# Clique number and Girth of the Rough Co-zero Divisor Graph 

Dr.B. Praba ${ }^{\text {a }}$, M. Logeshwari ${ }^{\text {b }}$

${ }^{\text {a }}$ Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil nadu, India. E-mail: prabab@ssn.edu.in
${ }^{\mathrm{b}}$ Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil nadu, India.
E-mail: logeshjimail@gmail.com
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021


#### Abstract

This study aims to determine the Clique number, Girth and Maximal independence number of the Rough Co-zero divisor Graph $G\left(Z^{*}(J)\right)$ corresponding to a Rough semiring $(T, \Delta, \nabla)$. The methodology of these graph theoretical parameters are obtained using partition graph $P\left(Z^{*}(J)\right)$ of Rough co-zero divisor graph $G\left(Z^{*}(J)\right)$. Though the number of vertices in $G\left(Z^{*}(J)\right)$ is $2^{n-m} \cdot 3^{m}-2,1 \leq m \leq n$, the partition graph plays a significant role in determining the results the Clique number of $G\left(Z^{*}(J)\right)$ as $2^{n-m} \cdot 3^{m}-2^{m}-1$ and the Girth $G\left(Z^{*}(J)\right)$ is 3 and Maximal independence number of $G\left(Z^{*}(J)\right)$ is $m+1$. All these concepts are illustrated with suitable examples.


AMS Classification 05C69, 05B10, 05C07, 05A18.
Keywords: Clique Number, Girth, Independence Set, Rough Co-zero Divisor Graph, Partition Graph.

## 1. Introduction

Rough set theory proposed by Zdzislaw Pawlak [8] in 1982. He defined Rough set as a formal approximation of a crisp set in terms of a pair of sets which give the lower and the upper approximations of the original set. Rough set theory is an extension of Fuzzy set theory. Rough sets have been proposed for a very wide variety of applications.

In particular, the rough set approach seems to be important for cognitive sciences and Artificial Intelligence, especially in knowledge discovery, machine learning, expert systems, data mining, pattern recognition, approximate reasoning etc., The concept of Rough Lattice was discussed by B. Praba and R. Mohan. [4-7] In this paper, the authors considered an information system and for any given information system a relation R on the set of all Rough sets $T$ was defined. They have defined two operations Prabas and PrabaV.

Afkhami and Khashyarmanesh [1-3] introduced the co-zero divisor graph, denoted by $\Gamma^{\prime}(R)$, on a commutative ring $R$. Let $W^{*}(R)$ be the set of all non-unit elements of $R$. The vertex set of $\Gamma^{\prime}(R)$ is $W^{*}(R)$ and for two distinct vertices x and y in $W^{*}(R), x$ is connected to $y$ if and only if $x \notin(y R)$ and $y \notin(x R)$, where $(z R)$ is an ideal generated by the element $z$.

In this paper, our goal is to discover the clique number and girth of the Rough Co-zero divisor graph. This paper is systematized as follows:

In Sec. 2, we contribute preliminaries on Graph theory and Rough set theory.
In Sec. 3, we acquire the Clique number and Girth of the Rough Co-zero divisor graph and we illustrate with suitable examples.

In Sec. 4, we give the conclusion.

## 2. Preliminaries

### 2.1. Graph Theory

## Definition 1.1.

A clique of a graph is a complete subgraph of it and the number of vertices in a greatest clique of $G$ is called the clique number of $G$ and is denoted by $\omega(G)$.

## Definition 1.2.

The girth of $G$ is the length of the shortest cycle in $G$, denoted by $\operatorname{gr}(G)$.

## Definition 1.3.

Let $G=(V, E)$. A subset $I$ of $V$ is called an independent set of $G$ if no two vertices in $I$ are adjacent. Independent vertex set $I$ of $G$ is said to be maximal if no other vertex of $G$ can be added to $I$

### 2.2 Rough Set Theory

In this section we consider an approximation space $I=(U, R)$ where $U$ is a non empty finite set of objects, called universal set and $R$ be an equivalence relation defined on $U$.

