Negative Binomial Logistic Distribution

Ravikumar K ${ }^{1}$, Thomas Mathew ${ }^{2}$ and Prasanth C B ${ }^{3}$
${ }^{1}$ Assistant professor, Department of Statistics, K.K.T.M. Government College, Pullut, Thrissur. Kerala, India. ravikumarkoottaplavil@gmail.com
${ }^{2}$ Principal and Research Guide, M.D. College, Pazhanji, Thrissur - 680 542, Kerala, India. ttmathew70@gmail.com
${ }^{3}$ Assistant Professor, Department of Statistics, Sree Kerala Varma College Thrissur, Kerala. India prasanthwarriercb@keralavarma.ac.in

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract

: A new family of distributions via, Binomial Logistic Distribution (NBLD) is introduced. The various characteristics of the distribution are derived. The structural analysis of the distribution includes moments, mode, skewness, kurtosis, hazard rate. Also describes the quantile method of estimation, likelihood method of estimation, order statistics and stochastic orders. The goodness of the distribution is tested with a real data.

Keywords: Discrete Binomial distribution, logistic distribution, hazard rate, estimation, Marshall-Olkin family

1. Introduction

The simplicity of the logistic distribution and its importance as a growth curve has made it one of the many important statistical distributions. The shape of the logistic distribution is similar to that of the normal distribution makes it simpler and also profitable on suitable occasions to replace the normal distribution by the logistic distribution with negligible errors in the respective theories. Pear and Reed (1920) Pear et al. (1940), and Schultz (1930) applied the logistic model as a growth model in human populations as well as in some biological organisms. Oliver (1964) used the logistic function in terms of modelling data related to agricultural population. A few more interesting uses of the logistic function are in the analysis of survival data, Plackett (1959). Gupta and Kundu (2010) discussed various properties of the two generalizations of the logistic distributions, namely the skew logistic and the second type which they termed as proportional reversed hazard family with the baseline distribution as the logistic distribution. The second one is alternatively known as Type I generalized logistic distribution. However, the skew logistic distribution (SLD) was first proposed by Wahed and Ali (2001). Nadarajah (2009) extended this SLD by introducing a scale parameter, and he studied its distributional properties. Chakraborty et al. (2012) has proposed a new SLD by considering a new skew function where the skew function is not a cumulative distribution function (c.d.f.). The importance of the logistic distribution has already been felt in many areas of human endeavour. Verhulst (1845) used it in economics and demographic studies. Berkson (1944 1951) used the distribution extensively in analyzing bioassay and quantal response data. The works Berkson (1953), George-et-al (1980), Ojo (1989), Ojo (2002) are a few of many publications on logistic distribution. Recently there has been increasing interest in defining new generated families of univariate continuous distributions by introducing additional shape parameters to the baseline model. The generated distributions have attracted several statisticians to develop new models.
Marshall and Olkin(1997) introduced a new family of distributions by adding a parameter to a family of distributions. They started with a survival function $\bar{F}(x)$ and considered a family of survival functions given by

$$
\begin{equation*}
\bar{G}(x, \alpha)=\frac{\alpha \bar{F}(x)}{1-(1-\alpha) \bar{F}(x)} \quad \text { For }-\infty<x<\infty \text { and } 0<\alpha<\infty \tag{1.1}
\end{equation*}
$$

An interesting property of this family of distributions is the following: Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with survival function $\bar{F}(x)$. Let N
be a geometric random variable with probability mass function $P(N=n)=\alpha(1-\alpha)^{n-1} ; \mathrm{n}=1,2 \ldots$ and $0<\alpha<1$. Then $U_{N}=\min \left(X_{1}, X_{2} \ldots X_{N}\right)$ has a survival function given by equation (1). If $\alpha>1, \mathrm{~N}$ is geometric random variable with probability mass function $P(N=n)=\alpha^{-1}\left(1-\alpha^{-1}\right)^{n-1}$ $\mathrm{n}=1,2, \ldots$ Then $V_{N}=\max \left(X_{1}, X_{2} \ldots X_{N}\right)$ also has the survival function (1.1).
Many authors have proposed various univariate distributions belonging to the family of MarshallOlkin distributions. A few among them are Marshall-Olkin Pareto by Alice and Jose (2003), Marshall-Olkin Weibull by Ghitany et al.(2005), Marshall-Olkin semi Weibull by Alice and Jose(2005), Marshall-Olkin Extended Lomax Distribution and Its Application to Censored Data(2007), Marshall -Olkin q Weibull by Jose et al.(2010)), etc:. Also Jayakumar and Thomas (2008), explained a generalization to Marshall-Olkin scheme and its application to Burr type XII distribution. They proposed a generalization to the family of distributions as (1.1) as

$$
\begin{equation*}
\bar{G}(x, \alpha, \gamma)=\left(\frac{\alpha \bar{F}(x)}{1-(1-\alpha) \bar{F}(x)}\right)^{\gamma}, \quad \alpha>0, \gamma>0 \tag{1.2}
\end{equation*}
$$

Nataraja et-al.(2013) proposed a generalization to the Marshal-Olkin form by replacing the geometric distribution with truncated negative binomial distribution having p.m.f.

