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Abstract: VANETSs place an important role in an intelligent transportation system. The main aim is to exchange traffic
information to avoid accidents and provide proper communication between the vehicles. A great challenge for VANETS is
managing of high mobility and fast changes in the topology. VANETS suffer from the problem of undesired signals. Various
mechanisms have been proposed for undesirable signals. But all these methods are having problems like high signaling, slow
convergence rate, and computational complexity, etc., This technique is proposed for 5G VANETSs using fusion Beam
forming Algorithms and this is an optimum technique between simple and complex techniques. We have designed and
implemented the novel method using MATLAB simulation and outcomes show that our method gives more accurate values
of the location of mobile vehicles, and precise cancellation of interference signals compared to other existing methods, and
we have tested the implemented simulation program with some known speech signals.
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1. Introduction

Day by day, as a great extent of increasing vehicles, traffic plays an important role in the road transportation
system. To control the traffic system, VANETS plays an important role. Vehicular ad hoc networks (VANETS)
use roadside units’ infrastructure and vehicles equipped with on-board units for exchanging the traffic
information [1]. Vehicles use various technologies like vehicle to vehicle and vehicle to infrastructure
communication based on cellular networks, Wi-Fi, and ZigBee, and dedicated short-range communication [2].
Communication between vehicles plays an important thing in VANETSs. Mobility model and channel models
basically use for connecting a vehicle in VANETS.

Figure 1. Architecture

V2V technology will help us to reduce accidents and also congestion among vehicles. At present wide beam,
omnidirectional antennas are using for gaining performance [3]. But due to the high extent mobility of vehicles
and long-distance of vehicles performance is degrading [4]. To solve this problem, this paper proposed a hybrid
beamforming technique to achieve high gain and reduce the interference problems of undesired signals [5].

The rest of this paper is organized as follows: in Section 2 we discuss related work, in Section 3 we state the
Explain Various beam forming techniques, in Section 4 we implemented proposed hybrid method, in Section 5
we designed the MATLAB simulation and results, and in Section 6 we conclude the paper.
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2. Related Work

Experiments and analytical studies have been conducted for finding the mobility of vehicles in VANETS. For
increasing the performance of mobile vehicle broadband, Long term evolution place a promising technology.
The main problem with LTE is cell-edge user coverage and also a low data rate in it [7]. This is because of the
inter cell interference problems. To characterize the distance between vehicles on the highway proposed a model
called Gaussian — exponential mixture. To coordinate the multipoint transmission in a multicell system using the
Grassmannian beamforming technique. The best approach for improving the performance at the cell edge is a
coordinated multipoint, but it suffers from high signaling [19]. For low power consumption, LMS places an
important role, but having a low convergence rate. The recursive least square method is implemented for a time-
varying environment, but it's having problems due to high computational complications [6].

The fixed beamforming approaches mentioned are included the MSIR, the ML method, and the MV method
were supposed to apply for fixed arrival angle emitters. the ideal array weights won’t need to be adjusted, If the
arrival angles don’t variation with time, [13][14][15]. However, if the wanted arrival angles vary with time, it is
required to devise an optimization scheme that operates on-the-fly to keep recalculating the optimum array
weights. It must allow for the continuous adaptation to an ever-changing electromagnetic environment The
receiver signal processing algorithm [8]. For the calculation of continuously updated weights the adaptive
algorithm takes the fixed beamforming process one step further and allows. a specified optimization criterion
must satisfy the adaptation process. Several examples of Best optimization techniques are Constant Modulus
Algorithm (CMA), LMS, conjugate gradient, SMI, Recursive Least Squares (RLS),, and waveform diverse
algorithms [9][10]11][12][16][17][18].

