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Abstract: This study aims to determine the Clique number, Girth and Maximal independence number of the Rough Co-zero 

divisor Graph 𝐺(𝑍∗ (𝐽)) corresponding to a Rough semiring (T, ∆, ∇). The methodology of these graph theoretical parameters 

are obtained using partition graph 𝑃(𝑍∗(𝐽)) of Rough co-zero divisor graph 𝐺(𝑍∗(𝐽)). Though the number of vertices in 

𝐺(𝑍∗(𝐽))  is 2𝑛−𝑚. 3𝑚 − 2, 1 ≤ 𝑚 ≤ 𝑛, the partition graph plays a significant role in determining the results the Clique number 

of 𝐺(𝑍∗(𝐽))  as 2𝑛−𝑚. 3𝑚 −  2𝑚  −  1 and the Girth  𝐺(𝑍∗(𝐽)) is 3 and Maximal independence number of 𝐺(𝑍∗ (𝐽)) is 𝑚 + 1. 

All these concepts are illustrated with suitable examples. 
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1. Introduction 

 

Rough set theory proposed by Zdzislaw Pawlak [8] in 1982. He defined Rough set as a formal approximation 

of a crisp set in terms of a pair of sets which give the lower and the upper approximations of the original set. Rough 

set theory is an extension of Fuzzy set theory. Rough sets have been proposed for a very wide variety of 

applications. 

 

In particular, the rough set approach seems to be important for cognitive sciences and Artificial Intelligence, 

especially in knowledge discovery, machine learning, expert systems, data mining, pattern recognition, 

approximate reasoning etc., The concept of Rough Lattice was discussed by B. Praba and R. Mohan. [4-7] In this 

paper, the authors considered an information system and for any given information system a relation R on the set 

of all Rough sets 𝑇 was defined. They have defined two operations 𝑃𝑟𝑎𝑏𝑎∆ and 𝑃𝑟𝑎𝑏𝑎𝛻. 

 

Afkhami and Khashyarmanesh [1-3] introduced the co-zero divisor graph, denoted by 𝛤′ (𝑅), on a commutative 

ring 𝑅. Let 𝑊∗(𝑅) be the set of all non-unit elements of 𝑅. The vertex set of 𝛤′ (𝑅) is 𝑊∗(𝑅)  and for two distinct 

vertices x and y in 𝑊∗(𝑅), 𝑥 is connected to 𝑦 if and only if 𝑥 ∉ (𝑦𝑅) and 𝑦 ∉ (𝑥𝑅), where (𝑧𝑅) is an ideal 

generated by the element 𝑧. 

 

In this paper, our goal is to discover the clique number and girth of the Rough Co-zero divisor graph. This 

paper is systematized as follows: 

 

In Sec. 2, we contribute preliminaries on Graph theory and Rough set theory. 

 

In Sec. 3, we acquire the Clique number and Girth of the Rough Co-zero divisor graph and we illustrate with 

suitable examples. 

 

In Sec. 4, we give the conclusion. 

 

2. Preliminaries 

 

2.1. Graph Theory 

 

Definition 1.1. 

 

A clique of a graph is a complete subgraph of it and the number of vertices in a greatest clique of 𝐺 is called 

the clique number of 𝐺 and is denoted by 𝜔(𝐺). 

 

Definition 1.2. 
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The girth of 𝐺 is the length of the shortest cycle in 𝐺, denoted by 𝑔𝑟(𝐺). 

 

Definition 1.3. 

 

Let 𝐺 = (𝑉, 𝐸). A subset 𝐼 of 𝑉 is called an independent set of 𝐺 if no two vertices in 𝐼 are adjacent. 

Independent vertex set 𝐼 of 𝐺 is said to be maximal if no other vertex of 𝐺 can be added to 𝐼 

 

2.2 Rough Set Theory 

 

In this section we consider an approximation space 𝐼 =  (𝑈, 𝑅) where 𝑈 is a non empty finite set of objects, 

called universal set and 𝑅 be an equivalence relation defined on 𝑈. 

