Effect of Dynamic job Sequencing in a Diverging Converging Conveyor System & Buffer Optimization Using Genetic Algorithm

Sharath Chandra. H. S¹, Naveen J², Nithin Kumar³ & Hemanth T. S⁴

^{1, 3} Assistant Professor, Department of Mechanical Engineering, N. M. A. M. Institute of Technology, Nitte, Karnataka, India
² Assistant Professor, Department of Electrical & Electronics Engineering, N. M. A. M. Institute of Technology, Nitte, Karnataka, India

⁴ Assistant Professor, Industrial & Production Engineering, Malnad College of Engineering, Hassan, Karnataka, India

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

ABSTRACT

A few areas, for example, dairy, vehicle, pharmaceutical, PC and hardware, require a scope of assembling steps to deliver a part. The merchandise in these ventures are created in assortments and the yield volume shifts from low to high. Ordinarily, these sorts of organizations utilize a conveyor that could have a mix of a wandering and merging conveyor framework because of an assortment of preparing stages associated with the improvement of the item. A calculated model of the of conveyor framework is depicted, which works physically and to represent the significance of the arrangement utilizing buffer the format is displayed and contrasted with the manual design. The hereditary calculation is utilized to locate the ideal support stockpiling. It tends to be seen that by adjusting different sequencing strategies there will be decrease in assembling time and arrangement cost.

1. INTRODUCTION

Numerous reenactment procedure was utilized to take care of building issues sime et.al [1] considered the attainability of utilizing distinctive reproduction approach for clothing industry for line adjusting strategy. It has been discovered that the majority of the reenactment approach is compelling in stochastic condition Miranda and Campos [2] examined on various reproduction approach for improving in dynamic to locate the best situation. Recreation strategies are likewise utilized for other building applications like to Hu and Zhong [3] mimicked the dynamic reaction of a vehicle on various street surfaces considering non-straight methodology.

A large portion of the businesses are getting exceptionally adaptable in nature Bourdeaud and Toguyeni [4] proposed a re-design approach for an adaptable assembling framework which utilizes different improvement strategies. With the expansion in adaptability the framework has become complex Lidberg et.al [5] proposed totaled line demonstrating approach for an unpredictable assembling framework. Yin et.al [6] proposed an advancement conspire for quality improvement situated procedure producing framework. Rigid assembling framework when diverse occupation characteristics are experienced the device has be exchanged Paiva and Carvalho [7] proposed an improved heuristic calculation for the activity sequencing and apparatus exchanging issue. Most adaptable assembling framework utilizes computerized move of employments between preparing stations heger and voss [8] proposed upgraded sequencing directing guidelines for lessening lateness in adaptable occupation shop which utilizes AGVs. Sequencing of the employments is a significant in lessening the lateness of an adaptable occupation shop imperative soto et.al [9] built up a scientific model and hybridized bacterial scrounging improvement calculation with sequencing adaptability. So as to improve the presentation of an adaptable framework hereditary calculations are utilized to locate the ideal outcomes Zhang et.al [10] proposed an improved hereditary calculation for the adaptable occupation shop booking issue with various time requirements. Because of some dubious conditions there will be separate of the preparing stations and results in loss of creation time Yong Ho and Ryong Su [11] proposed Insertion of new inactive time for disconnected equal machine booking with work parting and machine breakdowns. Presently a day with the headway of data innovation the frameworks have moved up to industry 4.0. Ghaleb et.al [12] examined the significance of ongoing information accessibility in powerful booking process. Bukchin and Zaides [13] proposed the back to back multiprocessor work planning issue for indistinguishable machines.

2. METHODOLOGY

2. Diverging -Converging Conveyor System

The wandering transport instrument as found in Figure 1 For this sort of transport framework, the workpieces are moved utilizing a transport. The arrangement of the working pieces of the machine is performed physically. The crude work parts originate from the source experience explicit handling activities up to Station 5 and afterward float after the veering point for isolated tasks later they combine at the merging intersection and all the work parts are introduced at the get together stations and in the end dispatched. The different kinds of wandering combining transport frameworks are recorded in Table 1. General physical structures of separating merging transport frameworks are found in Table 2.

