

Case (ii): Consider the abelian group $G=\{e, a, b, a b\}$ "with usual multiplication such that $a^{2}=e=b^{2}$ and $a b=b a . \quad$ Let $\quad A^{(\lambda, \mu)}=\left\{<e,\left(0.5 \vee \lambda_{1} \wedge \mu_{1}, 0.9 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0.4 \vee \lambda_{1} \wedge \mu_{1}, 0.6 \vee \lambda_{2} \wedge \mu_{2}\right)\right\rangle,<$ $\left.b,\left(0.1 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a b,\left(0.1 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\}$ and $A^{(\lambda, \mu)}=\left\{<e,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.7 \vee\right.\right.$ $\left.\lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.4 \vee \lambda_{2} \wedge \mu_{2}\right)>,<b,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.1 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a b,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.1 \vee\right.$ $\left.\left.\lambda_{2} \wedge \mu_{2}\right)>\right\}$ be two (λ, μ)-MFSs having dimension two of G. Clearly $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are $(\lambda, \mu)-$ MFSGs of G.

Then $\quad A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}=\left\{<e,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.7 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.4 \vee \lambda_{2} \wedge \mu_{2}\right)>,<\right.$ $\left.b,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.1 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a b,\left(0 \vee \lambda_{1} \wedge \mu_{1}, 0.1 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\}$ and $A^{t} \cup B^{t}=\left\{<e,\left(0.5 \vee \lambda_{1} \wedge\right.\right.$
$\left.\mu_{1}, 0.9 \vee \lambda_{2} \wedge \mu_{2}\right)>,<a,\left(0.4 \vee \lambda_{1} \wedge \mu_{1}, 0.6 \vee \lambda_{2} \wedge \mu_{2}\right)>,<b,\left(0.1 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>,<$ $\left.a b,\left(0.1 \vee \lambda_{1} \wedge \mu_{1}, 0.2 \vee \lambda_{2} \wedge \mu_{2}\right)>\right\}$.

Here, it can be easily verified that both $A^{(\lambda, \mu)} \cap B^{(\lambda, \mu)}$ and $A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}$ are $(\lambda, \mu)-M F S G s$ of G. Hence case (ii).

From the conclusion of the above example, we come to the point that there is an uncertainty in verifying whether or not $\quad A^{(\lambda, \mu)} \cup B^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F S G$ of G.

Theorem 4.9 :

If $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ be any two (λ, μ)-MFSGs of a group G. Then $A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}$ is a $(\lambda, \mu)-$ MFSG of $\mathrm{G} \Leftrightarrow$ $A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}=B^{(\lambda, \mu)} \circ A^{(\lambda, \mu)}$

Proof : Since $A^{(\lambda, \mu)}$ and $B^{(\lambda, \mu)}$ are $(\lambda, \mu)-$ MFSGs of G, each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ and $\left[B^{(\lambda, \mu)}\right]_{\alpha}$ are subgroups of $G, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i .$.

Suppose $A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}$ is a (λ, μ)-MFSG of $G \Leftrightarrow$ each $\left[A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}\right]_{\alpha}$ are subgroups of $G, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.

Now, from (1), $\left[A^{(\lambda, \mu)}\right]_{\alpha} \circ\left[B^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of $G \Leftrightarrow\left[A^{(\lambda, \mu)}\right]_{\alpha} \circ\left[B^{(\lambda, \mu)}\right]_{\alpha}=\left[B^{(\lambda, \mu)}\right]_{\alpha} \circ\left[A^{(\lambda, \mu)}\right]_{\alpha}$, since if H and K are any two subgroups of G , then HK is a subgroup of $\mathrm{G} \Leftrightarrow \mathrm{HK}=\mathrm{KH} \Leftrightarrow\left[A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}\right]_{\alpha}=\left[B^{(\lambda, \mu)} \circ\right.$ $\left.A^{(\lambda, \mu)}\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i . \Leftrightarrow A^{(\lambda, \mu)} \circ B^{(\lambda, \mu)}=B^{(\lambda, \mu)} \circ A^{(\lambda, \mu)}$.

