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Abstract:  

A new family of distributions via, Binomial Logistic Distribution (NBLD) is introduced. The various 

characteristics of the distribution are derived. The structural analysis of the distribution includes moments, 

mode, skewness, kurtosis, hazard rate. Also describes the quantile method of estimation, likelihood method of 

estimation, order statistics and stochastic orders. The goodness of the distribution is tested with a real data. 
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1. Introduction 

The simplicity of the logistic distribution and its importance as a growth curve has made it one of the 

many important statistical distributions. The shape of the logistic distribution is similar to that of the 

normal distribution makes it simpler and also profitable on suitable occasions to replace the normal 

distribution by the logistic distribution with negligible errors in the respective theories. Pear and Reed 

(1920) Pear et al. (1940), and Schultz (1930) applied the logistic model as a growth model in human 

populations as well as in some biological organisms. Oliver (1964) used the logistic function in terms 

of modelling data related to agricultural population. A few more interesting uses of the logistic 

function are in the analysis of survival data, Plackett (1959). Gupta and Kundu (2010) discussed 

various properties of the two generalizations of the logistic distributions, namely the skew logistic and 

the second type which they termed as proportional reversed hazard family with the baseline 

distribution as the logistic distribution. The second one is alternatively known as Type I generalized 

logistic distribution. However, the skew logistic distribution (SLD) was first proposed by Wahed and 

Ali (2001). Nadarajah (2009) extended this SLD by introducing a scale parameter, and he studied its 

distributional properties. Chakraborty et al. (2012) has proposed a new SLD by considering a new 

skew function where the skew function is not a cumulative distribution function (c.d.f.). The 

importance of the logistic distribution has already been felt in many areas of human endeavour. 

Verhulst (1845) used it in economics and demographic studies. Berkson (1944 1951) used the 

distribution extensively in analyzing bioassay and quantal response data. The works Berkson (1953), 

George-et-al (1980), Ojo (1989), Ojo (2002) are a few of many publications on logistic distribution.  

Recently there has been increasing interest in defining new generated families of univariate 

continuous distributions by introducing additional shape parameters to the baseline model. The 

generated distributions have attracted several statisticians to develop new models.  

Marshall and Olkin(1997) introduced a new family of distributions by adding a parameter to a family 

of distributions. They started with a survival function ( )F x  and considered a family of survival 

functions given by 

( )
( )

,
1 (1 ) ( )

F x
G x

F x





=

− −
 

For x−    and 0   

  (1.1)

 

An interesting property of this family of distributions is the following:  Let 1 2, ,X X be a sequence 

of independent and identically distributed (i.i.d.) random variables with survival function ( )F x . Let N 
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be a geometric random variable with probability mass function ( ) 1(1 )nP N n   −= = −
 
; n = 1, 2 ...  

and 0 1  . Then ( )1 2min ,N NU X X X=   has a survival function given by equation (1). If 

1  , N is geometric random variable with probability mass function ( ) 1 1 1(1 )nP N n  − − −= = −

n= 1,2,... Then ( )1 2max ,N NV X X X=   also has the survival function (1.1). 

Many authors have proposed various univariate distributions belonging to the family of Marshall-

Olkin distributions. A few among them are Marshall-Olkin Pareto by Alice and Jose (2003), 

Marshall-Olkin Weibull by Ghitany et al.(2005), Marshall-Olkin semi Weibull  by Alice and 

Jose(2005), Marshall–Olkin Extended Lomax Distribution and Its Application to Censored 

Data(2007), Marshall –Olkin q Weibull by Jose et al.(2010)), etc:. Also Jayakumar and Thomas 

(2008), explained a generalization to Marshall–Olkin scheme and its application to Burr type XII 

distribution. They proposed a generalization to the family of distributions as (1.1) as 

  ( )
( )

, , 0, 0
1 (1 )

,
( )

F x
G x

F x




   



 
=   

− −     (1.2)

 

Nataraja et-al.(2013) proposed a generalization to the Marshal-Olkin form by replacing the geometric 

distribution with truncated negative binomial distribution having p.m.f. 

 ( ) ( )
1

1
1

, for n 1,2,...
1

nn
P N n










+ − 
= = − =

−−  
 

and arrived in a form 

( )
( )( )

1
, , 1 , 0, 0 ;

1 ( )
G x x

F x F x






   

 

 
 = −   −    
 − +     (1.3)

 

and when ( )1, ( )G x F x → →    When 1 = , the introduced family of distributions in (1.3)  

becomes the family of Marshall-Olkin distributions. 