Figure	1 Converg	ing -Div	erging co	onvevor	system	without	buffer
riguit.		sing -Div	ciging co	JIIVCYOL	system	without	ounci

Table 1	Description	of the	diverging	-converging	conveyor s	vstem
I abit I	Description	or the	unvergnig	converging	conveyor s	yotom

	Tuble T Description of the diverging converging converging converging					
Туре	Description					
Layout –	Work pieces have a comparable stacking and set-up period for all stations.					
11	Shown in table 3.					
Layout –	Same as format 11 however contrasts during arrangement and preparing are thought of.					
12	Shown in table 3.					
Table 2 Common physical configuration of diverging-converging conveyor system						

Тур	Description				
Total processing s		22			
Length of each con	5 meters				
Speed of work par	ors	1 m/s			
Table 3 Manufacturing details of all jobs					
Processing Time	Setup time	As	sembly time		
(min)	(min)		(min)		
10	3		10		

 Table 4 Machining details of converging-diverging system

			Converging System			
	Diverging Syste	em	Processing Time		Setup Time	
			(min	: sec)	(min:	: sec)
Work	Processing	Setup	1 st Station	2^{nd}	1 st Station	2 nd Station
Parts	Time	Time		Station		
	(min: sec)	(min: sec)				
J_1	9:59.96	3:13.32	3:28.5531	3:37.4827	10:09.4555	9:03.5305
J_2	7:56.47	3:10.56	2:59.1190	2:53.0292	12:05.4294	10:12.2322
J_3	8:28.73	3:00.73	2:24.2350	2:53.3032	8:31.5852	10:08.4489
J_4	9:17.98	3:06.88	2:54.6765	2:47.3353	9:48.9847	9:03.9498
J_5	7:49.98	2:53.83	3:04.8014	3:42.4340	9:59.3503	9:15.8549
J_6	10:18.46	2:56.76	3:03.0732	3:31.0227	9:25.5432	10:02.1451
J_7	11:00.64	2:52.05	2:57.4642	2:39.5283	10:33.9226	9:52.3148
J_8	9:53.82	2:48.25	3:02.3175	3:17.8590	9:06.8341	10:28.5057
J_9	9:16.84	2:40.50	3:28.5014	2:24.2166	8:57.1186	9:14.3532
J_{10}	9:04.49	2:29.30	3:07.7520	3:48.4351	10:02.4932	10:20.5974

2.3 CONVERGING-DIVERGING CONVEYOR SYSTEM WITH BUFFER STORAGE

Figure 2 Converging-Diverging conveyor system with buffer storage

Research Article

Figure 2 demonstrates a wandering meeting transport framework. As the working parts are increasingly piled up at the handling stations because of the FIFO working rule, so as to forestall this, buffers are joined to each preparing unit. There are two sorts of designs recorded in Table 5. Since there is more workpiece heaping at the preparing stations and less workpiece stream at the get together stations, is not included here. The working guideline of these formats are same as the working rule of separating and meeting transport framework.

		-	
Table 5 Types	of diverging_	converging convey	or system with huffer
Table 5 Types	of unverging-	converging convey	or system with buller

Туре	Description							
Layout – 13	Workpieces have a comparable stacking and set-up period for all stations.							
Layout – 14	Same as model 13 yet arbitrariness during arrangement and stacking are thought of.							
	Sequencing logic shown in table 6.							