 

Definition 1.3. 

 

For any approximation space, the equivalence classes induced by R is defined by [𝑥]  =  {𝑦 ∈  𝑈 | (𝑥, 𝑦)  ∈
 𝑅}. For any 𝑋 ⊆  𝑈, the lower approximation is defined as 𝑅−(𝑋)  =  {𝑥 ∈  𝑈 | [𝑥]  ⊆  𝑋} and the upper 

approximation is defined by 𝑅−(𝑋)  =  {𝑥 ∈  𝑈 | [𝑥]  ∩  𝑋 =  𝜙}. The rough set corresponding to 𝑋 is 𝑅𝑆(𝑋)  =
(𝑅−(𝑋), 𝑅−(𝑋)). 
 

Theorem 1.1 

 

For any approximation space 𝐼 =  (𝑈, 𝑅), (𝑇, ∆, 𝛻) is a semiring called the Rough semiring. 

 

2.3 Rough Co-zero divisor Graph 

 

In this section we consider an approximation space 𝐼 =  (𝑈, 𝑅) where 𝑈 is the non empty finite set of objects 

and 𝑅 is an equivalence relation on 𝑈. Let (𝑇, ∆, 𝛻) be the rough semiring induced by 𝐼. Without loss of generality 

we also assume that there are m equivalence classes {𝑋1, 𝑋2, . . . 𝑋𝑚} with cardinality greater than 1 and the 

remaining 𝑛 − 𝑚 equivalence classes {𝑋𝑚+1 , 𝑋𝑚+2, . . . 𝑋𝑛} have cardinality equal to 1, where 1 < 𝑚 ≤  𝑛. Let 𝐵 

be the set of representative elements of 𝑋𝑖  , 𝑖 =  1, 2, . . . , 𝑚 and 𝐽 be the rough ideal of 𝑇. We also assume that 𝑀 

is the union of none, one or more equivalence classes whose cardinality is equal to one and 𝑀 ′ is the union of one 

or more equivalence classes whose cardinality is equal to one. 

 

Definition 1.4. 

 

Rough Co-zero divisor graph The Rough Co-zero divisor graph 𝐺(𝑍∗ (𝐽))  =  (𝑉, 𝐸) where 𝑉 is the set of 

vertices consisting of the elements of 𝑇∗ =  𝑇 −  {𝑅𝑆(∅), 𝑅𝑆(𝑈)} and two elements 𝑅𝑆(𝑋), 𝑅𝑆(𝑌 ) ∈  𝑇∗ are 

adjacent iff 𝑅𝑆(𝑋) ∉  𝑅𝑆(𝑌 )𝛻𝐽 and 𝑅𝑆(𝑌 )  ∉  𝑅𝑆(𝑋)𝛻𝐽. 

 

2.4 Partition Graph 

 

Partition graph 𝑃(𝑍∗(𝐽)) is obtained by defining suitable partition in the vertices of 𝐺(𝑍∗(𝐽)). Hence vertices 

having same degree will fall into same partition. 

 

Definition 1.5. 

 

Partition graph The partition graph 𝑃(𝑍∗(𝐽))  is a graph whose vertices are the partitions on 𝑉(𝑍∗(𝐽)) Hence 

the vertices of 𝑃(𝑍∗(𝐽))   is the set {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7} where 

 

𝑃1  =  𝑅𝑆(𝑥𝑖)  

𝑃2  =  𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  

𝑃3  =  𝑅𝑆(𝑌)|𝑌 ∈ 𝑀′  

𝑃4  =  𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑟)   
𝑃5  =  𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑚)   
𝑃6  =  𝑅𝑆 𝑥1, 𝑥2, . . . 𝑥𝑟 ∪ 𝑀′ ∪  𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑟 ∪ 𝑀)   
𝑃7  =  𝑅𝑆 𝑥1, 𝑥2, . . . 𝑥𝑚 ∪  𝑀 ′ ∪ 𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑚 ∪ 𝑀)   

 