$$
P(N=n)=\frac{\alpha^{\theta}}{1-\alpha^{\theta}}\binom{\theta+n-1}{\theta-1}(1-\alpha)^{n}, \quad \text { for } \mathrm{n}=1,2, \ldots
$$

and arrived in a form

$$
\begin{equation*}
\bar{G}(x, \alpha, \theta)=\frac{\alpha^{\theta}}{1-\alpha^{\theta}}\left[\frac{1}{(F(x)+\alpha \bar{F}(x))^{\theta}}-1\right], \quad \alpha>0, \theta>0 ;-\infty<x<\infty \tag{1.3}
\end{equation*}
$$

and when $\alpha \rightarrow 1, \quad \bar{G}(x) \rightarrow \bar{F}(x) \quad$ When $\theta=1$, the introduced family of distributions in (1.3) becomes the family of Marshall-Olkin distributions.
This family of distributions can be interpreted as follows: Suppose the failure times of a device are observed. Every time a failure occur, the device is repaired to resume function. Suppose also that the device is seemed no longer usable when a failure occurs that exceeds a certain level of severity. Let X_{1}, X_{2}, \ldots denote the failure times and let N denote the number of failures, then U_{N} will represent the time to first failure of device. Hence the new model could be used to represent the time to first failure and life time.
Third generalized family of distribution is introduced by Sankaran and Jayakumar (2016), by replacing the distribution N by discrete Mittag-Leffler distribution. They derived a family of distributions with parameters α and c having survival function

$$
\begin{equation*}
\bar{G}(x)=\frac{1-F^{\alpha}(x)}{1-c F^{\alpha}(x)}, c>0,0<\alpha<\infty . \tag{1.4}
\end{equation*}
$$

Note that the Marshall-Olkin method applied to F^{α} the exponential form of a parent distribution function F . will also give rise to $\bar{G}(x)$ in (1.4). The family of distribution generated by truncated discrete Mittag-leffler distribution can also be considered as a generalization to Marshall-Olkin family of distributions since it reduces to Marshall-Olkin family when $\alpha=1$ and $c=\frac{1-p}{p}$.

2. Negative binomial family of logistic distribution

The logistic survival function is defined as

$$
\begin{equation*}
\bar{F}(x, \beta)=\frac{1}{1+e^{\beta x}}, \quad \beta>0,-\infty<x<\infty \tag{2.1}
\end{equation*}
$$

Substituting this in (1.3), we get

$$
\begin{equation*}
\bar{G}(x, \alpha, \theta, \beta)=\frac{\alpha^{\theta}}{1-\alpha^{\theta}}\left[\frac{\left(e^{\beta x}+1\right)^{\theta}}{\left(\alpha+e^{\beta x}\right)^{\theta}}-1\right] \tag{2.2}
\end{equation*}
$$

The density function is

$$
\begin{equation*}
g(x, \alpha, \theta, \beta)=\frac{\alpha^{\theta}}{\left(1-\alpha^{\theta}\right)} \frac{\theta \beta(1-\alpha) e^{\beta x}\left(e^{\beta x}+1\right)^{\theta-1}}{\left[\alpha+e^{\beta x}\right]^{\theta+1}} \tag{2.3}
\end{equation*}
$$

The expression for $\mathrm{r}^{\text {th }}$ order moment is

$$
\begin{aligned}
E\left(X^{r}\right)= & \int_{-\infty}^{\infty} x^{r} \frac{\alpha^{\theta}}{\left(1-\alpha^{\theta}\right)} \frac{\theta \beta(1-\alpha) e^{\beta x}\left(e^{\beta x}+1\right)^{\theta-1}}{\left[\alpha+e^{\beta x}\right]^{\theta+1}} d x, \quad r=1,2, \ldots \\
& \text { Measure of skewness } \gamma_{1}=\sqrt{\beta_{1}}=\sqrt{ }\left(\frac{\mu_{3}^{2}}{\mu_{2}^{3}}\right) . \\
& \text { Moment measure of kurtosis } \gamma_{2}=\beta_{2}-3 .
\end{aligned}
$$

Since the expression is not easy to calculate, we find the mean, variance, measure of skewness and kurtosis by numerical methods for $\beta=1$. Table 1 provides the mean for various values of α and θ. Table 2 for measure of skewness and table 3 for kurtosis for various values of α and θ.

Table 1.: Table of mean for various values of α and θ, for $\beta=1$

α / θ	1	2	3	4	5	6	7	8	9	10	
0.1	2.303	3.121	3.640	3.992	4.252	4.458	4.628	4.774	4.901	5.014	5.115
0.3	1.204	1.742	2.186	2.537	2.814	3.036	3.219	3.374	3.508	3.626	
0.5	0.693	1.026	1.336	1.615	1.863	2.079	2.267	2.431	2.575	2.702	2.816
0.7	0.357	0.533	0.706	0.874	1.035	1.189	1.334	1.471	1.600	1.720	1.832
0.9	0.105	0.158	0.211	0.263	0.315	0.367	0.419	0.470	0.521	0.572	0.622
1.1	0.095	0.143	0.190	0.238	0.285	0.332	0.379	. 426	0.472	0.518	0.564
1.3	0.262	0.393	0.522	0.649	0.773	0.893	. 010	1.23	1.232	1.336	, 35
1.5	0.405	0.605	0.800	, 88	66	1.334	1.491	1.637	1.772	1.89	. 012
1.7	0.531	0.790	1.038	1.270	1.485	1.681	1.858	2.018	2.161	2.290	. 407
1.9	0.642	0.952	1.243	09	1.748	1.959	2.145	2.309	2.45	2.582	2.697
2.1	0.742	1.097	1.423	1.714	1.968	87	2.377	54	2.684	2.810	2.922
2.3	0.833	1.227	1.582	1.891	2.155	378	2.568	731	2.872	. 996	. 106
2.5	0.916	1.345	1.724	2.047	2.317	2.541	2.730	. 891	3.031	3.153	3.262
2.7	0.993	1.453	1.852	2.185	2.458	2.683	2.871	3.030	3.168	3.288	3.396
2.9	1.065	1.552	1.968	2.308	2.584	2.808	2.994	3.152	3.288	3.408	3.515
3.1	1.131	1.644	2.073	2.420	2.696	2.919	3.104	3.260	3.395	3.51	3.62