Table 6 Description of each logic						
Logic	Jobs entering the buffer	Jobs leaving the buffer				
1	$J_1, J_2, J_1, J_1, J_2, J_2, J_1, J_2, J_1 \& J_2$	$J_1, J_1, J_1, J_1, J_1, J_2, J_2, J_2, J_2 \& J_2$				
2	$J_1, J_2, J_1, J_1, J_2, J_2, J_1, J_2, J_1 \& J_2$	$J_2, J_2, J_2, J_2, J_2, J_1, J_1, J_1, J_1 \& J_1$				
3	$J_1, J_2, J_1, J_1, J_2, J_2, J_1, J_2, J_1 \& J_2$	$J_1, J_1, J_1, J_1, J_1, J_2, J_2, J_2, J_2 \& J_2$				

2.3.2 Limit of buffer utilizing GA Wizard

At first, the limit of the was picked with the end goal that there will be no accumulating of the work parts. With the assistance of a hereditary calculation device, the ideal buffer stockpiling at the veering merging transport framework is determined with the object of decreasing the time which is appeared in Table 7.

			Tabl	ie / Cap	bacity of	the bul	iers alle	r using	UA			
	Layout	Logic	B ₁	B ₂	B ₃	B_4	B ₅	B ₆	B ₇	B_8	B 9	B ₁₀
2.4			B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	B ₂₀
		1	140	17	105	75	141	27	50	31	1	30
			15	31	21	54	35	30	30	24	48	39
	13	2	130	30	30	30	30	30	30	30	30	30
			30	30	30	30	30	30	30	30	30	30
		3	130	30	30	30	30	30	30	30	30	30
			30	30	30	30	30	30	30	30	30	30
		1	130	30	30	30	30	30	30	30	30	30
			30	30	30	30	30	30	30	30	30	30
	14	2	130	30	30	30	30	30	30	30	30	30
			30	30	30	30	30	30	30	30	30	30
		3	130	30	30	30	30	30	30	30	30	30
			30	30	30	30	30	30	30	30	30	30

Table 7 Capacity of the buffers after using GA

CONVERGING DIVERGING CONVEYOR SYSTEM WITH ROBOT

Figure 3 Converging-Diverging- conveyor system with robot

When the production line is completely automated with a robot as seen in Figure 3, the line is completely synchronized with each other without a human interface. The operating theory is the same as discussed in the preceding sections.

5. RESULTS AND DISCUSSIONS 5.1 OBSERVATION FROM THE LAYOUT

 Table 8 Total MLT of Diverging-Converging conveyor system without buffer

 Layout
 Total Simulation Time

	(Days: Hours: Minutes: Seconds)
Layout 11	1:09:17:49.0996
Layout 12	1:07:24:27.6440

		Total Simulation Time	Reduction in time
Layout	Logic	(Days: Hours: Minutes: Seconds)	(%)
	1	1:03:32:51.5143	17.27%
13	2	1:03:32:49.9318	17.27%
	3	1:03:31:25.1318	17.34%
	1	1:02:05:38.8664	16.92%
14	2	1:02:50:46.7538	14.52%
	3	1:02:06:38.8664	16.86%

Table 9 Total MLT & percentage of reduction of diverging-converging conveyor system with buffer

Table 10 Total MLT after using the optimum buffer storage using GA wizard for diverging converging conveyor system

system							
Layout	Logic	Total Simulation Time	Reduction				
		(Hours: Minutes: Seconds)	%				
	1	1:03:32:51.5143	17.27%				
13	2	1:03:32:50.1318	17.27%				
	3	1:03:31:25.1318	17.34%				
	1	1:02:05:38.8664	16.92%				
14	2	1:02:50:46.7538	14.52%				
	3	1:02:06:38.8664	16.86%				

5.2 Analysis of diverging-converging conveyor system

Following the arrangement of the, a net improvement of 7.31% in the usage of the preparing stations has been recorded. In the dissimilar segment of the creation line, it was discovered that there was a 15.67% expansion in use after organization and a 3.13% expansion in the assembly arrangement of the creation line. It has been discovered that there is an all-out normal of 7.16% expansion in use after the support organization in the dissimilar part 15.1% increment is found after the use of the buffer and 3.18% expansion in the merging bit of the line. The complete normal abatement in the setup in design 13 and 14 after the utilization of the is 7.11% and 7.39% separately.