Theorem 4.10 :
If $A^{(\lambda, \mu)}$ is any $(\lambda, \mu)-$ MFSG of a group G, then $A^{(\lambda, \mu)} \circ A^{(\lambda, \mu)}=A^{(\lambda, \mu)}$.
Proof: Since $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-$ MFSG of a group G, each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of $G, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
$\Rightarrow\left[A^{(\lambda, \mu)}\right]_{\alpha} \circ\left[A^{(\lambda, \mu)}\right]_{\alpha}=\left[A^{(\lambda, \mu)}\right]_{\alpha}$, since H is a subgroup of $\mathrm{G} \Rightarrow \mathrm{HH}=\mathrm{H}$.
$\Rightarrow\left[A^{(\lambda, \mu)} \circ A^{(\lambda, \mu)}\right]_{\alpha}=\left[A^{(\lambda, \mu)}\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
$\Rightarrow A^{(\lambda, \mu)} \circ A^{(\lambda, \mu)}=A^{(\lambda, \mu)}$.

5. (λ, μ)-multi fuzzy cosets of a group

Definition 5.1 :
Let G be a group and $A^{(\lambda, \mu)}$ be a $(\lambda, \mu)-M F S G$ of G. Let $x \in G$ be a fixed element. Then the set $x A^{(\lambda, \mu)}=$ $\left\{\left(g, x A^{(\lambda, \mu)}(g)\right): g \in G\right\}$ where $x A^{(\lambda, \mu)}(g)=A^{(\lambda, \mu)}\left(x^{-1} g\right), \forall g \in G$ is called the (λ, μ) - multi fuzzy left coset of G determined by $A^{(\lambda, \mu)}$ and x .

Similarly, the set $A^{(\lambda, \mu)} x=\left\{\left(g, A^{(\lambda, \mu)} x(g)\right): g \in G\right\}$ where $A^{(\lambda, \mu)} x(g)=A^{(\lambda, \mu)}\left(g x^{-1}\right), \forall g \in G$ is called the (λ, μ)-multifuzzy right coset of G determined by $A^{(\lambda, \mu)}$ and x.

Remark 5.2 :

It is clear that if $A^{(\lambda, \mu)}$ is a (λ, μ)-multi fuzzy normal subgroup of G, then the (λ, μ) - multi fuzzy left coset and the (λ, μ)-multi fuzzy right coset of $A^{(\lambda, \mu)}$ on G coincides and in this case, we simply call it as (λ, μ) -multi fuzzy coset.

Example 5.3 :
Let G be a group. Then $A^{(\lambda, \mu)}=\left\{\left(x, A^{(\lambda, \mu)}(x)\right): x \in G / A^{(\lambda, \mu)}(x)=A^{(\lambda, \mu)}(e)\right\}$ is a (λ, μ)-multi fuzzy normal subgroup of G.

Theorem 5.4 :
Let $A^{(\lambda, \mu)}$ be a (λ, μ) - multifuzzy subgroup of G and x be any fixed element of G . Then the following hold :
(i) $x\left[A^{(\lambda, \mu)}\right]_{\alpha}=\left[x A^{(\lambda, \mu)}\right]_{\alpha}$
(ii) $\left[A^{(\lambda, \mu)}\right]_{\alpha} x=\left[A^{(\lambda, \mu)} x\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.

Proof:
(i) $\left[x A^{(\lambda, \mu)}\right]_{\alpha}=\left\{g \in G: x A^{(\lambda, \mu)}(g) \geq \alpha\right\}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.

Also $x\left[A^{(\lambda, \mu)}\right]_{\alpha}=x\left\{y \in G: A^{(\lambda, \mu)}(y) \geq \alpha\right\}$

$$
\begin{equation*}
=\left\{x y \in G: A^{(\lambda, \mu)}(y) \geq \alpha\right\} \tag{1}
\end{equation*}
$$

Put $x y=g \Rightarrow y=x^{-1} g$. Then (1) can be written as ,

$$
x\left[A^{(\lambda, \mu)}\right]_{\alpha}=\left\{g \in G: A^{(\lambda, \mu)}\left(x^{-1} g\right) \geq \alpha\right\}=\left\{g \in G: x A^{(\lambda, \mu)}(g) \geq \alpha\right\}=\left[x A^{(\lambda, \mu)}\right]_{\alpha}
$$