Table 2: Table of variance for various values of α and θ, for $\beta=1$

α / θ	1	2	3	4	5	6	7	8	9	10	11
0.1	3.290	2.620	2.230	2.041	1.942	1.883	1.844	1.816	1.795	1.778	1.765
0.3	3.290	3.000	2.678	2.412	2.222	2.093	2.006	1.946	1.903	1.870	1.846
0.5	3.290	3.179	3.019	2.839	2.662	2.501	2.365	2.253	2.163	2.092	2.035
0.7	3.290	3.259	3.209	3.143	3.066	2.979	2.889	2.796	2.705	2.618	2.536
0.9	3.290	3.287	3.282	3.276	3.268	3.258	3.246	3.233	3.219	3.202	3.185
1.1	3.290	3.288	3.284	3.279	3.272	3.264	3.254	3.243	3.231	3.218	3.203
1.3	3.290	3.273	3.245	3.208	3.161	3.108	3.049	2.986	2.920	2.852	2.784
1.5	3.290	3.250	3.187	3.105	3.010	2.908	2.803	2.699	2.600	2.508	2.425
1.7	3.290	3.223	3.120	2.995	2.858	2.721	2.591	2.474	2.370	2.281	2.206
1.9	3.290	3.194	3.053	2.889	2.722	2.566	2.429	2.314	2.218	2.141	2.079
2.1	3.290	3.164	2.987	2.793	2.606	2.444	2.309	2.202	2.118	2.053	2.001
2.3	3.290	3.135	2.925	2.707	2.510	2.348	2.221	2.124	2.051	1.995	1.951
2.5	3.290	3.106	2.868	2.632	2.431	2.273	2.155	2.067	2.003	1.954	1.917
2.7	3.290	3.079	2.816	2.567	2.365	2.214	2.104	2.026	1.968	1.925	1.892
2.9	3.290	3.053	2.768	2.511	2.311	2.167	2.065	1.994	1.942	1.903	1.874
3.1	3.290	3.028	2.724	2.462	2.266	2.129	2.034	1.969	1.921	1.886	1.859

Table 3: Table of γ_{1} for various values of α and $\theta, \beta=1$

α / θ	1	2	3	4	5	6	7	8	9	10	11
0.1	1.387	1.289	1.222	1.184	1.160	1.144	1.133	1.124	1.117	1.111	1.106
0.3	1.321	1.435	1.418	1.370	1.326	1.290	1.262	1.240	1.223	1.209	1.197
0.5	0.980	1.257	1.400	1.455	1.461	1.445	1.419	1.392	1.367	1.343	1.323
0.7	0.564	0.806	1.007	1.166	1.285	1.369	1.425	1.458	1.476	1.482	1.480
0.9	0.174	0.259	0.343	0.426	0.506	0.584	0.658	0.730	0.798	0.863	0.925
1.1	0.157	0.235	0.311	0.387	0.460	0.532	0.602	0.669	0.733	0.795	0.854
1.3	0.424	0.618	0.794	0.949	1.080	1.189	1.276	1.344	1.396	1.433	1.459
1.5	0.634	0.893	1.098	1.250	1.354	1.421	1.458	1.475	1.479	1.473	1.462
1.7	0.798	1.082	1.275	1.389	1.448	1.470	1.469	1.457	1.439	1.419	1.398
1.9	0.927	1.210	1.371	1.444	1.465	1.458	1.438	1.414	1.389	1.365	1.344
2.1	1.027	1.295	1.420	1.458	1.453	1.430	1.401	1.373	1.347	1.324	1.305
2.3	1.107	1.351	1.442	1.453	1.431	1.399	1.367	1.339	1.314	1.293	1.275
2.5	1.169	1.388	1.449	1.440	1.408	1.372	1.339	1.311	1.288	1.269	1.253
2.7	1.219	1.411	1.447	1.423	1.385	1.347	1.315	1.289	1.267	1.249	1.235
2.9	1.259	1.425	1.440	1.406	1.364	1.326	1.295	1.270	1.250	1.234	1.220
3.1	1.291	1.432	1.430	1.389	1.345	1.308	1.278	1.255	1.236	1.221	1.209

Table 4: Table of γ_{2} for various values of α and θ, for $\beta=1$

α / θ	1	2	3	4	5	6	7	8	9	10	11
0.1	2.414	1.915	1.680	1.557	1.483	1.433	1.397	1.370	1.348	1.330	1.316
0.3	3.391	2.896	2.513	2.242	2.054	1.921	1.823	1.750	1.692	1.646	1.608
0.5	3.881	3.614	3.330	3.061	2.824	2.625	2.460	2.324	2.213	2.120	2.043
0.7	4.110	4.023	3.915	3.790	3.656	3.516	3.377	3.242	3.113	2.992	2.880
0.9	4.192	4.184	4.173	4.160	4.144	4.126	4.105	4.083	4.058	4.031	4.002
1.1	4.193	4.187	4.178	4.167	4.154	4.139	4.122	4.103	4.083	4.060	4.036
1.3	4.150	4.102	4.040	3.965	3.881	3.789	3.691	3.591	3.489	3.389	3.290
1.5	4.084	3.975	3.840	3.689	3.530	3.371	3.216	3.070	2.936	2.813	2.702
1.7	4.006	3.831	3.627	3.414	3.206	3.014	2.841	2.689	2.558	2.444	2.345
1.9	3.923	3.685	3.424	3.169	2.938	2.737	2.568	2.425	2.307	2.207	2.124
2.1	3.840	3.545	3.240	2.961	2.723	2.527	2.368	2.239	2.134	2.048	1.976
2.3	3.758	3.414	3.078	2.788	2.552	2.365	2.219	2.103	2.010	1.934	1.872
2.5	3.679	3.294	2.936	2.642	2.414	2.239	2.104	1.999	1.916	1.849	1.794
2.7	3.604	3.183	2.812	2.521	2.301	2.137	2.014	1.919	1.844	1.783	1.734
2.9	3.532	3.083	2.704	2.418	2.208	2.055	1.941	1.854	1.785	1.731	1.685
3.1	3.465	2.992	2.610	2.330	2.130	1.987	1.881	1.801	1.738	1.687	1.646