This family of distributions can be interpreted as follows: Suppose the failure times of a device are 

observed. Every time a failure occur, the device is repaired to resume function. Suppose also that the 

device is seemed no longer usable when a failure occurs that exceeds a certain level of severity.  Let 

1 2, ,X X  denote the failure times and let N denote the number of failures, then 
NU  will represent 

the time to first failure of device. Hence the new model could be used to represent the time to first 

failure and life time. 

Third generalized family of distribution is introduced by Sankaran and Jayakumar (2016), by 

replacing the distribution  N by discrete Mittag-Leffler distribution. They derived a family of 

distributions  with parameters  and c having survival function  

  
1 ( )

( ) , 0,0 .
1 ( )

F x
G x c

cF x






−
=    

−      (1.4)

 

Note that the Marshall-Olkin method applied to F
the exponential form of a parent distribution 

function F. will also give rise to ( )G x  in (1.4). The family of distribution generated by truncated 

discrete Mittag-leffler distribution can also be considered as a generalization to Marshall-Olkin family 

of distributions  since it reduces to Marshall-Olkin family when 1 =  and 
1 p

p
c

−
= . 

2. Negative binomial family of logistic distribution 

The logistic survival function is defined as  

   ( )
1

, , 0,
1 x

F x x
e

 =  −   
+    (2.1)

 

Substituting this in (1.3),  we get 
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   ( )
( )

( )

1
, , , 1

1
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e
G x

e








  

 

 +
 = −
 − +
     (2.2) 

The density function is  

  ( )
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( ) ( )
1

1

1 1
, , ,

1
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e e
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−

+

− +
=

−  +     (2.3) 

The expression for rth order moment is 

( )
( )

( ) ( )
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1
, 1,2

1 1

1
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x
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x

x

r
e e

X rdx
e
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−

= =
− +

−  + 


 

Measure of skewness  𝛾1 = √𝛽1 = √(
𝜇3
2

𝜇2
3). 

Moment measure of kurtosis 𝛾2 = 𝛽2 − 3. 

 

Since the expression is not easy to calculate, we find the mean, variance, measure of skewness and 

kurtosis by numerical methods for 1 = . Table 1 provides the mean for various values of  and  . 

Table 2 for measure of skewness and table 3 for kurtosis for various values of 𝛼 and 𝜃. 
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Table 1. : Table of mean for various values of  and , for   =1 

