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Abstract: The objective of the research paper is to propose a tensor quantum neural model with a smart EDGE (Evolving 

Dimension and Gradient Enlargement) technique. The conventional machine learning technique like recurrent deep learning 

addresses the vanishing gradient problem using layer wise learning techniques. When the dimensionality of learning changes 

a greater number of layers are to be included to completely cover the full level of knowledge across the domain. The paper 

addresses this critical issue and modify the layer wise learning into an EDGE centred tenser flow quantum based neural 

model. The application of the model is validated on the generated data set through towards rural electrification processes for a 

smart nation, India. This energy domain involves energy losses, infrastructure facility, feasibility of electrification and 

environmental issues to determine an amicable solution for the inter-twined complexities towards social reform need. An 

EDGE Tensor Flow approach in Keras platform towards quantum level processing is modelled and executed with python 

programming. 
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1. Introduction 

 

Artificial neural networks (ANNs) are important machine learning approaches that have wide applications in 

pattern recognition, medical diagnosis, system identification and control [1,2,3]. The first algorithmically 

described ANN is perceptron, which was invented by Rosenblatt [4]. It was also the simplest form of ANNs used 

for the (supervised) classification of patterns that is promised to be linearly separable. Quantum computing is a 

highly proposing new field of computer science that can efficiently manipulate high- dimensional data [5]. As 

integration of ANN and quantum computing, quantum neural networks (QNNs) are promised to be powerful 

computing devices [6] to solve real-world problems. The idea of the quantum neural network (QNN) was first set 

forth in [7]. It unites the concept of the ordinary neural network with a quantum computation paradigm. In 1997 

A. Lasor came up with a hypothetical model of the quantum neural network using optical interference [10]. 

Quantum artificial neural networks (QANNs) were first systematically considered by T. Menneer in his PhD 

thesis. Afterwards, a lot of works were published that generalized well developed tools for classical ANNs to the 

quantum case. In the year 2000, D. Ventura and T. Martinez proposed a quantum implementation of the 

associative memory model [9] based on Grover’s algorithm, and E. Behrman with co-workers came up with the 

idea of physical implementation of the quantum neural network as an array of quantum dots [8]. Now most of the 

proposed quantum neural networks are self-organized networks, i.e., “networks without a teacher,” where weight 

factors are determined by the parameters of the problem to be solved. The “network with a teacher” model of the 

quantum perceptron was proposed by Altaisky in 2001 [11]. Implementation of this weight updating algorithm is 

discussed in [12–14]. The algorithm is based on qubit neural networks [15, 16]. Among unsupervised non 

learning networks are neural networks with quantum gated nodes [17] and currently employed DWave quantum 

processors [18]. 

 

The organization of the paper is as follows: Section 2 starts with the need of smart techniques for a smart 

nation to gain self- sufficiency and sustainability against the geo political and socio-cultural variations. Section 3 

discusses about a framework of Tensor Flow Quantum Learning Techniques towards rural electrification and 

focuses on data set generation in cooperating all the social economic and environmental issues of the selected geo 

locations. Section 4 describes the Various Computational Deep Learning techniques along with Tensor Flow 

Quantum Phased and Classical Transformations. Section 5 state models of the electrification problem into an 

EDGE- based tensor flow quantum model and its essential components and also focuses on the result obtained 

and concludes the research work with its limitations and its drawback when applied to different domain issues 

and its corresponding modifications. 
2. Need for a Smart Technique for a Smart Nation 
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The democratic republic of India, as a nation of united multi-lingual nations is one of many developing 

nations with a highly specific issue of rural electrification across its vast landscape. The issue of electric power 

generation at mountain or river sides and transmission across the deserts or dense forests pose many challenges 

including bio-centric and plantation centric problems. The renewable energy sources like wind energy and solar 

energy are to be carefully spotted and erected as the government economy has faced many ups and downs in 

recent pre and post-pandemic periods. The attainment of a minimum specific basic energy requirement for every 

citizen in this ancient nation lies in the socio-cultural aspects of the people an also on the co-operative psychology 

of the people. The success of the government policies and planning also depends on the rightful fulfilment of the 

poor living in the dense forests and in the hill tops as tribal people. The digitization of the life style including e-

currency and internet facilities are based on the time driven fundamental infra-structural energy need of the 

citizen paying all forms of taxes. The specific need that is time driven and an attainable fundamental right to 

consume electrical energy is a “SMART” demand for people who live in Sea-shore, Mountain and Regional 

Territories (SMART). 