Close observation on the four tables we can have an approximate idea of parameters of a given data set.

Random variable generation $X=\frac{1}{\beta} \ln \left(\frac{\alpha\left(1-U \alpha^{\theta}+\alpha^{\theta}\right)^{1 / \theta}-\alpha}{\alpha-\left(1-U \alpha^{\theta}+\alpha^{\theta}\right)^{1 / \theta}}\right) \quad$ where $U \sim U(0,1)$.

$$
\operatorname{Median}(\mathrm{X})=\frac{1}{\beta} \ln \left(\frac{\alpha\left(\frac{1-\alpha^{\theta}}{2}\right)^{\frac{1}{\theta}}-\alpha}{\alpha-\left(\frac{1-\alpha^{\theta}}{2}\right)^{\frac{1}{\theta}}}\right)
$$

The first derivative of $\log (g)$ is

$$
\begin{gathered}
(\ln (g))^{\prime}=\beta+\frac{(\theta-1) \beta e^{\beta x}}{\left(1+e^{\beta x}\right)}-\frac{(\theta+1) \beta e^{\beta x}}{\left(\alpha+e^{\beta x}\right)} \\
\operatorname{Mode}(\mathrm{x})=\frac{1}{\beta} \ln \left(\frac{\theta(\alpha-1) \pm \sqrt{\theta^{2}(\alpha-1)^{2}+4 \alpha}}{2}\right) \\
\text { Mode }=\left\{\begin{array}{l}
0 \text { for } \alpha=1 \\
<0 \text { for } \alpha<1 \\
>0 \text { for } \alpha>1
\end{array}\right) \\
\text { p.d.f is decreasing for } x>\frac{1}{\beta} \ln \left(\frac{\theta(\alpha-1) \pm \sqrt{\theta^{2}(\alpha-1)^{2}+4 \alpha}}{2}\right) \\
\text { increasing for } x<\frac{1}{\beta} \ln \left(\frac{\theta(\alpha-1) \pm \sqrt{\theta^{2}(\alpha-1)^{2}+4 \alpha}}{2}\right)
\end{gathered}
$$

Second derivative of $\log \mathrm{G}$ is

$$
(\ln (g))^{\prime \prime}=\frac{(\theta-1) \beta^{2} e^{\beta x}}{\left(1+e^{\beta x}\right)^{2}}-\frac{(\theta+1) \alpha \beta^{2} e^{\beta x}}{\left(\alpha+e^{\beta x}\right)^{2}}
$$

Point of inflexion is $\quad \frac{1}{\beta} \ln \left(\frac{2 \alpha \pm \sqrt{4 \alpha^{2}(1+\theta)+\alpha\left(\theta^{2}-1\right)\left(\alpha^{2}-1\right)}}{(\theta-\alpha \theta-\alpha-1)}\right)$

The hazard rate function is given by

$$
h(x)=\frac{\beta \theta(\alpha-1) e^{\beta x}}{\left[\left(\alpha+e^{\beta x}\right)^{\theta}-(1+\right.}
$$

$$
h(0)=\frac{\beta \theta(\alpha-1) 2^{\theta-1}}{\left((\alpha+1)^{\theta}-2^{\theta}\right)(\alpha+1)}
$$

As β increases hazard rate increases for fixed value of θ and α.

$$
h(0)=\frac{\beta \theta\left(1-\frac{1}{\alpha}\right) 2^{\theta-1}}{\left((\alpha+1)^{\theta}-2^{\theta}\right)\left(1+\frac{1}{\alpha}\right)}
$$

As α increases hazard rate decreases exponentially for fixed value of β and θ.

As α increases hazard rate decreases and the rate of decreases increases as θ increases.

As θ increases hazard rate decreases for $\alpha<1$, and increases for $\alpha>1$.

As β increases hazard rate increases fast for $\alpha<1$, Increases fast as $\alpha>1$