Two vertices 𝑃𝑖  and 𝑃𝑗 in the partition graph are connected by an edge if the elements in 𝑃𝑖  are adjacent to any 

of the elements in 𝑃𝑗 by an edge in 𝐺(𝑍∗(𝐽)). 
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The following Figure 1 represents the partition graph of 𝐺(𝑍∗(𝐽)) for 𝑛 ≠  𝑚 

 

 
Figure 1. Partition Graph for 𝑛 ≠ 𝑚 

 

When 𝑛 =  𝑚, the corresponding partition graph of 𝐺(𝑍∗(𝐽))  is given in Figure 2 

 

 
Figure 2. Partition Graph for 𝑛 = 𝑚 

 

3. Clique Number, Girth and Maximal Independence number of a Rough Co-zero divisor graph 

 

In this section we acquire the Clique number, Girth and Maximal independence number of a Rough Co-zero 

divisor graph using partition graph. 

 

3.1. Clique Number of a Rough Co-zero divisor graph 

 

In this section the Clique of the Rough Co-zero divisor graph is obtained. 

 

Theorem 3.1 

 

The clique number of the Rough Co-zero divisor graph 𝐺(𝑍∗(𝐽)) is 2𝑛−𝑚. 3𝑚 − 2𝑚 − 1 for 1≤ 𝑚 ≤ 𝑛. 

 

Proof: 

Case 1: When 𝒎 < 𝑛  

 

We know that the Clique number of a complete graph is equal to the number of vertices in it. From the partition 

graph let us consider the set 𝐴 =  {𝑃2, 𝑃3, 𝑃6, 𝑃7} 

 

First, we prove that the elements of 𝐴 forms a complete subgraph of 𝐺(𝑍∗(𝐽)).The following observation 

suggest that the set 𝐴 will form a complete subgraph of 𝐺(𝑍∗(𝐽)). 

Let,  𝑃2  =  𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)  
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For 𝑖, 𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′) is connected to 𝑅𝑆(𝑌) as 𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′ ) ∉  𝑅𝑆(𝑌)𝛻𝐽 and 𝑅𝑆(𝑌)  ∉ 𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′ )𝛻𝐽 where 

𝑌 ∈ 𝑅𝑆(𝑥𝑖 ∪ 𝑀 ′) ∪ 𝑅𝑆(𝑋𝑖 ∪ 𝑀)and 𝑅𝑆(𝑋𝑖 ∪ 𝑀 ′) is connected to all 𝑅𝑆(𝑍) for 𝑖 ≠ 𝑗, 𝑖, 𝑗 =  1, 2, . . . 𝑚 as 

𝑅𝑆(𝑋𝑖 ∪  𝑀 ′)  ∉ 𝑅𝑆(𝑍)𝛻𝐽 and 𝑅𝑆(𝑥𝑗  ∪ 𝑀 ′ ) ∪ 𝑅𝑆(𝑍)𝛻𝐽 where 𝑍 ∈ 𝑅𝑆(𝑥𝑗 ∪ 𝑀 ′)  ∪ 𝑅𝑆(𝑋𝑗  ∪ 𝑀).Which proves 

the elements of 𝑃2 forms a complete graph. 

 

Similarly in partition 𝑃3, {𝑅𝑆(𝑄𝑗  )|𝑃(𝑄) −  ∅, 𝑄 =  𝑋𝑚+1, 𝑋𝑚+2, . . . 𝑋𝑛}, for each 𝑖 RS(𝑋𝑖) ∉  𝑅𝑆(𝑋𝑗 )𝛻𝐽 and 

𝑅𝑆(𝑋𝑗  ) ∉ 𝑅𝑆(𝑋𝑖)𝛻𝐽, 𝑅𝑆(𝑋𝑖), 𝑅𝑆(𝑋𝑗) ∈ 𝑃3. Also it is connected to all the elements in 𝑉(𝑍∗(𝐽)). Hence elements 

of 𝑃3 forms a complete graph.  