 

The other side of the issue concentrated by the self- sufficiency of the local areas with the help of local or 

state government budget cost and maintained by the energy consumption charges. Many geo-located tribal areas 

can be electrified by proper design of the generation of electrical power. This can be accomplished by firing the 

waste trees with abundant forest wood and solar panel across the vast desert plain. In some other local places, 

nearby waterfalls and small dams can be erected and utilized towards hydroelectric power stations within a 

reasonable cost of generation and distribution. Many plain areas and valleys can be flooded with bio chemical 

energy plant with sugar cane juices and algae fields with a careful compliance monitoring of eco cyclic carbon 

emission into atmosphere. Similarly, the tidal energy or wave energy can be converted into electrical energy 

through multiple transformations and stored in a riskier storage cell or alternator. The other important factor in the 

generation of electrical energy through a mammoth number of automotive like the use of cyber-connected 

passenger vehicles. The wind energy can be utilized to generate a considerable quantity of electrical charge and 

stored in the discharge stations which then be utilized for the nation to be smart within the local budget cost. The 

design for sustainability can be achieved through successful maintenance of the multiple resources with 

minimum loss and rate of change of electrical energy production through predictable seasonal changes, and 

especially during risky pandemic periods. The selection of correct renewable energy resources for the correct 

region forces a smart electrification technique to enhance the sustainability of the generation and transmission of 

energy according to national and local constraints for a smart nation like India. 

 

3. Socio Economic and Environment Issues in Electrification in India 

 

Rural Electrification is a process of bringing electrical power to rural and remote areas. Electricity is not only 

used for household purposes but it also allows mechanization of many farming operations, such as threshing, 

milking, hoisting grain for storage. A famous program New Deal’s Rural Electrification Administration in the 

United States pioneered many of the schemes still practiced in other countries. India adopted rural electrification 

programmes and build new ones in order to provide 400 million Indians electricity in rural India. In today's 

context, rural electrification has five major facets. 

 

• Setting up of rural electricity infrastructure. 

• Providing connectivity to households. 

• Adequate supply of desired quality of power. 

• Supply of electricity at affordable rates. 

• Providing clean, environmentally benign and sustainable power in efficient way. 

 

India has always had a rural economy and since independence successive governments have tried to improve 

the rural infrastructure including energy infrastructure. However, a lot is yet to be achieved to give a real impetus 

to rural economy. In spite of launching of ambitious schemes to achieve 100% rural electrification, India has 

achieved only 67.3% overall electrification (urban and rural together). More than 75 million households (45% of 

the total rural households) are yet to be electrified (Census of India, 201a). As per latest data, about 19,909 

villages are yet to be electrified (Progress report of village electrification as on 31-01-2015 as per 2011). 

 

 

Table I. Data of unelectrified houses in multiple states 

Status of un-electrified households in India as reported by the Indian states according to the date mentioned in 
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the table below: 

Sl. 

No. 
Date 

States in 

India 

Number of Rural 

Households (in 

Lakhs) 

Households 

Electrified (in 

Lakhs) 

Remaining 

Unelectrified    

Households (in Lakhs) 

Percentage 

1 30.04.2017 Assam 51.85 27.49 24.36 53.01 % 

 10.10.2017 Assam 51.88 27.78 24.10 53.54 % 

 31.03.2011 Assam 9.92 8.34 1.58 84.08 % 

2 30.04.2017 Bihar 122.56 55.19 67.37 45,03 % 

 10.10.2017 Bihar 123.46 58.76 64.70 47.59 % 

 31.032011 Bihar 20.13 13.43 6.7 66.73 % 

3 30.04.2017 Kerala 70.97 70.79 0.18 99.74 % 

 10.10.2017 Kerala 71.04 71.04 0.00 100 % 

 31.032011 Kerala 36.2 35.12 1.08 97.01 % 

4 30.04.2017 Kashmir 12.88 10.18 2.70 79.03 % 

 10.10.2017 Kashmir 12.91 10.21 2.70 79.08 % 

 31.032011 Kashmir 5.17 5.07 0.1 98.04 % 

5 30.04.2017 MP 113.61 67.77 45.85 59.65 

 10.10.2017 MP 114,00 69.05 44.95 60.57 % 

 31.032011 MP 38.45 35.65 2.8 92.73 % 

6 30.04.2017 UP 305.18 149.12 156.07 48.86 % 

 10.10.2017 UP 302.34 155.87 146.47 51.55 % 

 31.032011 UP 74.49 60.65 13.84 81.42 % 

 

However, not all electrified villages are getting quality power and it is estimated that nearly 33% of the 

population may be facing under-electrification, accessing less than 50kWh of electricity per month/household. 
 

4. Various Computational Deep Learning Techniques 

 

Classical Computational Learning - The classical conditioning theory is based on the assumption that 

learning is developed through the interactions with the environment. Also, the environment shapes the behavior 

and internal mental state such as thoughts, feelings, emotions do not explain the human behavior. The 

computational classical learning sees more data points, their positions, directions of vectors, intensities of their 

values into supervised and unsupervised learning. 