3. Quantile method of estimation

$$
\begin{align*}
& X_{Q_{1}}=\frac{1}{\beta} \ln \left(\frac{\alpha\left(\frac{3+\alpha^{\theta}}{4}\right)^{1 / \theta}-\alpha}{\alpha-\left(\frac{3+\alpha^{\theta}}{4}\right)^{1 / \theta}}\right) \\
& X_{Q_{3}}=\frac{1}{\beta} \ln \left(\frac{\alpha\left(\frac{1+3 \alpha^{\theta}}{4}\right)^{1 / \theta}-\alpha}{\alpha-\left(\frac{1+3 \alpha^{\theta}}{4}\right)^{1 / \theta}}\right) \\
& \beta=\frac{1}{X_{Q_{2}}} \ln \left(\frac{\alpha\left(\frac{1+\alpha^{\theta}}{2}\right)^{1 / \theta}-\alpha}{\alpha-\left(\frac{1+\alpha^{\theta}}{2}\right)^{1 / \theta}}\right) \tag{3.1}\\
& \alpha=\alpha\left(\frac{3+\alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}+\left(\left(\frac{3+\alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}-\alpha\right)\left[\frac{\alpha-\alpha\left(\frac{1+3 \alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}}{\left(\frac{1+3 \alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}-\alpha}\right]^{\frac{X_{Q_{3}}}{x_{Q_{1}}}} \tag{3.2}\\
& \ln \left(\frac{1+\alpha^{\theta}}{2}\right) \\
& \left.\theta=\frac{\left[\alpha+\frac{\left(\alpha-\alpha\left(\frac{1+\alpha^{\theta}}{2}\right)^{\frac{1}{\theta}}\right)\left(\left(\frac{3+\alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}-\alpha\right)^{\frac{\mathrm{X}_{\mathrm{Q}_{2}}}{\mathrm{X}_{\mathrm{Q}_{3}}}}}{\ln }\right]}{\left(\alpha-\alpha\left(\frac{3+\alpha^{\theta}}{4}\right)^{\frac{1}{\theta}}\right)^{\frac{\mathrm{X}_{\mathrm{Q}_{2}}}{\mathrm{X}_{\mathrm{Q}_{3}}}}}\right] \tag{3.3}
\end{align*}
$$

Solving (3.1), (3.2) and (3.3) iteratively we get the values of parameters. For getting initial values of parameters one may use the tables of mean variance skewness and Kurtosis.

4. Likelihood method of estimation

The log likelihood equations are

$$
\begin{align*}
& \ln \ln (L)=n \theta \ln (\alpha)+n \cdot \ln (\theta)+n \cdot \ln (\beta)+n \cdot \ln (1-\alpha)-n \cdot \ln \left(1-\alpha^{\theta}\right)+n \beta \bar{x} \\
& \quad+(\theta-1) \sum \ln \left(1+\mathrm{e}^{\beta x_{i}}\right)-(\theta+1) \sum \ln \left(\alpha+\mathrm{e}^{\beta x_{i}}\right) \tag{4.1}\\
& \frac{\partial \ln (L)}{\partial \theta}=n \cdot \ln (\alpha)+\frac{n}{\theta}+\frac{n \alpha^{\theta} \ln (\alpha)}{1-\alpha^{\theta}}+\sum \ln \left(1+e^{\beta x_{i}}\right)-\sum \ln \left(\alpha+e^{\beta x_{i}}\right) \tag{4.2}\\
& \frac{\partial \ln (L)}{\partial \alpha}=\frac{n \theta}{\alpha}-\frac{n}{1-\alpha}+\frac{n \theta \alpha^{\theta-1}}{1-\alpha^{\theta}}-\sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)} \tag{4.3}\\
& \frac{\partial \ln (L)}{\partial \beta}=\frac{n}{\beta}+n \bar{x}+(\theta-1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(1+e^{\beta x_{i}}\right)}-(\theta+1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)} \tag{4.4}
\end{align*}
$$

The maximum likelihood estimates of α, θ and β are the solutions of simultaneous equations (4.2), (4.3) and (4.4). The solution of the four equations is not having a closed form. So numerical technique such as Newton Rapson method can be employed to get a solution. For getting initial values the tables for mean, variance, measure of skewness and Kurtosis can be used.
Now as in Bozidar et-al (2016) we study the existence and uniqueness of MLE when the other parameters are known or given.
Theorem 4.1
Let $\mathrm{g} 1=\frac{\partial \ln (L)}{\partial \theta}$ where α and β are known. Then their exist a unique solution for $\mathrm{g} 1=0$ for $\theta \in(0, \infty)$.

Proof :

We have,

$$
g 1=n \cdot \ln (\alpha)+\frac{n}{\theta}+\frac{n \alpha^{\theta} \ln (\alpha)}{\alpha^{\theta}-1}+\sum \ln \left(1+e^{\beta x_{i}}\right)-\sum \ln \left(\alpha+e^{\beta x_{i}}\right)
$$

Now

$$
\operatorname{Lim}_{\theta \rightarrow 0} g 1=n \cdot \ln (\alpha)+\frac{n}{\theta}+\frac{n \ln (\alpha)}{1-\alpha^{-\theta}}+\sum \ln \left(1+e^{\beta x_{i}}\right)-\sum \ln \left(\alpha+e^{\beta x_{i}}\right)=\infty
$$

On the other hand

$$
\operatorname{Lim}_{\theta \rightarrow \infty} g 1=n \cdot \ln (\alpha)+\frac{n}{\theta}-\frac{n \alpha^{\theta} \ln (\alpha)}{\alpha^{\theta}-1}+\sum \ln \left(1+e^{\beta x_{i}}\right)-\sum \ln \left(\alpha+e^{\beta x_{i}}\right)<0
$$

Therefore their exist at least one root, say $\hat{\theta} \in(0, \infty)$ such that $\mathrm{g} 1=0$. To show uniqueness the first derivative of g 1 is

$$
\frac{\partial g 1}{\partial \theta}=-\frac{n}{\theta^{2}}-\frac{n \ln (\alpha) \alpha^{-\theta}}{\left(1-\alpha^{-\theta}\right)^{2}}<0
$$

Hence their exist a solution for $\mathrm{g} 1=0$ and the root of $\hat{\theta}$ is unique.