## Definition 1.3.

For any approximation space, the equivalence classes induced by R is defined by $[x]=\{y \in U \mid(x, y) \in$ $R\}$. For any $X \subseteq U$, the lower approximation is defined as $R_{-}(X)=\{x \in U \mid[x] \subseteq X\}$ and the upper approximation is defined by $R^{-}(X)=\{x \in U \mid[x] \cap X=\phi\}$. The rough set corresponding to $X$ is $R S(X)=$ ( $R_{-}(X), R^{-}(X)$ ).

## Theorem 1.1

For any approximation space $I=(U, R),(T, \Delta, \nabla)$ is a semiring called the Rough semiring.

### 2.3 Rough Co-zero divisor Graph

In this section we consider an approximation space $I=(U, R)$ where $U$ is the non empty finite set of objects and $R$ is an equivalence relation on $U$. Let $(T, \Delta, \nabla)$ be the rough semiring induced by $I$. Without loss of generality we also assume that there are $m$ equivalence classes $\left\{X_{1}, X_{2}, \ldots X_{m}\right\}$ with cardinality greater than 1 and the remaining $n-m$ equivalence classes $\left\{X_{m+1}, X_{m+2}, \ldots X_{n}\right\}$ have cardinality equal to 1 , where $1<m \leq n$. Let $B$ be the set of representative elements of $X_{i}, i=1,2, \ldots, m$ and $J$ be the rough ideal of $T$. We also assume that $M$ is the union of none, one or more equivalence classes whose cardinality is equal to one and $M^{\prime}$ is the union of one or more equivalence classes whose cardinality is equal to one.

## Definition 1.4.

Rough Co-zero divisor graph The Rough Co-zero divisor graph $G\left(Z^{*}(J)\right)=(V, E)$ where $V$ is the set of vertices consisting of the elements of $T^{*}=T-\{R S(\varnothing), R S(U)\}$ and two elements $R S(X), R S(Y) \in T^{*}$ are adjacent iff $R S(X) \notin R S(Y) \nabla J$ and $R S(Y) \notin R S(X) \nabla J$.

### 2.4 Partition Graph

Partition graph $P\left(Z^{*}(J)\right)$ is obtained by defining suitable partition in the vertices of $G\left(Z^{*}(J)\right)$. Hence vertices having same degree will fall into same partition.

## Definition 1.5.

Partition graph The partition graph $P\left(Z^{*}(J)\right)$ is a graph whose vertices are the partitions on $V\left(Z^{*}(J)\right)$ Hence the vertices of $P\left(Z^{*}(J)\right)$ is the set $\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}\right\}$ where

$$
\begin{aligned}
& P_{1}=R S\left(x_{i}\right) \\
& P_{2}=R S\left(x_{i} \cup M^{\prime}\right) \cup R S\left(X_{i} \cup M\right) \\
& P_{3}=R S(Y) \mid Y \in M^{\prime} \\
& P_{4}=R S\left(x_{1}, x_{2}, \ldots x_{r}\right) \\
& P_{5}=R S\left(x_{1}, x_{2}, \ldots x_{m}\right) \\
& P_{6}=R S x_{1}, x_{2}, \ldots x_{r} \cup M^{\prime} \cup R S\left(X_{1}, X_{2}, \ldots X_{r} \cup M\right) \cup R S\left(Q_{r} \cup M\right) \\
& P_{7}=R S x_{1}, x_{2}, \ldots x_{m} \cup M^{\prime} \cup R S\left(X_{1}, X_{2}, \ldots X_{m} \cup M\right) \cup R S\left(Q_{m} \cup M\right)
\end{aligned}
$$

Two vertices $P_{i}$ and $P_{j}$ in the partition graph are connected by an edge if the elements in $P_{i}$ are adjacent to any of the elements in $P_{j}$ by an edge in $G\left(Z^{*}(J)\right)$.

The following Figure 1 represents the partition graph of $G\left(Z^{*}(J)\right)$ for $n \neq m$


Figure 1. Partition Graph for $n \neq m$
When $n=m$, the corresponding partition graph of $G\left(Z^{*}(J)\right)$ is given in Figure 2


Figure 2. Partition Graph for $n=m$

## 3. Clique Number, Girth and Maximal Independence number of a Rough Co-zero divisor graph

In this section we acquire the Clique number, Girth and Maximal independence number of a Rough Co-zero divisor graph using partition graph.

### 3.1. Clique Number of a Rough Co-zero divisor graph

In this section the Clique of the Rough Co-zero divisor graph is obtained.