 

Deep Machine Learning - Deep learning is an artificial intelligence (AI) function that imitates the workings 

of the human brain in processing data and creating patterns for use in decision making. It is also known as deep 

neural learning or deep neural network with large amounts of data and its varieties. 

 

Quantum Machine Learning - Quantum Learning is a powerful and engaging teaching and learning 

methodology that integrates quantum processing utilizing qubits and quantum operations. It has been proven to 

incorporate hybrid methods that involve both classical and quantum processing toward the learning process. 

Quantum computing focuses on algorithms on the states instead of data. 

 

Layer-wise Learning – It is an enhanced version of deep learning or otherwise called as Greedy layer-wise 

learning. The training layers are sequentially starting from bottom as input layer. It accepts an unsupervised 

technique where each layer learns a higher-level representation of the layer below. The training criterion does not 

depend on the labels used in the layers or in the network. 

 

Tenser Flow Quantum Learning: It is a combination of quantum computing with qubits and machine learning 

through tensor operations across data. The state vector and a parameterized quantum circuit are used to get bigger 

state vector. TensorFlow Quantum (TFQ) is a quantum machine learning library for rapid prototyping of hybrid 

quantum-classical ML models. 
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Fig. 1. Tensor Flow Quantum Phased and Classical Transformations 

 

The above model consists of three different layers starting with classical evaluation which consists of sample 

evaluate gradient parameters, whose main function is to evaluate and gradient. Nevertheless, it moves towards 

the inner layer parameterized model which contains of quantum neural network processing, which contains of 

layers and activation. Finally, the last part is of noisy data tensors, whose main function is multi-dimension data 

set generation whose main parts are data tensors and dimensions. The Table shown below shows an enumeration 

and a comparison among different learning techniques based on multiple features. 

 

Table II. Different Computational Learning Models 

Features / 

Attributes / 

Parameters 

Classical 

Computational 

Learning 

Deep 

Machine 

Learning 

Quantum 

Machine 

Learning 

Layer- wise 

Learning 

Tenser Flow 

Quantum 

Learning 

Number of Layers 2 >3 2 n 8 

Learning Rate 0.1 (0.0to1. 0) (0.0to1.0) (0.0to1. 0) (0.0to1.0) 

Activation 

Function 

Softmax and 

Sigmoid 
ReLU 

Softmax and 

ReLU 

Sigmoid, TanH 

and ReLU 

QReLU 

and m- QReLU 

Supervised(S) / 

Unsupervised(U) 
Supervise d 

Supervised & 

Unsupervised 

Supervise d & 

Unsupervised 
Unsupervised 

Supervise d & 

Unsupervised 

Entanglement Entangled Entangled Entangled Entangled Entangled 

Evolving 

Dimension 
PCA PCA & SVD PCA & SVD SVD & PCA PCA & SVD 

Gradient 

Enlargement 
Yes possible 

Yes 

possible 
Yes possible 

Yes 

possible 
Yes possible 

 

5. Tensor Flow Quantum with Edge Strategy 

 

The Tensor Flow Quantum (TFQ) contains the basic structures, such as qubits, gates, circuits, and 

measurement operators that are required for specifying quantum computations. User-specified quantum 

computations can then be executed in simulation or on real hardware. Cirq also contains substantial machinery 

that helps users design efficient algorithms for NISQ machines, such as compilers and schedulers, and enables the 

implementation of hybrid quantum- classical algorithms to run on quantum circuit simulators, and eventually on 

quantum processors. 

 

The TensorFlow Quantum approach is used for hybrid quantum-classical convolutional neural networks, 

machine learning for quantum control, layer-wise learning for quantum neural networks, quantum dynamics 

learning, generative modelling of mixed quantum states, and learning to learn with quantum neural networks via 

classical recurrent neural networks. A review of these quantum applications in the TFQ white paper is referred 

and each example can be run in-browser via Colab from the domain research repository. 



Turkish Journal of Computer and Mathematics Education    Vol.12 No.11 (2021), 5427-5435 

                                                                                                                         Research Article 

5431 

 

 
Fig. 2. Evolving Dimension Gradient Enlarge Sample Classical Cost Optimized Model 

 

The quantum circuit can be modelled with the help of input factors matrix for electrification process E, 

Environment like Hamiltonian matrix with factors that determine the feasibility of electrification, Ѱ is state vector 

and F is the feasibility vector. 

 

E | Ѱ >   =   F | Ѱ > 

 

The quantum processing of operation from the left the same environment matrix become the expected 

feasibility F of E 

 

< Ѱ | E | Ѱ > = < Ѱ | F | Ѱ > = F < Ѱ || Ѱ > = F 

 

where < Ѱ | is the conjugate of | Ѱ >. 