Theorem 4.2

Let $\mathrm{g} 2=\frac{\partial \ln (L)}{\partial \alpha}$ where θ and β are known. Then their exist a unique solution for $\mathrm{g} 1=0$ for $\alpha \in(0, \infty)$.

$$
g 2=\frac{n \theta}{\alpha}-\frac{n}{1-\alpha}+\frac{n \theta \alpha^{\theta-1}}{1-\alpha^{\theta}}-\sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)}
$$

$$
\operatorname{Lim}_{\alpha \rightarrow 0} g 2=\operatorname{Lim}_{\alpha \rightarrow 0}\left(\frac{n \theta}{\alpha}-\frac{n}{1-\alpha}+\frac{n \theta \alpha^{\theta-1}}{1-\alpha^{\theta}}-\sum \frac{x_{i} e^{\beta_{i}}}{\left(\alpha+e^{\beta x i x^{x_{i}}}\right)}\right)=\infty
$$

Also

$$
\begin{gathered}
\operatorname{Lim}_{\alpha \rightarrow \infty} g 2=\operatorname{Lim}_{\alpha \rightarrow \infty}\left(\frac{n \theta}{\alpha}-\frac{n}{1-\alpha}+\frac{n \theta \alpha^{\theta-1}}{1-\alpha^{\theta}}-\sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)}\right)<0 \\
\frac{\partial g 2}{\partial \alpha}=\frac{-n \theta}{\alpha^{2}}-\frac{n}{(1-\alpha)^{2}}-\frac{n \theta^{2} \alpha^{-\theta}}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}-\frac{n \theta}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}+\frac{n \theta \alpha^{-\theta}}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}+\sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)^{2}} \\
\frac{\partial g 2}{\partial \alpha}<0 \text { If } \frac{n \theta \alpha^{-\theta}}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}+\sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)^{2}}<\frac{n \theta}{\alpha^{2}}+\frac{n}{(1-\alpha)^{2}}+\frac{n \theta^{2} \alpha^{-\theta}}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}+\frac{n \theta}{\left(\alpha^{-\theta+1}-\alpha\right)^{2}}
\end{gathered}
$$

There for their exist at least one root say $\alpha \in(0, \infty)$ such that $\mathrm{g} 2=0$ provided condition is satisfied.

Theorem 4.3

Let $g 3=\frac{\partial \log L}{\partial \beta}$ Where α and θ are known then their exist a unique solution for $g 3=0$ for $\beta \in(0, \infty)$

$$
g 3=\frac{n}{\beta}+n \bar{x}+(\theta-1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(1+e^{\beta x_{i}}\right)}-(\theta+1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)}
$$

$\operatorname{Lim}_{\beta \rightarrow \infty} g 3=\operatorname{Lim}_{\beta \rightarrow \infty}\left(\frac{n}{\beta}+n \bar{x}+(\theta-1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(1+e^{\beta x_{i}}\right)}-(\theta+1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)}\right)=-\bar{x} n<0$
Also

$$
\begin{aligned}
& \operatorname{Lim}_{\beta \rightarrow 0} g 3=\operatorname{Lim}_{\beta \rightarrow \infty}\left(\frac{n}{\beta}+n \bar{x}+(\theta-1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(1+e^{\beta x_{i}}\right)}-(\theta+1) \sum \frac{x_{i} e^{\beta x_{i}}}{\left(\alpha+e^{\beta x_{i}}\right)}\right)=\infty \\
& \frac{\partial g 3}{\partial \beta}<0, \text { If } \quad \theta \sum \frac{x_{i}^{2} e^{-\beta x_{i}}}{\left(1+e-^{\beta x_{i}}\right)^{2}}<\frac{n}{\beta^{2}}+\sum \frac{x_{i}^{2} e^{-\beta x_{i}}}{\left(1+e^{-\beta x_{i}}\right)^{2}}+(\theta+1) \sum \frac{x_{i}^{2} e^{-\beta x_{i}}}{\left(1+\alpha e^{-\beta x_{i}}\right)^{2}}
\end{aligned}
$$

There for their exist at least one root say $\beta \in(0, \infty)$ such that $\mathrm{g} 3=0$ provided condition is satisfied.

5. Order Statistics

Assume that $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population. Let $X_{i, n}$ denot the ith order statistics. The pdf of $X_{i, n}$ is

$$
\begin{aligned}
& g_{i, n}(x)=\frac{n!}{(i-1)!(n-i)!} g(x)[G(x)]^{i-1}[\bar{G}(x)]^{n-i} \\
& g_{i, n}(x)=\frac{n!}{(i-1)!(n-i)!\left(\alpha^{\theta}-1\right)} \frac{\alpha^{\theta}}{\left[\alpha+e^{\beta x}\right]^{\theta+1}} \frac{\theta \beta(\alpha-1) e^{\beta x}\left(e^{\beta x}+1\right)^{\theta-1}}{\left[1-\frac{\alpha^{\theta}}{1-\alpha^{\theta}}\left[\frac{\left(e^{\beta x}+1\right)^{\theta}}{\left(\alpha+e^{\beta x}\right)^{\theta}}-1\right]\right]^{i-1}\left[\frac{\alpha^{\theta}}{1-\alpha^{\theta}}\left[\frac{\left(e^{\beta x}+1\right)^{\theta}}{\left(\alpha+e^{\beta x}\right)^{\theta}}-1\right]\right]^{n-i}}
\end{aligned}
$$

$$
\begin{gathered}
g_{i, n}(x)=\frac{n}{\beta(n-1, i-1)} \frac{\alpha^{\theta(n-i+1)} \theta \beta(1-\alpha)}{\left(1-\alpha^{\theta}\right)^{n}} \\
\frac{e^{\beta x}\left(1-e^{\beta x}\right)^{\theta-1}\left[\left(\alpha+e^{\beta x}\right)^{\theta}-\alpha^{\theta}\left(1+e^{\beta x}\right)^{\theta}\right]^{i-1}\left[\left(1+e^{\beta x}\right)^{\theta}-\left(\alpha+e^{\beta x}\right)^{\theta}\right]^{n-i}}{\left(\alpha+e^{\beta x}\right)^{n \theta}}
\end{gathered}
$$