 

Correspondingly in 𝑃6, 𝑃6 = 𝑅𝑆( 𝑥1, 𝑥2, . . . 𝑥𝑟 ∪ 𝑀′) ∪ 𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑟 ∪ 𝑀). 

 

For each 𝑖, 𝑅𝑆 (𝑌)  ∉ 𝑅𝑆 (𝑍)𝛻𝐽 and 𝑅𝑆(𝑍) ∉ 𝑅𝑆 (𝑌), 𝑖 =  1, 2. . 𝑚, 1 <  𝑟 <  𝑚, where 𝑌 ∈
𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑟) ∪ 𝑀 ′ and 𝑍 ∈ 𝑅𝑆 (𝑥𝑟+1, 𝑥𝑟+2, . . . 𝑥𝑚) ∪ 𝑀 ′  
 

For each 𝑖, 
𝑅𝑆 (𝑇) ∉ 𝑅𝑆 (𝑆)𝛻𝐽 and𝑅𝑆( 𝑆) ∉ 𝑅𝑆 (𝑇)𝛻𝐽, 𝑖 =  1, 2. . 𝑚, 1 <  𝑟 <  𝑚, where 𝑇 ∈ 𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑟) ∪ 𝑀 

and 𝑆 ∈ 𝑅𝑆 (𝑋𝑟+1, 𝑋𝑟+2, . . . 𝑋𝑚) ∪ 𝑀 

 

For each 𝑖, 
𝑅𝑆 (𝑉)  ∉ 𝑅𝑆(𝑊)𝛻𝐽 and 𝑅𝑆(𝑊) ∉ 𝑅𝑆(𝑉)𝛻𝐽, 𝑖 =  1, 2. . 𝑚 ,1 <  𝑟 <  𝑚, where 𝑉 ∈ 𝑅𝑆 (𝑄1, 𝑄2, . . . 𝑄𝑟) ∪ 𝑀 

and 𝑊 ∈ 𝑅𝑆(𝑄𝑟+1, 𝑄𝑟+2, . . . 𝑄𝑚) ∪ 𝑀 

 

Henceforth the elements of 𝑃6 forms a complete graph. Likewise the elements of 𝑃7, 𝑃7  =  𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑚 ∪
𝑀 ′) ∪ 𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑚 ∪ 𝑀) forms a complete graph of 𝐺(𝑍∗(𝐽)) 

 

For each 𝑗,  

𝑅𝑆(𝑥𝑗 ∪  𝑀 ′ ) ∪ 𝑅𝑆(𝑋𝑗 ∪ 𝑀) ∉ 𝑅𝑆(𝑋𝑘)𝛻𝐽 and 𝑅𝑆(𝑋𝑘) ∉ 𝑅𝑆(𝑥𝑗 ∪ 𝑀 ′) ∪  𝑅𝑆(𝑋𝑗 ∪ 𝑀)𝛻𝐽 and 𝑅𝑆(𝑥𝑗 ∪ 𝑀 ′) ∪

𝑅𝑆(𝑋𝑗 ∪ 𝑀) ∉  𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑟 ∪ 𝑀 ′) ∪  𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑟 ∪ 𝑀) 𝛻𝐽  & 𝑅𝑆(𝑥1, 𝑥2, . . . 𝑥𝑟 ∪ 𝑀′) ∪

𝑅𝑆 (𝑋1, 𝑋2, . . . 𝑋𝑟 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑟 ∪ 𝑀) 𝑅𝑆(𝑥𝑗 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑗 ∪ 𝑀)𝛻𝐽 and 𝑅𝑆(𝑥𝑗 ∪ 𝑀′) ∪ 𝑅𝑆(𝑋𝑗 ∪ 𝑀)  ∉