Therefore, $x\left[A^{(\lambda, \mu)}\right]_{\alpha}=\left[x A^{(\lambda, \mu)}\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
(ii) Now $\left[A^{(\lambda, \mu)} x\right]_{\alpha}=\left\{g \in G: A_{x}^{(\lambda, \mu)}(g) \geq \alpha\right\}$ with $0 \leq \alpha_{i} \leq 1$, $\left.\forall i\right\}$. Also

$$
\begin{align*}
{\left[A^{(\lambda, \mu)}\right]_{\alpha} x=\left\{y \in G: A^{(\lambda, \mu)}(y)\right.} & \geq \alpha\} x \\
& =\left\{y x \in G: A^{(\lambda, \mu)}(y) \geq \alpha\right\} \tag{2}
\end{align*}
$$

Set $y x=g \Rightarrow y=g x^{-1}$. Then (2) can be written as $\left[A^{(\lambda, \mu)}\right]_{\alpha} x=\left\{g \in G: A^{(\lambda, \mu)}\left(g x^{-1}\right) \geq \alpha\right\}$

$$
=\left\{g \in G: A_{x}^{(\lambda, \mu)}(g) \geq \alpha\right\}=\left[A_{x}^{(\lambda, \mu)}\right]_{\alpha}
$$

Therefore, $\left[A^{(\lambda, \mu)}\right]_{\alpha} x=\left[A_{x}{ }^{(\lambda, \mu)}\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
Theorem 5.5 :
Let $A^{(\lambda, \mu)}$ be a $(\lambda, \mu)-M F S G$ of a group G. Let x, y be any two elements of G such that $=$ $\min \left\{A^{(\lambda, \mu)}(x), A^{(\lambda, \mu)}(y)\right\}$. Then the following hold :
(i) $x A^{(\lambda, \mu)}=y A^{(\lambda, \mu)} \Leftrightarrow x^{-1} y \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$
(ii) $A^{(\lambda, \mu)} x=A^{(\lambda, \mu)} y \Leftrightarrow y x^{-1} \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$

Proof :
(i) $x A^{(\lambda, \mu)}=y A^{(\lambda, \mu)} \Leftrightarrow\left[x A^{(\lambda, \mu)}\right]_{\alpha}=\left[y A^{(\lambda, \mu)}\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
$\Leftrightarrow x\left[A^{(\lambda, \mu)}\right]_{\alpha}=y\left[A^{(\lambda, \mu)}\right]_{\alpha}$, by Theorem 4.5 (i).
$\Leftrightarrow x^{-1} y \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$, since each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G .
(ii) $A^{(\lambda, \mu)} x=A^{(\lambda, \mu)} y \Leftrightarrow\left[A^{(\lambda, \mu)} x\right]_{\alpha}=\left[A^{(\lambda, \mu)} y\right]_{\alpha}, \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.
$\Leftrightarrow\left[A^{(\lambda, \mu)}\right]_{\alpha} x=\left[A^{(\lambda, \mu)}\right]_{\alpha} y$, by Theorem 4.5 (ii).
$\Leftrightarrow x y^{-1} \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$, since each $\left[A^{(\lambda, \mu)}\right]_{\alpha}$ is a subgroup of G.

6. Homomorphisms of $(\lambda, \mu)-$ Multi fuzzy subgroup

In this section we shall prove some theorems on (λ, μ)-MFSGs of a group by homomorphism.
Preposition 6.1 :
Let $f: X \rightarrow Y$ be an onto map. If A and B are multi-fuzzy sets with dimension k of X and Y respecively, then the following hold :
(i) $\left.f\left(\left[A^{(\lambda, \mu)}\right]_{\alpha}\right) \subseteq\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}\right)$
(ii) $\left.f^{-1}\left(\left[B^{(\lambda, \mu)}\right]_{\alpha}\right)=\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha}\right], \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq 1, \forall i$.