Define minimum as $X_{(1)}=\min \left(X_{1}, X_{2}, \ldots X_{n}\right)$ and maximum as $X_{(n)}=\max \left(X_{1}, X_{2}, \ldots X_{n}\right)$ and the medium as $X_{(m+1)}$ with $m=\frac{n}{2}$. Therefore the pdf of minimum, maximum and median are respectively

$$
\begin{aligned}
g_{1, n}(x)= & \frac{n}{} \frac{\alpha^{\theta(n-2)} \theta \beta(1-\alpha)}{\left(1-\alpha^{\theta}\right)^{n}} \frac{e^{\beta x}\left(1-e^{\beta x}\right)^{\theta-1}\left[\left(1+e^{\beta x}\right)^{\theta}-\left(\alpha+e^{\beta x}\right)^{\theta}\right]^{n-1}}{\left(\alpha+e^{\beta x}\right)^{n \theta}} \\
g_{n, n}(x)= & \frac{n}{\left(1-\alpha^{\theta}\right)^{n} \theta \beta(1-\alpha)} \frac{e^{\beta x}\left(1-e^{\beta x}\right)^{\theta-1}\left[\left(\alpha+e^{\beta x}\right)^{\theta}-\alpha^{\theta}\left(1+e^{\beta x}\right)^{\theta}\right]^{n-1}}{\left(\alpha+e^{\beta x}\right)^{n \theta}} \\
& g_{m+1, n}(x)=\frac{n}{\beta(n-1, m-1)} \frac{\alpha^{\theta(n-m)} \theta \beta(1-\alpha)}{\left(1-\alpha^{\theta}\right)^{n}} \\
& \frac{e^{\beta x}\left(1-e^{\beta x}\right)^{\theta-1}\left[\left(\alpha+e^{\beta x}\right)^{\theta}-\alpha^{\theta}\left(1+e^{\beta x}\right)^{\theta}\right]^{m}\left[\left(1+e^{\beta x}\right)^{\theta}-\left(\alpha+e^{\beta x}\right)^{\theta}\right]^{n-m-1}}{\left(\alpha+e^{\beta x}\right)^{n \theta}}
\end{aligned}
$$

6. Stochastic orders

For the last 40 years stochastic orders have been using for many applications. Its uses are seen in areas of probability and statistics such as reliability, survival analysis, queuing theory, biology economics, Insurance and actuarial science. (See Shaked and Shanthikumar (2007). Let X and Y be two random variable having distribution F and G respectively. Denote $\bar{F}=1-F$ and $\bar{G}=1-G$ as their survival functions. With pdf f and g . The random variable X is said to be smaller than Y (1) In stochastic order denoted as $X \leq_{s t} Y$, If $\bar{F}(x) \leq \bar{G}(x)$ for all x. (2) Likelihood ratio order denoted as $X \leq_{L r} Y$, IF $f(x) / g(x)$ is decreasing in $x \geq 0$. (3) Hazard rate order denoted by $X \leq_{h r} Y$ If $\bar{F}(x) / \bar{G}(x)$ is decreasing in $x \geq 0$. (4) Reversed hazard rate order denoted as $X \leq_{r r r} Y$, If $F(x) \leq G(x)$ is decreasing in $x \geq 0$. The four stochastic orders defined above are related to each other as the following implications.

$$
\begin{gathered}
X \leq_{r h r} Y \Leftarrow X \leq_{L r} Y \Rightarrow X \leq_{h r} Y \Rightarrow X \leq_{s t} Y \\
\frac{f(x)}{g(x)}=\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{\theta} \frac{\alpha_{2}^{\theta}-1}{\alpha_{1}^{\theta}-1}\left(\frac{\alpha_{2}+e^{\beta x}}{\alpha_{1}+e^{\beta x}}\right)^{\theta+1} \frac{\alpha_{1}-1}{\alpha_{2}-1}
\end{gathered}
$$

Since $\alpha_{1}<\alpha_{2}$

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\beta\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{\theta} \frac{\alpha_{2}^{\theta}-1}{\alpha_{1}^{\theta}-1} \frac{\alpha_{1}-1}{\alpha_{2}-1} \frac{\left(\alpha_{2}+e^{\beta x}\right)^{\theta} e^{\beta x}}{\left(\alpha_{1}+e^{\beta x}\right)^{\theta+2}}<0
$$

Hence $f(x) / g(x)$ is decreasing in x. That is $X \leq_{L r} Y$. The remaining statements follow from the implications above.