𝑅𝑆 𝑥1, 𝑥2, . . . 𝑥𝑚  ∪ 𝑀 ′ ∪ 𝑅𝑆(𝑋1, 𝑋2, . . . 𝑋𝑚 ∪  𝑀 ∪  𝑅𝑆(𝑄𝑚 ∪ 𝑀) 𝛻𝐽 and 𝑅𝑆 (𝑥1, 𝑥2, . . . 𝑥𝑚 ∪ 𝑀 ′) ∪
𝑅𝑆(𝑋1, 𝑋2, . . . 𝑋𝑚 ∪ 𝑀) ∪ 𝑅𝑆 (𝑄𝑚 ∪ 𝑀)  ∉ 𝑅𝑆(𝑥𝑗 ∪ 𝑀 ′) ∪ 𝑅𝑆(𝑋𝑗 ∪ 𝑀)𝛻𝐽 which implies every elements of 𝑃2 is 

connected to all the elements of 𝑃3, 𝑃6 and 𝑃7 and similarly it can be prove that every elements of 𝑃3 is connected 

to all the elements of 𝑃6 and 𝑃7. 

 

Finally every elements of 𝑃6 is connected to all the elements in 𝑃7. Therefore elements of 𝐴 will form a 

complete subgraph of 𝐺(𝑍∗(𝐽)) for. 

 

To prove 𝐴 is maximal, we take another complete subgraph say 𝐴 ′ =  {𝑃2, 𝑃3, 𝑃5, 𝑃6}. The total numbers of 

elements in each of these sets are 

 
|𝐴| =  2𝑛−𝑚. 3𝑚  − 2𝑚 −  1 

𝐴′ = 2𝑛−𝑚(2𝑚 +  𝑚 −  1)  −  𝑚 +  3(3𝑚−1 −   2𝑚  +  1) 

 

Note that the number of elements in 𝐴 is greater than′. Since |𝑃5|  <  |𝑃7| This intimate that no other maximal 

complete graph can be formed in 𝐺(𝑍∗(𝐽)). Hence the set 𝐴 will form a maximal complete subgraph of 𝐺(𝑍∗(𝐽)) 

Hence the clique 𝐶 = {𝑃2, 𝑃3, 𝑃5, 𝑃6} and the clique number is |𝑃2|+|𝑃3| + |𝑃5| + | 𝑃6| =  2𝑛−𝑚. 3𝑚  − 2𝑚 −  1 
 
Case 2: When 𝒏 = 𝒎  

 

The partition 𝑃3  =  {𝑅𝑆(𝑌 )|𝑌 (𝑋𝑚+1, 𝑋𝑚+2, . . . 𝑋𝑛)}  =  ∅ . Therefore 𝑃3  =  0, also when 𝑛 = 𝑚, the number 

of vertices in 𝑃(𝑍∗(𝐽)) has only 6 vertices. Thus our clique is 𝐶 = {𝑃2, 𝑃6, 𝑃7} and the clique number is |𝑃2|+|𝑃6| +
| 𝑃7| =  2𝑛−𝑚. 3𝑚  − 2𝑚 −  1 
 

Example 3.1 

 

Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and let {𝑋1, 𝑋2, 𝑋3} are the equivalence classes induced by an equivalence 

relation 𝑅 on 𝑈 such 𝑋1 = {𝑥1, 𝑥3}, 𝑋2 = {𝑥2, 𝑥4, 𝑥6} and 𝑋3 = {𝑥5} 
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𝑉(𝑍∗(𝐽)) = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪

𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪
𝑋3)} ; 𝐵 = {𝑥1, 𝑥2}, 𝐽 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥2)} 
 

Figure 3 represents the Rough co-zero divisor graph for 𝑛 = 3 and 𝑚 = 2. 