Proof:
(i) Let $y \in f\left(\left[A^{(\lambda, \mu)}\right]_{\alpha}\right)$. Then there exist an element $x \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$ such that $f(x)=y$. Then we have $A^{(\lambda, \mu)}(x) \geq \alpha$,

Since $x \in\left[A^{(\lambda, \mu)}\right]_{\alpha}$
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x) \geq \alpha_{i}$
$\Rightarrow \max \left\{A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(x): x \in f^{-1}(y)\right\} \geq \alpha_{i}, \forall i$.
$\Rightarrow \max \left\{A^{(\lambda, \mu)}(x): x \in f^{-1}(y)\right\} \geq \alpha$
$\Rightarrow f\left(A^{(\lambda, \mu)}\right)(y) \geq \alpha \Rightarrow y \in\left[f\left(f\left(A^{(\lambda, \mu)}\right)\right)\right]_{\alpha}$
Therefore, $\left(\left[A^{(\lambda, \mu)}\right]_{\alpha}\right) \subseteq\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}, \forall A^{(\lambda, \mu)} \in(\lambda, \mu)-\operatorname{MFS}(X)$.
(ii) Let $x \in\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha} \Leftrightarrow\left\{x \in X: f^{-1}\left(B^{(\lambda, \mu)}\right)(x) \geq \alpha\right\}$
$\Leftrightarrow\left\{x \in X: f^{-1}\left(B_{i}^{\left(\lambda_{i}, \mu_{i}\right)}\right)(x) \geq \alpha_{i}\right\}, \forall i$.
$\Leftrightarrow\left\{x \in X: B_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}(f(x)) \geq \alpha_{i}\right\}, \forall i$.
$\Leftrightarrow\left\{x \in X: B^{(\lambda, \mu)}(f(x)) \geq \alpha\right\}, \forall i$.
$\Leftrightarrow\left\{x \in X: f(x) \in\left[B^{(\lambda, \mu)}\right]_{\alpha} \Leftrightarrow\left\{x \in X: x \in f^{-1}\left(\left[B^{(\lambda, \mu)}\right]_{\alpha}\right)\right\}\right.$
$\Leftrightarrow f^{-1}\left(\left[B^{(\lambda, \mu)}\right]_{\alpha}\right)$
Theorem 6.2
Let $f: G_{1} \rightarrow G_{2}$ be an onto homomorphism and if $A^{(\lambda, \mu)}$ is a (λ, μ)-MFSG of G_{1}, then $f\left(B^{(\lambda, \mu)}\right)$ is a $(\lambda, \mu)-$ MFSG of group G_{2}.

Proof :
By theorem 4.4 , it is enough to prove that each $\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}$ is a subgroup of $G_{2} . \forall \alpha \in[0,1]^{k}$ with $0 \leq \alpha_{i} \leq$ $1, \forall i$. Let $y_{1}, y_{2} \in\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}$.

Then $f\left(A^{(\lambda, \mu)}\right)\left(y_{1}\right) \geq \alpha$ and $f\left(A^{(\lambda, \mu)}\right)\left(y_{2}\right) \geq \alpha$
$\Rightarrow f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(y_{1}\right) \geq \alpha_{i}$
$\Rightarrow f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(y_{2}\right) \geq \alpha_{i}, \forall i$
By the proposition 6.1(i), we have $\left.f\left(\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}\right) \subseteq\left[f\left(f\left(A^{(\lambda, \mu)}\right)\right)\right]_{\alpha}\right), \forall f\left(A^{(\lambda, \mu)}\right) \in(\lambda, \mu)-M F S\left(G_{1}\right)$.
Since f is onto, there exists some x_{1} and x_{2} in G_{1} such that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1}$ and $\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2}$. Therefore, (1) can be written as $f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(f\left(x_{1}\right)\right) \geq \alpha_{i}$ and $f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(f\left(x_{2}\right)\right) \geq \alpha_{i}, \forall i$.
$\Rightarrow f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(x_{1}\right) \geq f\left(A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}\right)\left(f\left(x_{1}\right)\right) \geq \alpha_{i}$ and $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x_{2}\right) \geq f\left(A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\right)\left(f\left(x_{2}\right)\right) \geq \alpha_{i}, \forall i$.
$\Rightarrow A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x_{1}\right) \geq \alpha_{i}$ and $A_{i}{ }^{\left(\lambda_{i}, \mu_{i}\right)}\left(x_{2}\right) \geq \alpha_{i}, \forall i$.
$\Rightarrow A^{(\lambda, \mu)}\left(x_{1}\right) \geq \alpha$ and $A^{(\lambda, \mu)}\left(x_{2}\right) \geq \alpha$.
$\Rightarrow \min \left\{A^{(\lambda, \mu)}\left(x_{1}\right), A^{(\lambda, \mu)}\left(x_{2}\right)\right\} \geq \alpha$.
$\Rightarrow A^{(\lambda, \mu)}\left(x_{1} x_{2}^{-1}\right) \geq \min \left\{A^{(\lambda, \mu)}\left(x_{1}\right), A^{(\lambda, \mu)}\left(x_{2}\right)\right\} \geq \alpha$, since $A^{(\lambda, \mu)} \in(\lambda, \mu)-\operatorname{MFSG}\left(G_{1}\right)$.
$\Rightarrow A^{(\lambda, \mu)}\left(x_{1} x_{2}{ }^{-1}\right) \geq \alpha$
$\Rightarrow x_{1} x_{2}{ }^{-1} \in\left[A^{(\lambda, \mu)}\right]_{\alpha} \Rightarrow f\left(x_{1} x_{2}{ }^{-1}\right) \in f\left(\left[A^{(\lambda, \mu)}\right]_{\alpha}\right) \subseteq\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}$
$\Rightarrow f\left(x_{1}\right) f\left(x_{2}{ }^{-1}\right) \in\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha} \Rightarrow f\left(x_{1}\right) f\left(x_{2}\right)^{-1} \in\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha} \Rightarrow y_{1} y_{2}{ }^{-1} \in\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha} \Rightarrow\left[f\left(A^{(\lambda, \mu)}\right)\right]_{\alpha}$ is a subgroup of $G_{2}, \forall \alpha \in[0,1]^{k} \Rightarrow f\left(A^{(\lambda, \mu)}\right) \in(\lambda, \mu)-\operatorname{MFSG}\left(G_{2}\right)$