Application

Consider the real data Table 5, of the strength measured in GPA for single-carbon fibers data as an example
Table 5. The strength measured in GPA for single-carbon fibers data

1.901	2.132	2.203	2.228	2.257	2.350	2.361	2.396	2.397	2.445
2.454	2.474	2.518	2.522	2.532	2.575	2.614	2.616	2.618	2.624
2.659	2.675	2.738	2.740	2.856	2.917	2.928	2.937	2.937	2.977
2.996	3.030	3.125	3.139	3.145	3.220	3.223	3.235	3.243	3.264
3.272	3.294	3.332	3.346	3.377	3.408	3.435	3.493	3.537	3.554
3.562	3.628	3.852	3.871	3.886	3.971	4.024	4.027	4.225	4.395
5.020	3.501	3.562							

Table 6. Parameter estimates for single-carbon fibers data

Distribution	Parameters	K-S	K-S p-value
LOGISTIC	$\theta=0.1997$	0.7123	0.00
SLD	$\alpha=0.54, \lambda=2.68, \mu=2.774$	0.0918	0.6632
NBLD	$\alpha=3.34, \theta=0.054, \beta=0.18$	0.0693	0.8991

Conclusion

A special case of the logistic distribution, the NBL distribution is defined and studied. Discussed about Quantile method of estimation, Maximum likelihood estimation, and Order Statistics and Stochastic orders. Also test the goodness of fit for a real data set and found the logistic distribution fails and NBLD more suitable than skew logistic distribution (SLD). The NBL distribution provides a very flexible model for fitting of such kind of data. It is hoped that it will serve as an alternative to related but less versatile models that are currently in use for modeling data sets occurring in various areas of scientific investigation such as engineering, survival analysis, hydrology and economics.

- References

1. A.W. Marshall and I , Olkin(1997), A new methof for adding a parameter to a family of distributions with applications to the exponential and weibull families., Biometrica. 84, pp 641-652
2. Bozidar, Miroslav M. Ristic and Gauss M. Cordeiro (2016), A Two-Parameter Distribution Obtained by Compounding the Generalized Exponential and Exponential Distributions, Mediterranean Journal of Mathematics 13(5) 10.1007/s00009-015-0665-5
3. E. O. George and M. O. Ojo(1980), On a generalization of the logistic distribution, Ann. Inst. Statist. Math. 32 no. 2, 161-169.
4. Gupta, R.D., Kundu, D.: Generalized logistic distributions. J. Appl. Stat. Sci. 18, 51-66 (2010)
5. J. Berkson(1944), Application of the logistic function to bioassay, J. Amer. Statist. Assoc. 39, 357-365
6. J. Berkson (1951), Why I prefer logits to probits, Biometrics 7, 327-339.
7. J. Berkson(1953), A statistically precise and relatively simple method of estimating the bioassay and quantal response, based on the logistic function, J. Amer. Statist. Assoc. 48, 565599.
8. K.K. Jose, S.R. Naik, and M.M. Ristí c(2010), Marshall-Olkin q-Weibull distribution and max-min processes, Statist. Pap. 1, pp. 837-851.
9. M. E. Ghitany, F. A. Al-Awadhi \& L. A. Alkhalfan (2007) Marshall-Olkin Extended Lomax Distribution and Its Application to Censored Data, Communications in Statistics - Theory and Methods, 36:10, 1855 1866, 10.1080/03610920601126571
10. M.E. Ghitany, E.K. Al-Hussaini, and R. A. Al-Jarallah(2005), Marshall-Olkin extended Weibull distribution and its applications to censored data, J. Appl. Statist. 32, pp. 1025-1034.
11. M. O. Ojo (1989), Analysis of some prison data, J. Appl. Stat. 16, no. 6, 377-383
12. M. O. Ojo (2002) Approximations of the distribution of the sum of random variables from the generalized logistic distribution, Kragujevac J. Math. 24, 135-145.
13. Nadarajah, S., Jayakumar, K., Ristíc, M.M. (2013). A new family of lifetime models. Journal of Statistical Computation and Simulation, 83, 1389-1404.
14. Nadarajah, S.: The skew logistic distribution. Asta Adv. Stat. Anal. 93, 187-203 (2009)
15. Ojo, M.O. and Adeyemi, H.O. (1989) "On the convolution of generalised logistic random variable" Statistica SLIX, no. 3, 453-459.
16. Oliver, F. R. (1964). Methods of estimating the logistic growth function. Journal of the Royal Statistical Society: Series C (Applied Statistics), 13(2), 57-66. doi: 10.2307/2985696
17. Plackett, R. L. (1959). The analysis of life test data. Ann. Math. Statist. 30 9-19.
18. Pearl, R., Reed, L., \& Kish, J. (1940). The Logistic Curve and the Census Count of 1940. Science, 92(2395), 486-488. Retrieved February 3, 2021, from http://www.jstor.org/stable/1666512
19. Raymond Pearl And Lowell J. Reed(1920) On the Rate of Growth of the Population of the United States Since 1790 and its Mathematical Representation, proceedings of the national academy of sciences, doi:10.1073/pnas.6.6.275, Volume 6 June 15, 1920 Number 6
20. Schultz, H. (1930). The standard error of a forecast from a curve. Journal of the American Statistical Association, 25(170), 139-185. doi: 10.1080/01621459.1930.10503117
21. S. Chakraborty, P.J. Hazarika, and M.M. Ali, A new skew logistic distribution and its properties, Pak. J. Stat. 28 (2012), pp. 513-524.
22. Sankaran, K.K., Jayakumar, K. (2016). A new extended uniform distribution. International Journal of Statistical Distributions and Applications, 2, 35-41.
23. T. Alice and K. K. Jose (2003), Marshall-Olkin Pareto Process Far East journal of Theoret. Statist. , pp. 117-132.
24. T. Alice and K. K. Jose(2005), Marshal-Olkin semi- weibull minification processes, Recent Adv. Statist.. Theory Appl. 1, pp, 6-7.
25. Verhulst, PF. (1845) "Mathematical research on the law of population growth." New papers from the Royal Academy of Sciences and Belles-Lettres of Brussels 18: 14-54. http://eudml.org/doc/182533
26. Wahed, A.S., Ali, M.M.: The skew-logistic distribution. J. Stat. Res. 35, 71-80 (2001)