## Theorem 3.1

The clique number of the Rough Co-zero divisor graph $G\left(Z^{*}(J)\right)$ is $2^{n-m} \cdot 3^{m}-2^{m}-1$ for $1 \leq m \leq n$.

## Proof:

Case 1: When $m<n$
We know that the Clique number of a complete graph is equal to the number of vertices in it. From the partition graph let us consider the set $A=\left\{P_{2}, P_{3}, P_{6}, P_{7}\right\}$

First, we prove that the elements of $A$ forms a complete subgraph of $G\left(Z^{*}(J)\right)$.The following observation suggest that the set $A$ will form a complete subgraph of $G\left(Z^{*}(J)\right)$.

Let, $P_{2}=R S\left(x_{i} \cup M^{\prime}\right) \cup R S\left(X_{i} \cup M\right)$

For $i, R S\left(x_{i} \cup M^{\prime}\right)$ is connected to $R S(Y)$ as $R S\left(x_{i} \cup M^{\prime}\right) \notin R S(Y) \nabla J$ and $R S(Y) \notin R S\left(x_{i} \cup M^{\prime}\right) \nabla J$ where $Y \in R S\left(x_{i} \cup M^{\prime}\right) \cup R S\left(X_{i} \cup M\right)$ and $R S\left(X_{i} \cup M^{\prime}\right)$ is connected to all $R S(Z)$ for $i \neq j, i, j=1,2, \ldots m$ as $R S\left(X_{i} \cup M^{\prime}\right) \notin R S(Z) \nabla J$ and $R S\left(x_{j} \cup M^{\prime}\right) \cup R S(Z) \nabla J$ where $Z \in R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right)$. Which proves the elements of $P_{2}$ forms a complete graph.

Similarly in partition $P_{3},\left\{R S\left(Q_{j}\right) \mid P(Q)-\emptyset, Q=X_{m+1}, X_{m+2}, \ldots X_{n}\right\}$, for each $i \operatorname{RS}\left(X_{i}\right) \notin R S\left(X_{j}\right) \nabla J$ and $R S\left(X_{j}\right) \notin R S\left(X_{i}\right) \nabla J, R S\left(X_{i}\right), R S\left(X_{j}\right) \in P_{3}$. Also it is connected to all the elements in $V\left(Z^{*}(J)\right)$. Hence elements of $P_{3}$ forms a complete graph.

Correspondingly in $P_{6}, P_{6}=R S\left(x_{1}, x_{2}, \ldots x_{r} \cup M^{\prime}\right) \cup R S\left(X_{1}, X_{2}, \ldots X_{r} \cup M\right) \cup R S\left(Q_{r} \cup M\right)$.
For each $\quad i, \quad R S(Y) \notin R S(Z) \nabla J \quad$ and $\quad R S(Z) \notin R S(Y), i=1,2 . . m, 1<r<m, \quad$ where $\quad Y \in$ $R S\left(x_{1}, x_{2}, \ldots x_{r}\right) \cup M^{\prime}$ and $Z \in R S\left(x_{r+1}, x_{r+2}, \ldots x_{m}\right) \cup M^{\prime}$

For each $i$,
$R S(T) \notin R S(S) \nabla J$ and $R S(S) \notin R S(T) \nabla J, i=1,2 . . m, 1<r<m$, where $T \in R S\left(X_{1}, X_{2}, \ldots X_{r}\right) \cup M$ and $S \in R S\left(X_{r+1}, X_{r+2}, \ldots X_{m}\right) \cup M$

For each $i$,
$R S(V) \notin R S(W) \nabla J$ and $R S(W) \notin R S(V) \nabla J, i=1,2 . . m, 1<r<m$, where $V \in R S\left(Q_{1}, Q_{2}, \ldots Q_{r}\right) \cup M$ and $W \in R S\left(Q_{r+1}, Q_{r+2}, \ldots Q_{m}\right) \cup M$

Henceforth the elements of $P_{6}$ forms a complete graph. Likewise the elements of $P_{7}, P_{7}=R S\left(x_{1}, x_{2}, \ldots x_{m} \cup\right.$ $\left.M^{\prime}\right) \cup R S\left(X_{1}, X_{2}, \ldots X_{m} \cup M\right) \cup R S\left(Q_{m} \cup M\right)$ forms a complete graph of $G\left(Z^{*}(J)\right)$