Corollary 6.3 :
If $f: G_{1} \rightarrow G_{2}$ be a homomorphism of a group G_{1} onto a group G_{2} and $\left\{A_{i}{ }^{\left(\lambda_{i} \mu_{i}\right)}: i \in I\right\}$ be a family of $(\lambda, \mu)-$ MFSGs of G_{1}, then $f\left(\cap A_{i}^{\left(\lambda_{i} \mu_{i}\right)}\right)$ is an $(\lambda, \mu)-M F S G$ of G_{2}.

Theorem 6.4 :
Let $f: G_{1} \rightarrow G_{2}$ be a homomorphism of a group G_{1} into a group G_{2}. If $B^{(\lambda, \mu)}$ is an $(\lambda, \mu)-M F S G$ of G_{2}, then $f^{-1}\left(B^{(\lambda, \mu)}\right)$ is also a $(\lambda, \mu)-M F S G$ of G_{1}.

Proof:
By theorem 4.4, it is enough to prove that $\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha}$ is a subgroup of G_{1}, with $0 \leq \alpha_{i} \leq 1, \forall i$.
Let $\quad x_{1}, x_{2} \in\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha}$. Then $f^{-1}\left(B^{(\lambda, \mu)}\right)\left(x_{1}\right) \geq \alpha$ and $f^{-1}\left(B^{(\lambda, \mu)}\right)\left(x_{2}\right) \geq \alpha \Rightarrow B^{(\lambda, \mu)}\left(f\left(x_{1}\right)\right) \geq$ α and $B^{(\lambda, \mu)}\left(f\left(x_{2}\right)\right) \geq \alpha$
$\Rightarrow \min \left\{B^{(\lambda, \mu)}\left(f\left(x_{1}\right)\right), B^{(\lambda, \mu)}\left(f\left(x_{2}\right)\right)\right\} \geq \alpha$
$\Rightarrow B^{(\lambda, \mu)}\left(f\left(x_{1}\right) f\left(x_{2}\right)^{-1} \geq \min \left\{B^{(\lambda, \mu)}\left(f\left(x_{1}\right)\right), B^{(\lambda, \mu)}\left(f\left(x_{2}\right)\right)\right\} \geq \alpha\right.$, since $B^{(\lambda, \mu)} \in(\lambda, \mu)-\operatorname{MFSG}\left(G_{2}\right)$.
$\Rightarrow\left(f\left(x_{1}\right) f\left(x_{2}\right)^{-1} \in\left[B^{(\lambda, \mu)}\right]_{\alpha} \Rightarrow f\left(x_{1} x_{2}^{-1}\right) \in\left[B^{(\lambda, \mu)}\right]_{\alpha}\right.$,since f is a homomorphism.
$\Rightarrow x_{1} x_{2}{ }^{-1} \in f^{-1}\left(\left[B^{(\lambda, \mu)}\right]_{\alpha}\right)=\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha}$, by the preposition 6.1(ii).
$\Rightarrow x_{1} x_{2}{ }^{-1} \in\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha} \Rightarrow\left[f^{-1}\left(B^{(\lambda, \mu)}\right)\right]_{\alpha}$ is a subgroup of G_{1}.
$\Rightarrow f^{-1}\left(B^{(\lambda, \mu)}\right)$ is a $(\lambda, \mu)-M F S G$ of G_{1}.