5.3 Analysis of buffer storage in conveyor system

For design -13 in rationale 1 extra 244 extra rooms were allocated, and for the rest of the setups, the accepted and GA spaces coordinated one another. It very well may be discovered that the utilization of a hereditary calculation is substantial and brings about reserve funds when the measure of preparing stations in the creation line is less, bringing about a serious result. At the point when the quantity of preparing stations is more, the utilization of GA doesn't give ideal outcomes.

CONCLUSION

In this examination work the perplexing reproduction of wandering uniting transport framework was recreated. By sequencing of the work, it has been discovered that there is a 16.7% decrease in the general reproduction comparative with manual arrangement and, 7.23% expansion in machine use contrasted with non- format, 7.24% lessening in arrangement required after employment sequencing. The utilization of GA didn't bring about an ideal stockpiling place. In many occasions, it coordinated the expected stockpiling limit.

REFERENCES

- [1] H. Sime, P. Jana, and D. Panghal, "Feasibility of using simulation technique for line balancing in apparel industry," *Procedia Manuf.*, vol. 30, pp. 300–307, 2019.
- [2] W. Trigueiro de Sousa Junior, J. A. Barra Montevechi, R. de Carvalho Miranda, and A. Teberga Campos, "Discrete simulation-based optimization methods for industrial engineering problems: A systematic literature review," *Comput. Ind. Eng.*, vol. 128, no. December 2018, pp. 526–540, 2019.
- [3] H. Hu and Z. Zhong, "Explicit–Implicit Co-Simulation Techniques for Dynamic Responses of a Passenger Car on Arbitrary Road Surfaces," *Engineering*, vol. 5, no. 6, pp. 1171–1178, 2019.
- [4] A. T. T Bourdeaud, "A PETRI-NET BASED APPROACH FOR THE RECONFIGURATION OF

FLEXIBLE MANUFACTURING SYSTEMS USING OPTIMIZATION TECHNIQUES," *Control*, vol. 12, pp. 17–19, 2006.

- [5] S. Lidberg, L. Pehrsson, and M. Frantzén, "Applying Aggregated Line Modeling Techniques to Optimize Real World Manufacturing Systems," *Procedia Manuf.*, vol. 25, pp. 89–96, 2018.
- [6] X. Yin, Z. Niu, Z. He, Z. Li, and D. Lee, "An integrated computational intelligence technique based operating parameters optimization scheme for quality improvement oriented process-manufacturing system," *Comput. Ind. Eng.*, vol. 140, no. August 2019, p. 106284, 2020.
- [7] G. S. Paiva and M. A. M. Carvalho, "Improved heuristic algorithms for the Job Sequencing and Tool Switching Problem," *Comput. Oper. Res.*, vol. 88, pp. 208–219, 2017.
- [8] J. Heger and T. Voss, "Reducing mean tardiness in a flexible job shop containing AGVs with optimized combinations of sequencing and routing rules," *Procedia CIRP*, vol. 81, pp. 1136–1141, 2019.
- [9] A. Vital-Soto, A. Azab, and M. F. Baki, "Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility," *J. Manuf. Syst.*, vol. 54, no. December 2019, pp. 74–93, 2020.
- [10] G. Zhang, Y. Hu, J. Sun, and W. Zhang, "An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints," *Swarm Evol. Comput.*, vol. 54, no. February, p. 100664, 2020.
- [11] K. Y. Ho and K. R. Su, "Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machines breakdowns," *Comput. Ind. Eng.*, p. 106630, 2020.
- [12] M. Ghaleb, H. Zolfagharinia, and S. Taghipour, "Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machines breakdowns," *Comput. Oper. Res.*, p. 105031, 2020.
- [13] Y. Bukchin, T. Raviv, and I. Zaides, "The consecutive multiprocessor job scheduling problem," *Eur. J. Oper. Res.*, vol. 284, no. 2, pp. 427–438, 2020.