For each $j$,
$R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right) \notin R S\left(X_{k}\right) \nabla J$ and $R S\left(X_{k}\right) \notin R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right) \nabla J$ and $R S\left(x_{j} \cup M^{\prime}\right) \cup$ $R S\left(X_{j} \cup M\right) \notin R S\left(x_{1}, x_{2}, \ldots x_{r} \cup M^{\prime}\right) \cup R S\left(X_{1}, X_{2}, \ldots X_{r} \cup M\right) \cup R S\left(Q_{r} \cup M\right) \nabla J \& R S\left(x_{1}, x_{2}, \ldots x_{r} \cup M^{\prime}\right) \cup$ $R S\left(X_{1}, X_{2}, \ldots X_{r} \cup M\right) \cup R S\left(Q_{r} \cup M\right) R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right) \nabla J \quad$ and $\quad R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right) \notin$ $R S x_{1}, x_{2}, \ldots x_{m} \cup M^{\prime} \cup R S\left(X_{1}, X_{2}, \ldots X_{m} \cup M \cup R S\left(Q_{m} \cup M\right) \nabla J\right.$ and $R S\left(x_{1}, x_{2}, \ldots x_{m} \cup M^{\prime}\right) \cup$ $R S\left(X_{1}, X_{2}, \ldots X_{m} \cup M\right) \cup R S\left(Q_{m} \cup M\right) \notin R S\left(x_{j} \cup M^{\prime}\right) \cup R S\left(X_{j} \cup M\right) \nabla J$ which implies every elements of $P_{2}$ is connected to all the elements of $P_{3}, P_{6}$ and $P_{7}$ and similarly it can be prove that every elements of $P_{3}$ is connected to all the elements of $P_{6}$ and $P_{7}$.

Finally every elements of $P_{6}$ is connected to all the elements in $P_{7}$. Therefore elements of $A$ will form a complete subgraph of $G\left(Z^{*}(J)\right)$ for.

To prove $A$ is maximal, we take another complete subgraph say $A^{\prime}=\left\{P_{2}, P_{3}, P_{5}, P_{6}\right\}$. The total numbers of elements in each of these sets are

$$
\begin{gathered}
|A|=2^{n-m} \cdot 3^{m}-2^{m}-1 \\
A^{\prime}=2^{n-m}\left(2^{m}+m-1\right)-m+3\left(3^{m-1}-2^{m}+1\right)
\end{gathered}
$$

Note that the number of elements in $A$ is greater than'. Since $\left|P_{5}\right|<\left|P_{7}\right|$ This intimate that no other maximal complete graph can be formed in $G\left(Z^{*}(J)\right)$. Hence the set $A$ will form a maximal complete subgraph of $G\left(Z^{*}(J)\right)$ Hence the clique $C=\left\{P_{2}, P_{3}, P_{5}, P_{6}\right\}$ and the clique number is $\left|P_{2}\right|+\left|P_{3}\right|+\left|P_{5}\right|+\left|P_{6}\right|=2^{n-m} .3^{m}-2^{m}-1$

## Case 2: When $n=m$

The partition $P_{3}=\left\{R S(Y) \mid Y\left(X_{m+1}, X_{m+2}, \ldots X_{n}\right)\right\}=\emptyset$. Therefore $P_{3}=0$, also when $n=m$, the number of vertices in $P\left(Z^{*}(J)\right)$ has only 6 vertices. Thus our clique is $C=\left\{P_{2}, P_{6}, P_{7}\right\}$ and the clique number is $\left|P_{2}\right|+\left|P_{6}\right|+$ $\left|P_{7}\right|=2^{n-m} \cdot 3^{m}-2^{m}-1$