Theorem 6.5 :

Let $f: G_{1} \rightarrow G_{2}$ be a surjective homomorphism and if $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F S G$ of a group G_{1}, then $f\left(A^{(\lambda, \mu)}\right)$ is also a $(\lambda, \mu)-M F N S G$ of a group G_{2}.

Proof:
Let $g_{2} \in G_{2}$ and $y \in f\left(A^{(\lambda, \mu)}\right)$. Since f is surjective, there exists $g_{1} \in G_{1}$ and $x \in A^{(\lambda, \mu)}$, such that $f(x)=y$ and $f\left(g_{1}\right)=g_{2}$.
Also, since $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F N S G$ of $G_{1}, A^{(\lambda, \mu)}\left(g_{1}{ }^{-1} x g_{1}\right)=A^{(\lambda, \mu)}(x), \forall x \in A^{(\lambda, \mu)}$ and $g_{1} \in G_{1}$.
Now consider, $f\left(A^{(\lambda, \mu)}\right)\left(g_{2}{ }^{-1} x g_{2}\right)=f\left(A^{(\lambda, \mu)}\right)\left(f\left(g_{1}{ }^{-1} x g_{1}\right)\right)=f\left(A^{(\lambda, \mu)}\right)\left(y^{\prime}\right)$, since f is a homomorphism, where $\quad y^{\prime}=f\left(g_{1}{ }^{-1} x g_{1}\right)=g_{2}{ }^{-1} y g_{2}=\max \left\{A^{(\lambda, \mu)}\left(x^{\prime}\right): f\left(x^{\prime}\right)=y^{\prime}\right.$ for $\left.x^{\prime} \in G_{1}\right\}=\max \left\{A^{(\lambda, \mu)}\left(x^{\prime}\right)\right.$: $f\left(g_{1}{ }^{-1} x g_{1}\right)$ for $\left.x^{\prime} \in G_{1}\right\}=\max \left\{A^{(\lambda, \mu)}\left(g_{1}{ }^{-1} x g_{1}\right): f\left(g_{1}{ }^{-1} x g_{1}\right)=y^{\prime}\right\}=g_{2}{ }^{-1} y g_{2}$ for $x \in A^{(\lambda, \mu)}, g_{1} \in$ $\left.G_{1}\right\}=\max \left\{\quad A^{(\lambda, \mu)}(x): f\left(g_{1}{ }^{-1} x g_{1}\right)=y^{\prime}\right\}=g_{2}{ }^{-1} y g_{2}$ for $\left.x \in A^{(\lambda, \mu)} \quad, g_{1} \in G_{1}\right\}=\max \left\{\quad A^{(\lambda, \mu)}(x):\right.$ $f\left(g_{1}\right)^{-1} f(x) f\left(g_{1}\right)=\quad g_{2}^{-1} y g_{2}$ for $\left.x \in \quad A^{(\lambda, \mu)} \quad, g_{1} \in G_{1}\right\}=\max \left\{\quad A^{(\lambda, \mu)}(x): g_{2}{ }^{-1} f(x) g_{2}=\right.$ $g_{2}{ }^{-1} y g_{2}$ for $\left.x \in G_{1}\right\}=\max \left\{A^{(\lambda, \mu)}(x): f(x)=y\right.$ for $\left.x \in G_{1}\right\}=f\left(A^{(\lambda, \mu)}\right)(y)$. Hence $f\left(A^{(\lambda, \mu)}\right)$ is a $(\lambda, \mu)-$ MFNSG of G_{2}.

Theorem 6.6 :
If $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F N S G$ of a group G, then there exists a natural homomorphism $f: G \rightarrow G / A^{(\lambda, \mu)}$ defined by $f(x)=x A^{(\lambda, \mu)}, \forall x \in G$.