An alternative means for optimizing the array weights are found by minimizing the MSE. The modified in
such a way as to minimize the error while iterating the array weights. The modified array configuration with
sample example LMS is shown in Figure 1(a).
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Figure 1(a). Adaptive Beam Forming Technique

The signal d(k) is the reference signal. Preferably the reference signals either identical to the desired signal
s(k) or it is highly correlated with s(k) and uncorrelated with the interfering signals in(k). If s(k) is not distinctly
different from the interfering signals, the minimum mean square technique will not work properly. The signal
&(K) is the error signal such that

e(k) = d(k) — wix(k) (1)

We can establish the performance surface (cost function) by again finding the MSE as the weights also

changing with respect to time ‘k’. The error, as indicated in Figure 5, is

e(k) = d(k) — wH(k)x(k) )
The squared error is given as
le()|* = [d(k) — wH(k)x(k)|? ®)

Momentarily, we will suppress the time dependence for writing the equation in a simple manner. The cost
function is given as
J(w) =D —-2wir+wiR,_ W 4)
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Where
EH— x.xH
f=d.x
D=dP

3. Adaptive Algorithms
1. Lest Mean Squares (LMS)

LMS is one of the popular adaptive beamforming algorithm. It is based on the principle of gradient based
approach. Best way to minimum the shape of elliptic paraboloid is through the gradient method.

Error indication is,

e(i) = d(i) — [W#(D)E(0)] 4)
le(D]? = d@) —[w" ([Dx(D)][? )

Squared error is,

Cost function is,
cw)=D-2w,# + wHER w (6)
Where, D = E[|d*]

LMS solution is,
w(i+1) = w(i)-u [Rxw -r] (7)
= w(i)-p e(i) x(i)

The drawback with LMS is found that it needs many iterations before achieving a satisfactory convergence.
Tracking the desired signal is difficult if signal characteristics are rapidly changing.

2. Sample Matrix Inversion

Sample matrix is a time average estimate of array correlation matrix using K-time samples. If the random
process is ergodic in the correlation, the time average estimate will equal the actual correction matrix.

Estimation of array correlation matrix is,

Rue(i) = 1/K x(i) xi"(i) (8)
Desired signal by,

d(i) = [d(1+ik) d(2+iK) ......d(k+ik)] 9)
SMI weights can then be calculated as,

Semii) = R 1(i)r(i)

= [Xi(i) Xi [i1 d"(i) Xi(i) ] (10)

however, SMI is faster than LMS, potential originalities and computational problem can reason problems.

3. Recursive Least Squares

RLS iteratively calculates the required correlation vector and required correlation matrix. It performs
extremely fast convergence; However, this benefit comes at the cost of high computational complexity.

Thus,
Rui) = Ziq @ Tx(i)xH () (11)
(i) = Xy & 1d"G) x()
a is forgetting factor.
Correlation matrix to start recursion relationship is.

Rux(i) = a Rux (i-1) + x(i)x (i) (12)
From above equation, desire signal is
w(i) = w (i-1) + g(i) [d"() —x™'(i) w(i-1)] (13)

Recursive equation allows for easy updates of inverse of correlation matrix.
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4. Constant Module Algorithm (CMA)

A constant module can be known that if arriving signals of interest should have a constant module, we can
devise an algorithm that restore (or) equalize the amplitude of original signal. It is a famous equalizer algorithm.
Recursive relationship is,

w(i+1) = w(i) + p (1- Yy y(D)x(i) (14)

e(i) = y(i) [ 1- ly()F*] (15)

CMA has no convergence problems at all, it does take longer equalizer for right results.

Error signal is,

5. Least Square Constant Modulus (LSCMA)

LSCMA is working based on Least square Minimization. In this Method of least squares, one defines a cost
function which is weighted sum of error squares. It should note that with better than CMA algorithms, LS-CMA
algorithm do better job in nullifying the multipath terms.

Weight vector is given by,

u(i+1) = u(i) — Geu)i™uni* (16)
Error is,
e(u) =X Yem (7)
X = [x(D) x(2) ......x(0)]
r(D/[r(1)] 0 0
Yem = 0 r*(2)/Ir(2)] 0
0 0 OV O]

It is well to update the data blocks for each repetition to maintain up to date adaption on dynamic signal
situations, LS-CMA is that it can convergence up to 110 times quicker than conventional CMA algorithm.

6. Dynamic LS-CMA

Since LS-CMA algorithm computed the weights simply based upon fixed block of sampled data. Thus,
Dynamic LS-CMA is more appropriate.