## Example 3.1

Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ and let $\left\{X_{1}, X_{2}, X_{3}\right\}$ are the equivalence classes induced by an equivalence relation $R$ on $U$ such $X_{1}=\left\{x_{1}, x_{3}\right\}, X_{2}=\left\{x_{2}, x_{4}, x_{6}\right\}$ and $X_{3}=\left\{x_{5}\right\}$
$V\left(Z^{*}(J)\right)=\left\{R S\left(x_{1}\right), R S\left(x_{2}\right), R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(x_{1} \cup x_{2}\right), R S\left(X_{1} \cup X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup\right.\right.$ $\left.X_{3}\right), R S\left(x_{1} \cup X_{2}\right), R S\left(X_{1} \cup x_{2}\right), R S\left(x_{1} \cup X_{3}\right), R S\left(x_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup x_{2} \cup X_{3}\right), R S\left(x_{1} \cup x_{2} \cup\right.$ $\left.\left.X_{3}\right)\right\} ; B=\left\{x_{1}, x_{2}\right\}, J=\left\{R S\left(x_{1}\right), R S\left(x_{2}\right), R S\left(x_{1} \cup x_{2}\right)\right\}$

Figure 3 represents the Rough co-zero divisor graph for $n=3$ and $m=2$.


Figure 3. Rough co-zero divisor graph for $n=3$ and $m=2$
By theorem 3.1,

$$
\begin{aligned}
& A=\left\{, R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(X_{1} \cup X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2}\right), R S\left(X_{1} \cup\right.\right. \\
& \left.\left.x_{2}\right), R S\left(x_{1} \cup X_{3}\right), R S\left(x_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup x_{2} \cup X_{3}\right), R S\left(x_{1} \cup x_{2} \cup X_{3}\right)\right\}
\end{aligned}
$$

Clique number of the Rough Co-zero divisor Graph is $2^{n-m} \cdot 3^{m}-2^{m}-1=13$

## Example 3.2

Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ and let $\left\{X_{1}, X_{2}, X_{3}\right\}$ are the equivalence classes induced by an equivalence relation $R$ on $U$ such $X_{1}=\left\{x_{1}, x_{3}\right\}, X_{2}=\left\{x_{2}, x_{4}\right\}$ and $X_{3}=\left\{x_{5}, x_{6}\right\}$

$$
\begin{aligned}
& V\left(Z^{*}(J)\right)=\left\{R S\left(x_{1}\right), R S\left(x_{2}\right), R S\left(x_{3}\right), R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(x_{1} \cup x_{2}\right), R S\left(x_{1} \cup x_{3}\right), R S\left(x_{2} \cup\right.\right. \\
& \left.x_{3}\right), R S\left(x_{1} \cup x_{2} \cup x_{3}\right), R S\left(X_{1} \cup X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2}\right), R S\left(X_{1} \cup x_{2}\right), R S\left(x_{1} \cup\right. \\
& \left.X_{3}\right), R S\left(X_{1} \cup x_{3}\right), R S\left(x_{2} \cup X_{3}\right), R S\left(X_{2} \cup x_{3}\right), R S\left(x_{1} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup x_{2} \cup X_{3}\right), R S\left(X_{1} \cup X_{2} \cup x_{3}\right), R S\left(x_{1} \cup\right. \\
& \left.\left.x_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2} \cup x_{3}\right), R S\left(X_{1} \cup x_{2} \cup x_{3}\right)\right\} \\
& \quad B=\left\{x_{1}, x_{2}, x_{3}\right\}, J=\left\{R S\left(x_{1}\right), R S\left(x_{2}\right), R S\left(x_{3}\right), R S\left(x_{1} \cup x_{2}\right), R S\left(x_{1} \cup x_{3}\right), R S\left(x_{2} \cup x_{3}\right) R S\left(x_{1} \cup x_{2} \cup x_{3}\right)\right\}
\end{aligned}
$$

Figure 4 represents the Rough co-zero divisor graph for $=m=3$.


Figure 4. Rough co-zero divisor graph for $n=m=3$
By theorem 3.1,
$A=\left\{R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{3}\right), R S\left(X_{1} \cup X_{2}\right), R S\left(X_{1} \cup X_{3}\right), R S\left(X_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2}\right), R S\left(X_{1} \cup\right.\right.$
$\left.x_{2}\right), R S\left(x_{1} \cup X_{3}\right), R S\left(X_{1} \cup x_{3}\right), R S\left(x_{2} \cup X_{3}\right), R S\left(X_{2} \cup x_{3}\right), R S\left(x_{1} \cup X_{2} \cup X_{3}\right), R S\left(X_{1} \cup x_{2} \cup X_{3}\right), R S\left(X_{1} \cup X_{2} \cup\right.$
$\left.\left.x_{3}\right), R S\left(x_{1} \cup x_{2} \cup X_{3}\right), R S\left(x_{1} \cup X_{2} \cup x_{3}\right), R S\left(X_{1} \cup x_{2} \cup x_{3}\right)\right\}$
Clique number of the Rough Co-zero divisor Graph is $2^{n-m} \cdot 3^{m}-2^{m}-1=18$

### 3.2. Girth of Rough Co-zero Divisor Graph

In this section the Girth of Rough Co-zero divisor graph is obtained.