Proof:
Let $f: G \rightarrow G / A^{(\lambda, \mu)}$ defined by $(x)=x A^{(\lambda, \mu)}, \forall x \in G$.
Claim 1: f is a homomorphism
That is, to prove that : $f(x y)=f(x) f(y), \forall x, y \in G$, or $(x y) A^{(\lambda, \mu)}=\left(x A^{(\lambda, \mu)}\right)\left(y A^{(\lambda, \mu)}\right), \forall x, y \in G$
Since $A^{(\lambda, \mu)}$ is a $(\lambda, \mu)-M F N S G$ of G, we have $A^{(\lambda, \mu)}\left(g^{-1} x g\right)=A^{(\lambda, \mu)}(x), \forall x \in A^{(\lambda, \mu)}$ and $g \in G$.
Equivalently, $A^{(\lambda, \mu)}(x y)=A^{(\lambda, \mu)}(y x), \forall x, y \in G$.
Also, $\forall g \in G$, we have $\left(x A^{(\lambda, \mu)}\right)(g)=\left(A^{(\lambda, \mu)}\left(x^{-1} g\right)\right)$
$\left(y A^{(\lambda, \mu)}\right)(g)=\left(A^{(\lambda, \mu)}\left(y^{-1} g\right)\right)$
$\left[(x y) A^{(\lambda, \mu)}\right](g)=\left(A^{(\lambda, \mu)}\left((x y)^{-1} g\right)\right), \forall g \in G$.
By definition 3.13, we have $\left[\left(x A^{(\lambda, \mu)}\right)\left(y A^{(\lambda, \mu)}\right)\right](g)=\left(\min \left\{x A^{(\lambda, \mu)}(r), y A^{(\lambda, \mu)}(s)\right\}: g=r s\right)$
$=\left[\min \left\{A^{(\lambda, \mu)}\left(x^{-1} r\right), A^{(\lambda, \mu)}\left(y^{-1} s\right)\right\}: g=r s\right]$
Claim $2: A^{(\lambda, \mu)}\left[(x y)^{-1} g\right]=\max \left[\min \left\{A^{(\lambda, \mu)}\left(x^{-1} r\right), A^{(\lambda, \mu)}\left(y^{-1} s\right)\right\}: g=r s\right], \forall g \in G$.
Consider $A^{(\lambda, \mu)}\left[(x y)^{-1} g\right]=A^{(\lambda, \mu)}\left[y^{-1} x^{-1} g\right]=A^{(\lambda, \mu)}\left[y^{-1} x^{-1} r s\right]$, since $g=r s$.
$=A^{(\lambda, \mu)}\left[y^{-1}\left(x^{-1} r s y^{-1}\right) y\right]=A^{(\lambda, \mu)}\left[x^{-1} r s y^{-1}\right]$, since $\mathrm{A}^{(\lambda, \mu)}$ is normal.
$\geq \min \left\{A^{(\lambda, \mu)}\left(x^{-1} r\right), A^{(\lambda, \mu)}\left(s^{-1}\right)\right\}$, since $A^{(\lambda, \mu)}$ is $(\lambda, \mu)-$ MFSG.
$=\min \left\{A^{(\lambda, \mu)}\left(x^{-1} r\right), A^{(\lambda, \mu)}\left(y^{-1} s\right)\right\}, \forall g=r s \in G$, since $A^{(\lambda, \mu)}$ is normal.
Therefore, $A^{(\lambda, \mu)}\left[(x y)^{-1} g\right]=\max \left[\min \left\{A^{(\lambda, \mu)}\left(x^{-1} r\right), A^{(\lambda, \mu)}\left(y^{-1} s\right)\right\}: g=r s\right], \forall g \in G$.
Which proves the Claim 2.
Thus, $\left[(x y) A^{(\lambda, \mu)}\right](g)=\left[\left(x A^{(\lambda, \mu)}\right)\left(y A^{(\lambda, \mu)}\right)\right](g), \forall g \in G \Rightarrow(x y) A^{(\lambda, \mu)}=\left(x A^{(\lambda, \mu)}\right)\left(y A^{(\lambda, \mu)}\right)$
$\Rightarrow \mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \Rightarrow \mathrm{f}$ is a homomorphism. This proves the Claim 1 and hence the Theorem .