/   1 2 3 4 5 6 7 8 9 10 11 

0.1 

-

2.303 

-

3.121 

-

3.640 

-

3.992 

-

4.252 

-

4.458 

-

4.628 

-

4.774 

-

4.901 

-

5.014 

-

5.115 

0.3 

-

1.204 

-

1.742 

-

2.186 

-

2.537 

-

2.814 

-

3.036 

-

3.219 

-

3.374 

-

3.508 

-

3.626 

-

3.731 

0.5 

-

0.693 

-

1.026 

-

1.336 

-

1.615 

-

1.863 

-

2.079 

-

2.267 

-

2.431 

-

2.575 

-

2.702 

-

2.816 

0.7 

-

0.357 

-

0.533 

-

0.706 

-

0.874 

-

1.035 

-

1.189 

-

1.334 

-

1.471 

-

1.600 

-

1.720 

-

1.832 

0.9 

-

0.105 

-

0.158 

-

0.211 

-

0.263 

-

0.315 

-

0.367 

-

0.419 

-

0.470 

-

0.521 

-

0.572 

-

0.622 

1.1 0.095 0.143 0.190 0.238 0.285 0.332 0.379 0.426 0.472 0.518 0.564 

1.3 0.262 0.393 0.522 0.649 0.773 0.893 1.010 1.123 1.232 1.336 1.435 

1.5 0.405 0.605 0.800 0.988 1.166 1.334 1.491 1.637 1.772 1.897 2.012 

1.7 0.531 0.790 1.038 1.270 1.485 1.681 1.858 2.018 2.161 2.290 2.407 

1.9 0.642 0.952 1.243 1.509 1.748 1.959 2.145 2.309 2.454 2.582 2.697 

2.1 0.742 1.097 1.423 1.714 1.968 2.187 2.377 2.541 2.684 2.810 2.922 

2.3 0.833 1.227 1.582 1.891 2.155 2.378 2.568 2.731 2.872 2.996 3.106 

2.5 0.916 1.345 1.724 2.047 2.317 2.541 2.730 2.891 3.031 3.153 3.262 

2.7 0.993 1.453 1.852 2.185 2.458 2.683 2.871 3.030 3.168 3.288 3.396 

2.9 1.065 1.552 1.968 2.308 2.584 2.808 2.994 3.152 3.288 3.408 3.515 

3.1 1.131 1.644 2.073 2.420 2.696 2.919 3.104 3.260 3.395 3.514 3.620 

 

Table 2: Table of variance for various values of and , for   =1 

/   1 2 3 4 5 6 7 8 9 10 11 

0.1 3.290 2.620 2.230 2.041 1.942 1.883 1.844 1.816 1.795 1.778 1.765 

0.3 3.290 3.000 2.678 2.412 2.222 2.093 2.006 1.946 1.903 1.870 1.846 

0.5 3.290 3.179 3.019 2.839 2.662 2.501 2.365 2.253 2.163 2.092 2.035 

0.7 3.290 3.259 3.209 3.143 3.066 2.979 2.889 2.796 2.705 2.618 2.536 

0.9 3.290 3.287 3.282 3.276 3.268 3.258 3.246 3.233 3.219 3.202 3.185 

1.1 3.290 3.288 3.284 3.279 3.272 3.264 3.254 3.243 3.231 3.218 3.203 

1.3 3.290 3.273 3.245 3.208 3.161 3.108 3.049 2.986 2.920 2.852 2.784 

1.5 3.290 3.250 3.187 3.105 3.010 2.908 2.803 2.699 2.600 2.508 2.425 

1.7 3.290 3.223 3.120 2.995 2.858 2.721 2.591 2.474 2.370 2.281 2.206 

1.9 3.290 3.194 3.053 2.889 2.722 2.566 2.429 2.314 2.218 2.141 2.079 

2.1 3.290 3.164 2.987 2.793 2.606 2.444 2.309 2.202 2.118 2.053 2.001 

2.3 3.290 3.135 2.925 2.707 2.510 2.348 2.221 2.124 2.051 1.995 1.951 

2.5 3.290 3.106 2.868 2.632 2.431 2.273 2.155 2.067 2.003 1.954 1.917 

2.7 3.290 3.079 2.816 2.567 2.365 2.214 2.104 2.026 1.968 1.925 1.892 

2.9 3.290 3.053 2.768 2.511 2.311 2.167 2.065 1.994 1.942 1.903 1.874 

3.1 3.290 3.028 2.724 2.462 2.266 2.129 2.034 1.969 1.921 1.886 1.859 

 

 

 

Table 3: Table of 1  for various values of  and ,   =1 



Turkish Journal of Computer and Mathematics Education                 Vol.12 No.11 (2021), 5963-5976 