 

 
Figure 3. Rough co-zero divisor graph for 𝑛 = 3 and 𝑚 = 2 

 

By theorem 3.1, 

 

𝐴 = {, 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪
𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3)}  

 

Clique number of the Rough Co-zero divisor Graph is 2𝑛−𝑚. 3𝑚  − 2𝑚 −  1 = 13 

 

Example 3.2 

 

Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and let {𝑋1, 𝑋2, 𝑋3} are the equivalence classes induced by an equivalence 

relation 𝑅 on 𝑈 such 𝑋1 = {𝑥1, 𝑥3}, 𝑋2 = {𝑥2, 𝑥4} and 𝑋3 = {𝑥5, 𝑥6} 

 

𝑉(𝑍∗(𝐽)) = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥3), 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪

𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪
𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪
𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑥3)}  

𝐵 = {𝑥1, 𝑥2, 𝑥3},𝐽 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥2), 𝑅𝑆(𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑥3)𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑥3)} 
 

Figure 4 represents the Rough co-zero divisor graph for = 𝑚 = 3. 
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Figure 4. Rough co-zero divisor graph for 𝑛 = 𝑚 = 3 

 

By theorem 3.1, 

 

𝐴 = { 𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2), 𝑅𝑆(𝑋1 ∪
𝑥2), 𝑅𝑆(𝑥1 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥3), 𝑅𝑆(𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑋1 ∪ 𝑋2 ∪
𝑥3), 𝑅𝑆(𝑥1 ∪ 𝑥2 ∪ 𝑋3), 𝑅𝑆(𝑥1 ∪ 𝑋2 ∪ 𝑥3), 𝑅𝑆(𝑋1 ∪ 𝑥2 ∪ 𝑥3)}  

 

Clique number of the Rough Co-zero divisor Graph is 2𝑛−𝑚. 3𝑚  − 2𝑚 −  1 = 18 

 

3.2. Girth of Rough Co-zero Divisor Graph 

 

In this section the Girth of Rough Co-zero divisor graph is obtained. 

 

Theorem 3.2 

 

Girth of Rough Co-zero divisor graph 𝐺(𝑍∗(𝐽)) is 3 for  1 ≤ 𝑚 ≤ 𝑛. 

 

Proof: 

 

Note that in any undirected graph the girth ≥ 3. If there exist a shortest cycle of length 3 in 𝐺(𝑍∗(𝐽)) then girth 

of 𝐺(𝑍∗(𝐽)) is 3. 

 

Consider the set 𝐺𝑟 (𝐺(𝑍∗(𝐽))) = {𝑅𝑆(𝑋𝑖), 𝑅𝑆(𝑋𝑗), 𝑅𝑆(𝑄𝑘)} 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑄𝑘 = 𝑥𝑖 ∪ 𝑋𝑗  𝑜𝑟 𝑋𝑖 ∪  𝑥𝑗 

 

For each 𝑖 the element 𝑅𝑆(𝑋𝑖), 𝑅𝑆(𝑋𝑖)  ∉ 𝑅𝑆(𝑋𝑗  )𝛻𝐽 and 𝑅𝑆(𝑋𝑗 ) ∉ 𝑅𝑆(𝑋𝑖)𝛻𝐽 when 𝑖 ≠  𝑗. Which indicates 

that 𝑅𝑆(𝑋𝑖) is connected to 𝑅𝑆(𝑋𝑗). Also element 𝑅𝑆(𝑄𝑘),  is connected to 𝑅𝑆(𝑋𝑖) and 𝑅𝑆(𝑋𝑗). Since 𝑅𝑆(𝑋𝑖) ∉

𝑅𝑆(𝑄𝑘)𝛻𝐽 and 𝑅𝑆(𝑄𝑘)  ∉  𝑅𝑆(𝑋𝑖)𝛻𝐽. Hence 𝐺𝑟(𝐺(𝑍∗(𝐽))) = {𝑅𝑆(𝑋𝑖), 𝑅𝑆(𝑋𝑗), 𝑅𝑆(𝑄𝑘)} forms a shortest cycle of 

length 3 in 𝐺(𝑍∗(𝐽)). 

 

Example 3.3 (From example 3.1). 𝑛 =  3 and 𝑚 =  2.  

𝐺𝑟(𝐺(𝑍∗(𝐽))) = {𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑥1𝑋2)}  

Girth of the Rough Co-zero divisor graph 3.  

 

Example 3.4 (From example 3.2). 𝑛 =  3 and 𝑚 =  3.  