REFERENCES

1. Atanassov. K.T., "Intuitionistic fuzzy sets," Fuzzy sets and fuzzy systems,20(1),87-96(1986)
2. Atanassov. K.T., "New operation defined Over the intuitionistic fuzzy sets," Fuzzy sets and fuzzy systems,61(2),137-142(1994)
3. Balasubramanian. KR and Rajangam. R," t- intuitionistic multi fuzzy subgroup of a group", Journal of Applied Science and Computations, Volume 5, Issue 11, ISSN NO: 1076- 5131, November/2018
4. Basnet.D.K. \& Sarma.N.K," A note on Intuitionistic Fuzzy Equivalence Relation", International Mathematical Forum, Vol.5,No.67,3301-3307(2010).
5. Beaula.T. \& Christinal Gunaseeli.S(2014),"On Intuitionistic Fuzzy Metric Spaces", International Journal Of Applications of Fuzzy Sets and Artificial Intelligence, 4,83-93(2014)
6. Bhakat. S. K. and Das. P, " ($\in, \in \vee$ ($)$-fuzzy subgroup," Fuzzy Sets and Systems, vol. 80, no. 3, pp. 359368, 1996.
7. Biswas.R,Vague Groups",International Journal of Computational Cognition, Vol. 4, No. 2, 20-23(2006)
8. Das.P.S,'"Fuzzy groups and level subgroups,"Journal Pf Mathematical Analysis and Applications,84,262269 (1981)
9. J.A. Goguen,"L-fuzzy set", Journal of Mathematical analysis and Applications, 18 (1967), 145-174.
10. Hur.K, Jang.S.Y and Kang.H.W,"Intuitionistic Fuzzy Subgroups and Fuzzy subrings", Honam Math J,25(1):19-41(2003)
11. Kul.H,and Su Youn.J," The Lattice of Intuitionistic Fuzzy Congruences ",International Mathematical Forem,Vol.1,No.5,211-236 (2006).
12. Mukharjee.N.P, and Bhattacharya.P,"Fuzzy Normal Subgroups and Fuzzy Cosets", Information Sciences,34,225-239
13. Muthuraj.R, and Balamurugan.S", A Study on Intuitionistic Multi-Fuzzy Subgroups", International Journal of Applications of Fuzzy sets and Artificial Intelligence, Vol.4,153-172
14. Muthuraj.R, and Balamurugan.S",Multi-Fuzzy Group and its level Subgroup, Gen. Math. Notes, Vol.17, No.1, pp.74-81 (2013)
15. Rosenfeld.A," Fuzzy Group", Journal of Mathematical Analysis and Applications, 3, 12-17 (1971).
16. Sabu.S,Ramakrishnan.T.V,"MultiFuzzy Sets",International Mathematical Forum,50, 2471-2476 (2010)
17. Sabu.S and Ramakrishnan.T.V,"Multi-Fuzzy Topology",International Journal of Applied Mathematics,Vol.24,No.1,117-129,(2011)
18. Sabu.S,Ramakrishnan.TV," MultiFuzzy SubGroups", Int.J. Contemp. Math. Sciences, Vol.6,No.8, 365372(2011)
19. Sharma.P.K "" t-intuitionistic fuzzy subgroups", International journal of Fuzzy Mathematics and System,(submitted)
20. Sharma.P.K,"t-intuitionistic fuzzy Quotient group", Advances in Fuzzy Mathematics,7(1): 1-9(2012)
21. Sinoj.T.K, and Sunil.J.J.," Intuitionistic Fuzzy Multi-Sets", International Journal of Engineering Sciences and Innovaive Technology,Vol.2,No.6,1-24 (2013)
22. Yao. B, " (λ, μ)-fuzzy normal subgroups and (λ, μ)-fuzzy quotient subgroups," The Journal of Fuzzy Mathematics, vol. 13, no. 3, pp. 695-705, 2005.
23. Yuying Li, Xuzhu Wang, and Liqiong Yang," A Study of (λ, μ)-Fuzzy Subgroups", Journal of Applied Mathematics Volume 2013
24. Yuan. X, Zhang. C, and Ren. Y, "Generalized fuzzy groups and many-valued implications," Fuzzy Sets and Systems, vol. 138, no. 1, pp. 205-211, 2003.
25. L.A. Zadeh., Fuzzy set, Information and Control 8,(1965) 338-353