                                                                                                                                      Research Article       

5967 
 

/   1 2 3 4 5 6 7 8 9 10 11 

0.1 

-

1.387 

-

1.289 

-

1.222 

-

1.184 

-

1.160 

-

1.144 

-

1.133 

-

1.124 

-

1.117 

-

1.111 

-

1.106 

0.3 

-

1.321 

-

1.435 

-

1.418 

-

1.370 

-

1.326 

-

1.290 

-

1.262 

-

1.240 

-

1.223 

-

1.209 

-

1.197 

0.5 

-

0.980 

-

1.257 

-

1.400 

-

1.455 

-

1.461 

-

1.445 

-

1.419 

-

1.392 

-

1.367 

-

1.343 

-

1.323 

0.7 

-

0.564 

-

0.806 

-

1.007 

-

1.166 

-

1.285 

-

1.369 

-

1.425 

-

1.458 

-

1.476 

-

1.482 

-

1.480 

0.9 

-

0.174 

-

0.259 

-

0.343 

-

0.426 

-

0.506 

-

0.584 

-

0.658 

-

0.730 

-

0.798 

-

0.863 

-

0.925 

1.1 0.157 0.235 0.311 0.387 0.460 0.532 0.602 0.669 0.733 0.795 0.854 

1.3 0.424 0.618 0.794 0.949 1.080 1.189 1.276 1.344 1.396 1.433 1.459 

1.5 0.634 0.893 1.098 1.250 1.354 1.421 1.458 1.475 1.479 1.473 1.462 

1.7 0.798 1.082 1.275 1.389 1.448 1.470 1.469 1.457 1.439 1.419 1.398 

1.9 0.927 1.210 1.371 1.444 1.465 1.458 1.438 1.414 1.389 1.365 1.344 

2.1 1.027 1.295 1.420 1.458 1.453 1.430 1.401 1.373 1.347 1.324 1.305 

2.3 1.107 1.351 1.442 1.453 1.431 1.399 1.367 1.339 1.314 1.293 1.275 

2.5 1.169 1.388 1.449 1.440 1.408 1.372 1.339 1.311 1.288 1.269 1.253 

2.7 1.219 1.411 1.447 1.423 1.385 1.347 1.315 1.289 1.267 1.249 1.235 

2.9 1.259 1.425 1.440 1.406 1.364 1.326 1.295 1.270 1.250 1.234 1.220 

3.1 1.291 1.432 1.430 1.389 1.345 1.308 1.278 1.255 1.236 1.221 1.209 

 

Table 4: Table of 
2  for various values of  and , for   =1 

/   1 2 3 4 5 6 7 8 9 10 11 

0.1 2.414 1.915 1.680 1.557 1.483 1.433 1.397 1.370 1.348 1.330 1.316 

0.3 3.391 2.896 2.513 2.242 2.054 1.921 1.823 1.750 1.692 1.646 1.608 

0.5 3.881 3.614 3.330 3.061 2.824 2.625 2.460 2.324 2.213 2.120 2.043 

0.7 4.110 4.023 3.915 3.790 3.656 3.516 3.377 3.242 3.113 2.992 2.880 

0.9 4.192 4.184 4.173 4.160 4.144 4.126 4.105 4.083 4.058 4.031 4.002 

1.1 4.193 4.187 4.178 4.167 4.154 4.139 4.122 4.103 4.083 4.060 4.036 

1.3 4.150 4.102 4.040 3.965 3.881 3.789 3.691 3.591 3.489 3.389 3.290 

1.5 4.084 3.975 3.840 3.689 3.530 3.371 3.216 3.070 2.936 2.813 2.702 

1.7 4.006 3.831 3.627 3.414 3.206 3.014 2.841 2.689 2.558 2.444 2.345 

1.9 3.923 3.685 3.424 3.169 2.938 2.737 2.568 2.425 2.307 2.207 2.124 

2.1 3.840 3.545 3.240 2.961 2.723 2.527 2.368 2.239 2.134 2.048 1.976 

2.3 3.758 3.414 3.078 2.788 2.552 2.365 2.219 2.103 2.010 1.934 1.872 

2.5 3.679 3.294 2.936 2.642 2.414 2.239 2.104 1.999 1.916 1.849 1.794 

2.7 3.604 3.183 2.812 2.521 2.301 2.137 2.014 1.919 1.844 1.783 1.734 

2.9 3.532 3.083 2.704 2.418 2.208 2.055 1.941 1.854 1.785 1.731 1.685 

3.1 3.465 2.992 2.610 2.330 2.130 1.987 1.881 1.801 1.738 1.687 1.646 

 

Close observation on the four tables we can have an approximate idea of parameters of a given data 

set. 
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Random variable generation
( )
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p.d.f is decreasing for 
( ) ( )
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β 2
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( ) ( )
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β 2
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Second derivative of log G is    
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2 2
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The hazard rate function is given by 
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As  increases hazard rate increases for fixed value of and  . 

 ( )
( )( )

11
1 2

0
1

1 2 1

h



 







− 
− 

 =
 

+ − + 
 

 

As    increases hazard rate decreases exponentially for fixed value of and  .  

 

 

 

 

 

 

As 𝛼 increases hazard rate decreases 

and the rate of decreases increases as 

 increases. 
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As  increases hazard rate increases 

fast for 1  , Increases fast as 1 
. 