## Theorem 3.2

Girth of Rough Co-zero divisor graph $G\left(Z^{*}(J)\right)$ is 3 for $1 \leq m \leq n$.

## Proof:

Note that in any undirected graph the girth $\geq 3$. If there exist a shortest cycle of length 3 in $G\left(Z^{*}(J)\right)$ then girth of $G\left(Z^{*}(J)\right)$ is 3 .

Consider the set $\operatorname{Gr}\left(G\left(Z^{*}(J)\right)\right)=\left\{R S\left(X_{i}\right), R S\left(X_{j}\right), R S\left(Q_{k}\right)\right\} 1 \leq i, j \leq m, Q_{k}=x_{i} \cup X_{j}$ or $X_{i} \cup x_{j}$
For each $i$ the element $R S\left(X_{i}\right), R S\left(X_{i}\right) \notin R S\left(X_{j}\right) \nabla J$ and $R S\left(X_{j}\right) \notin R S\left(X_{i}\right) \nabla J$ when $i \neq j$. Which indicates that $R S\left(X_{i}\right)$ is connected to $R S\left(X_{j}\right)$. Also element $R S\left(Q_{k}\right)$, is connected to $R S\left(X_{i}\right)$ and $R S\left(X_{j}\right)$. Since $R S\left(X_{i}\right) \notin$ $R S\left(Q_{k}\right) \nabla J$ and $R S\left(Q_{k}\right) \notin R S\left(X_{i}\right) \nabla J$. Hence $\operatorname{Gr}\left(G\left(Z^{*}(J)\right)\right)=\left\{R S\left(X_{i}\right), R S\left(X_{j}\right), R S\left(Q_{k}\right)\right\}$ forms a shortest cycle of length 3 in $G\left(Z^{*}(J)\right)$.

Example 3.3 (From example 3.1). $n=3$ and $m=2$.
$\operatorname{Gr}\left(G\left(Z^{*}(J)\right)\right)=\left\{R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(x_{1} X_{2}\right)\right\}$
Girth of the Rough Co-zero divisor graph 3.
Example 3.4 (From example 3.2). $n=3$ and $m=3$.
$\operatorname{Gr}\left(G\left(Z^{*}(J)\right)\right)=\left\{R S\left(X_{1}\right), R S\left(X_{2}\right), R S\left(X_{1} x_{2}\right)\right\}$
Girth of the Rough Co-zero divisor graph 3.

## Maximal independent set of a Rough Co-zero divisor graph

In this section the Maximal independent number of a Rough Co-zero divisor graph is obtained.

## Theorem 3.3

Maximal independent number of the Rough Co-zero divisor graph is $m+1$ for $1 \leq m \leq n$

## Proof:

From $G\left(Z^{*}(J)\right)$, Consider the set

$$
I=\left\{R S\left(x_{1}\right), R S\left(x_{1} x_{2}\right), R S\left(x_{1} x_{2} x_{3}\right), \ldots R S\left(x_{1} x_{2}, \ldots x_{m}\right), R S\left(x_{1} x_{2}, \ldots x_{m} X_{n}\right)\right\}
$$