𝐺𝑟(𝐺(𝑍∗(𝐽))) = {𝑅𝑆(𝑋1), 𝑅𝑆(𝑋2), 𝑅𝑆(𝑋1𝑥2)}  

Girth of the Rough Co-zero divisor graph 3.  
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Maximal independent set of a Rough Co-zero divisor graph 

 

In this section the Maximal independent number of a Rough Co-zero divisor graph is obtained. 

 

Theorem 3.3 

 

Maximal independent number of the Rough Co-zero divisor graph is 𝑚 + 1 for 1 ≤ 𝑚 ≤ 𝑛 

 

Proof: 

 

From 𝐺(𝑍∗(𝐽)), Consider the set 

 

𝐼 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥1𝑥2), 𝑅𝑆(𝑥1𝑥2𝑥3), … 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚), 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚𝑋𝑛)}  

 

Note that 𝑅𝑆(𝑥1) ∈ 𝑃1 

𝑅𝑆(𝑥1𝑥2), 𝑅𝑆(𝑥1𝑥2𝑥3), … 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚−1)  ∈ 𝑃4  

𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚) ∈ 𝑃5  

𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚𝑋𝑛) ∈ 𝑃7  

 

As 𝑅𝑆(𝑥1) ∈ 𝑅𝑆(𝑥1𝑥2)∇𝐽 and 𝑅𝑆(𝑥1𝑥2) ∉ 𝑅𝑆(𝑥1)∇𝐽 implies 𝑅𝑆(𝑥1) is connected to 𝑅𝑆(𝑥1𝑥2). Similarly we 

can prove that 𝑅𝑆(𝑥1) is not connected to 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑟) for 2 ≤ 𝑟 ≤ 𝑚. Same way 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑟) is not 

connected to 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑟+𝑠), 𝑠 ≥ 1. By the similar discussion it is easy to verify that 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑟) is not 

connected to 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑚𝑋𝑛), where 1 < 𝑟 < 𝑚.  

 

(i.e)., Note that cardinality of 𝐼 is 𝑚 + 1 and all the elements of not connected to each other. As elements of 

𝑃1, 𝑃2, 𝑃3, 𝑃6 and 𝑃7 forms a complete subgraph of 𝐺(𝑍∗(𝐽)). None of these elements can be added to 𝐼. Note that 
|𝑃5| = 1 and this element is already added to 𝐼. 

 

𝑃4 = 𝑅𝑆(𝑥1𝑥2, … 𝑥𝑟), By the property of connectivity of the edges in 𝐺(𝑍∗(𝐽)). None of the elements in 𝑃4 can 

be added to 𝐼 without asserting the property of independency. 

 

Hence elements 𝐼 will form a maximal independent set of 𝐺(𝑍∗(𝐽)) and the number of elements in the maximal 

independent set of a Rough co-zero divisor graph is 𝑚 + 1. 

 

Example 3.5 (From example 3.1). 𝑛 =  3 and 𝑚 =  2.  

𝐼 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥1𝑥2), 𝑅𝑆(𝑥1𝑥2𝑋3)}  

Maximal independent number of the Rough Co-zero divisor graph 𝑚 + 1 = 3. 

 

Example 3.6 (From example 3.2). 𝑛 =  3 and 𝑚 =  3.  

𝐼 = {𝑅𝑆(𝑥1), 𝑅𝑆(𝑥1𝑥2), 𝑅𝑆(𝑥1𝑥2𝑥3), 𝑅𝑆(𝑥1𝑥2𝑥3𝑋4)}  

Maximal independent number of the Rough Co-zero divisor graph 𝑚 + 1 = 4. 

 

4. Conclusion 

 

In this article, the clique number, Girth and the Maximal independence number of the Rough Co-zero divisor 

Graph of the Rough Semiring (T, ∆, ∇) using partition graph are obtained. All the concepts are illustrated with 

appropriate examples. Future work is to derive the independence number of 𝐺(𝑍∗(𝐽)). Also some real time 

applications to the graph theoretical approach using these parameters are obtain. 
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