 

 

3. Quantile method of estimation 
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Solving (3.1), (3.2) and (3.3) iteratively we get the values of parameters. For getting initial values of 

parameters one may use the tables of mean variance skewness and Kurtosis. 
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4. Likelihood method of estimation 

The log likelihood equations are  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )i iβx βx
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The maximum likelihood estimates of , and    are the solutions of simultaneous equations (4.2), 

(4.3)  and (4.4). The solution of the four equations is not having a closed form. So numerical 

technique such as Newton Rapson method can be employed to get a solution. For getting initial values 

the tables for mean, variance, measure of skewness and Kurtosis can be used. 

Now as in Bozidar et-al (2016) we study the existence and uniqueness of MLE when the other 

parameters are known or given. 

Theorem 4.1 

Let g1 = 
ln( )L






where and   are known. Then their exist a unique solution for g1 = 0 for 
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Proof : 
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On the other hand 
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Therefore their exist at least one root, say (0, )    such that g1 = 0. To show uniqueness the first 

derivative of g1 is  

( )
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−

−
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 −
 

Hence their exist a solution for g1=0 and the root of   is unique. 

Theorem 4.2 

Let g2 = 
ln( )L






where and   are known. Then their exist a unique solution for g1 = 0 for 
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There for their exist at least one root say ( )0,    such that g2=0 provided condition is satisfied. 

Theorem 4.3 

Let 3
LogL
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 Where and   are known then their exist a unique solution for 3 0g =  for 
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There for their exist at least one root say ( )0,    such that g3=0 provided condition is satisfied. 

5. Order Statistics 

Assume that 
1 2, ,..., nX X X  be a random sample from the population. Let 

,i nX  denot the ith order 

statistics. The pdf of 
,i nX  is  
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Define minimum as ( )(1) 1 2min , ,... nX X X X=  and maximum as ( )( ) 1 2max , ,...n nX X X X=  and 

the medium as 
( 1) 2

n
mX with m+ = . Therefore the pdf of minimum, maximum and median are 

respectively 
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6. Stochastic orders 

For the last 40 years stochastic orders have been using for many applications. Its uses are seen in areas 

of probability and statistics such as reliability, survival analysis, queuing theory, biology economics, 

Insurance and actuarial science. (See Shaked and Shanthikumar (2007). Let X and Y be two random 

variable having distribution F and G respectively. Denote F  = 1 F−  and 1G G= − as their survival 

functions. With pdf f and g. The random variable X is said to be smaller than Y (1) In stochastic order 

denoted as 
stX Y , If ( ) ( )F x G x for all x. (2) Likelihood ratio order denoted as 

LrX Y , IF 

( ) / ( )f x g x  is decreasing in 0x  . (3) Hazard rate order denoted by 
hrX Y If ( ) / ( )F x G x  is 

decreasing in 0x  . (4) Reversed hazard rate order denoted as rhrX Y , If ( ) ( )F x G x is 

decreasing in 0x  . The four stochastic orders defined above are related to each other as the 

following implications. 

rhr Lr hr stX Y X Y X Y X Y        
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Hence ( ) / ( )f x g x  is decreasing in x. That is LrX Y
. The remaining statements follow from the 

implications above.  

Application 

Consider the real data Table 5, of the strength measured in GPA for single-carbon fibers data as an 

example  

Table 5. The strength measured in GPA for single-carbon fibers data 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 

2.454 2.474 2.518 2.522 2.532 2.575 2.614 2.616 2.618 2.624 

2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 2.977 

2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 

3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.537 3.554 

3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 

5.020 3.501 3.562        

Table 6. Parameter estimates for single-carbon fibers data 

Distribution Parameters K-S K–S p-value 

LOGISTIC θ = 0.1997 0.7123 0.00 

SLD α = 0.54,  = 2.68, µ = 2.774 0.0918 0.6632 

NBLD α = 3.34, θ = 0.054, β = 0.18 0.0693 0.8991 

 

Conclusion 

A special case of the logistic distribution, the NBL distribution is defined and studied. Discussed about 

Quantile method of estimation, Maximum likelihood estimation, and Order Statistics and Stochastic 

orders. Also test the goodness of fit for a real data set and found the logistic distribution fails and 

NBLD more suitable than skew logistic distribution (SLD). The NBL distribution provides a very 

flexible model for fitting of such kind of data. It is hoped that it will serve as an alternative to related 

but less versatile models that are currently in use for modeling data sets occurring in various areas of 

scientific investigation such as engineering, survival analysis, hydrology and economics. 
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