Note that $R S\left(x_{1}\right) \in P_{1}$
$R S\left(x_{1} x_{2}\right), R S\left(x_{1} x_{2} x_{3}\right), \ldots R S\left(x_{1} x_{2}, \ldots x_{m-1}\right) \in P_{4}$
$R S\left(x_{1} x_{2}, \ldots x_{m}\right) \in P_{5}$
$R S\left(x_{1} x_{2}, \ldots x_{m} X_{n}\right) \in P_{7}$
As $R S\left(x_{1}\right) \in R S\left(x_{1} x_{2}\right) \nabla J$ and $R S\left(x_{1} x_{2}\right) \notin R S\left(x_{1}\right) \nabla J$ implies $R S\left(x_{1}\right)$ is connected to $R S\left(x_{1} x_{2}\right)$. Similarly we can prove that $R S\left(x_{1}\right)$ is not connected to $R S\left(x_{1} x_{2}, \ldots x_{r}\right)$ for $2 \leq r \leq m$. Same way $R S\left(x_{1} x_{2}, \ldots x_{r}\right)$ is not connected to $R S\left(x_{1} x_{2}, \ldots x_{r+s}\right), s \geq 1$. By the similar discussion it is easy to verify that $R S\left(x_{1} x_{2}, \ldots x_{r}\right)$ is not connected to $R S\left(x_{1} x_{2}, \ldots x_{m} X_{n}\right)$, where $1<r<m$.
(i.e)., Note that cardinality of $I$ is $m+1$ and all the elements of not connected to each other. As elements of $P_{1}, P_{2}, P_{3}, P_{6}$ and $P_{7}$ forms a complete subgraph of $G\left(Z^{*}(J)\right)$. None of these elements can be added to $I$. Note that $\left|P_{5}\right|=1$ and this element is already added to $I$.
$P_{4}=R S\left(x_{1} x_{2}, \ldots x_{r}\right)$, By the property of connectivity of the edges in $G\left(Z^{*}(J)\right)$. None of the elements in $P_{4}$ can be added to $I$ without asserting the property of independency.

Hence elements $I$ will form a maximal independent set of $G\left(Z^{*}(J)\right)$ and the number of elements in the maximal independent set of a Rough co-zero divisor graph is $m+1$.

Example 3.5 (From example 3.1). $n=3$ and $m=2$.
$I=\left\{R S\left(x_{1}\right), R S\left(x_{1} x_{2}\right), R S\left(x_{1} x_{2} X_{3}\right)\right\}$
Maximal independent number of the Rough Co-zero divisor graph $m+1=3$.
Example 3.6 (From example 3.2). $n=3$ and $m=3$.
$I=\left\{R S\left(x_{1}\right), R S\left(x_{1} x_{2}\right), R S\left(x_{1} x_{2} x_{3}\right), R S\left(x_{1} x_{2} x_{3} X_{4}\right)\right\}$
Maximal independent number of the Rough Co-zero divisor graph $m+1=4$.

## 4. Conclusion

In this article, the clique number, Girth and the Maximal independence number of the Rough Co-zero divisor Graph of the Rough Semiring ( $T, \Delta, \nabla$ ) using partition graph are obtained. All the concepts are illustrated with appropriate examples. Future work is to derive the independence number of $G\left(Z^{*}(J)\right)$. Also some real time applications to the graph theoretical approach using these parameters are obtain.

## Acknowledgement

The authors thank the management of SSN Institutions and the Principal for the completion of this paper and providing further encouragement and support to carry out the research.

## References

1. H. Ansari-Toroghy, F. Farshadifar and F. Mahboobi- Abkenar, An ideal based Co-zero divisor graph of a Commutative Ring, (2016), 45-54
A. Manimaran, B. Praba and V. M. Chandrasekaran, Characterization of rough seming, Afrika Mathematika (2017)1-12.
2. Mojgan Afkhami and Kazem Khashyarmanesh, On the Co-zero Divisor Graph of a Commutative Rings and their Complements, Buttetin of the Malaysian Mathematical Sceinces Society, 35(4) (2012), 935944.
3. B. Praba, V.M. Chandrasekaran and A. Manimaran, Semiring on Rough sets, Indian Journal of Science and Technology, 8(3), (2015), 280-286.
4. B. Praba, Benazir Obilia. X.A, Application of Category Graph in Finding the Wiener Index of Rough Ideal based Rough Edge Cayley Graph, Applied Mathematics and Information Sciences, (2019), 313-323.
5. B. Praba and R. Mohan. Rough lattice, International Journal of Fuzzy Mathematics and System (2013): 135-151.
6. B. Praba, M. Logeshwari, Weiner index of the Rough Co-zero divisor graph of a Rough semiring (Conference proceedings ICCET2021).
7. Z. Pawlak, Rough Sets, International journal of Computer and Information Sciences, 11(1982), 341-356.