Thus, dynamic LS-CMA is,

Aurray correlation is,

Rux(i) = X(i) XH(i) / K (18)
Correlation vector is,

Cxe(i) = X(i) (i) /K (19)

7. Conjugate Gradient Method

The problematic with steepest descent method has been the sensitivity of union rates to eigenvalue feast of
association matrix. It results slower convergences. This can accelerate by CGM. The goal of CGM is iteratively
search for optimum solution by perpendicular paths for each new iteration.

CGM quadratic cost function is
Ji) =% i A —dHi (20)

x1(1)  x22(1)  xn(1)
Where, A= | x1(2) x,(2) x(2)

x1(K) x(K) xy(K)

K is no of snapshots
M is No of array elements
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i is unknown weights
d is desired signal

4. Proposed Method

We encouraged from all above beam forming techniques and methods and so our proposed hybrid beam
forming method overcomes the drawbacks of above beam forming techniques. The interference signals in the
wireless mobile channel coming to the receiver varies with respect to time and location of the receivers and also
the number of interferers and their location. When the AOA of interference signals is going to be constant, the
interference cancellation is simpler than when the interference scenario is varying with respect to time. Both BSs
and MSs using ULA (Uniform Linear Array Antenna) and they are able to do all functions on their own without
any other assistance. For example, the MSs can do all functions without the assistance of BSs in finding their
location. We implement this research work as follows:

(i) We estimate first the location of MSs by using Three Base Station Antennas Method (based on RSS
(Received Signal Strength)).

(i) By knowing the locations of RSUs and Vehicles, we find the angle of arrival of signals and interference
signals if the location of interferers and RSUs are known and verified using AOA- Minnorm-Root &
MUSIC method.

(iif) Using ULA antenna, for static interference environment, we use Godara & MVDR methods.

(iv) Using ULA antenna, for dynamic interference environment, we use LMS & RLS Method — Complex
Method (Adaptive Beam Forming Techniques).

(v) Finally we develop the hybrid beam forming technique by combining both fixed and adaptive beam
forming techniques by studying the time varying nature of the wireless channels, i.e., the angle of arrival
of interference signals which may be constant w.r.t. time (static) or varying w.r.t. time (dynamic) as the
Vechicles is moving in a particular cell controlled by a RSUs.

Thus the proposed work is an optimum in performance, time saving in the beam forming and efficient and
intelligent compared to other beam forming techniques.

5. Simulations & Results

We designed and implemented proposed work of Hybrid Beamforming Technique for vehicular environment
using MATLAB 2017 software.
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Figure 13. Tracking the Desire Signal (SMI)
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Pattern of antenna array
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Figure 15. Pattern of RLS Array
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Figure 16. Tracking the Desire Signal (RLS)
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Figure 25. Tracking the Desire Signal (DLSCMA)

Table 1. Various Adaptive beam technigues SIR Table comparison

S.NO Techniques/ SIRindB
No of Antennas TM=2 TM=3 TM=4 TM=5 TM=6 TM=7 TM=8

1 No Beamforming  -0.05 -0.20 295 0.19 -0.05 -040 295
2 MMSE 6.35 5.35 1712 1551 1329 1092 1148
3 CGM 2203 2407 2490 2345 2415 1147 2244
4 LMS 2417 1992 2417 2515 2417 2774 24.17
5 SMI 2203 2400 2533 2345 2415 2554 2242
6 RLS 2418 3832 2538 3541 2439 2580 2257
7 CMA 4.63 4.30 414 9.86 1.60 3.33 2.98
8 LSCMA 2.75 2.81 2.77 2.82 2.78 2.83 2.78
9 Dynamic LSCMA 1592 16.16 1590 16.01 15.89 1597 15.89
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Figure 28. Hybrid Beam forming Speech signal

6.

Conclusion

This paper presents a detailed Performance Analysis of Adaptive beamforming Techniques on MMSE, CGM,

LMS, SMI, RLS, CMA, LSCMA, DLSCMA, and Hybrid Beamforming. We designed and executed an efficient,
optimum, less time consuming, strong, safe, and economical method of cancellation interference signals from
various interferers coming through different angles or directions using a hybrid adaptive/fixed beam forming
techniques which is suitable for Vehicular environment. In the future, we can implement this Hybrid Adaptive
beamforming approach on routing and security purposes for suitable VANETS environments.
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