 

In a simple sense, it is possible to consider all the impinging factors as qubits and apply tensor products with 

their average probabilities. The tensors are important data structure to navigate across vector models and matrix 

models in order to train the machine towards deep and recurrent learning techniques. Generally, vectors are first 

order tensors and a matrix representation is a second order tensor. The feasibility factors for each state can be 

arranged in a matrix form with rows as states and factors as columns. To tune the problem further, towards more 

refined solutions, each column will be again turned into multiple rows with parameters or features representing 

the Electrification Feasibility Matrices of State (EFMS). 
 

Mountain Rainfall mountain-rainfall mountain-soil 

= 

Budget Soil budget-rainfall budget-soil 

 

The bigger size matrices can be built with more numbers of environmental reasons are treated as qubits with 

a greater number of state vectors. As a sample of two single column with quantum states are shown and their 

tensor products of their average expected values is shown above. In quantum computing models, the quantum 

gates are basic building blocks which are reversible. This property is worth mentioning for the quantum 

computing for the given rural electrification problem as there are many choices in the real implementation of 

physical erection and installation works. Quantum circuit models the above process through quantum gates in 

many different ways. Quantum logic gates like Quantum NOT gate is acting linearly with the input factor in the 

soil variable which may be loose grainy state rather than tough and rough state. NOT Gate operation needs the 

state of the soil is to be inverted by the operation as 
 

| loose >  →   | hard > and | hard >  →  | loose > and so on. With superposition to be applied between the 

variables, the inversion can be done linearly. 

 

Soil | loose > + Hill | high > → Soil | hard > + Hill | low > 

 

The matrix representation Loose Hard of a NOT Gate and measured. Hard Loose 
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Uniform superposition of feasibilities and possibilities can be done by the Hadamard gate can be visualized as 

the basic gate to map the quantum states of the factors in the electrification processes and their uniform 

superpositions. These can be represented as the following set of transformations. 

 

| loose >   = 1/|𝒍𝒐𝒐𝒔𝒆 > + |𝒉𝒂𝒓𝒅 >/√𝟐 

| hard >   = 1/|𝒍𝒐𝒐𝒔𝒆 >    −    |𝒉𝒂𝒓𝒅 >/√𝟐 

dimension   | low >   = 1/|𝒍𝒐𝒘 >    −    |𝒉𝒊𝒈𝒉 >/√𝟐. 

 

More number of Hadamard gates can be used to describe the exact nature of the data available regarding a 

village to be electrified possible or effectively or not. The controlled NOT gates can also be used to control the 

EDGE of the of the quantum circuit based on their values. If in the proposed EDGE approach, the E, D, G, E are 

the control bits for the circuit to adjust according to the data. If the enlarge bit is zero, and like any other control 

bits, they will allow the quantum tensor to pass through measurements. If the EDGE bits are in one state, the 

feasibility bit will be inverted. This inversion makes the learning across the full span of the state vectors. 

 

 
Fig. 3a. Quantum NOT and Hadamard Gate representations 

 

In deciding the electrification of rural village, the feasibility and plausibility have to be analyzed through the 

budget as the controlling factor. Similarly, when many high mountains based tribal villages are considered 

during the same power distribution processes, the rainfall factor may be the control bit in the state vectors. 

 

 
Fig. 3b. Controlled NOT Quantum Operations in TFQ 

 

The control qubits are connected in parallel in the quantum circuit with suitable number of Hadamard gates to 

the respective environment factor qubits. Most of the uniform superposition of states respond to the feasibility and 

plausibility of the electrification process in India. Multiple qubits with minimum four control NOT bits and 

suitable number of Hadamard gates are to be connected with measurements for a complete quantum circuit. 
 

 
Fig. 4. Tensor Flow Quantum Learning Model 
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Tensor Flow Quantum models are extremely useful for the fast proto-typing and training of quantum models 

over quantum data. The rural electrification processes and their data are quantum and Bayesian probability across 

the bits over Noisy Intermediate Scale Quantum and Quantum Error Correction processors. The arrangements of 

various quantum logic gates on the number of qubits as a quantum circuit to obtain the desired outcome makes 

the quantum computing to solve the complex problems. The control bits for the proposed EDGE- TFQ Learning 

model with each feature are shown below: 

 

E 1 0 0 0 Evolvement Check 

D 0 1 0 0 Dimensionality Check 

G 0 0 0 1 Gradient Check 

E 0 0 1 0 Enlargement Check 

 

The feasibility of electrification processes in each State can be obtained by reasoning all these relevant socio 

cultural and economic conditions of that particular state as shown below. For example, feasibility matrix of the 

Electrification for the State of Assam is shown below in table. The model proposes an EDGE driven TFQ 

learning, the size of the matrix to six-six- dimensional square matrix. The feasibility of electrification of Indian 

states are highly dependent on various factors but they are different scale for different Indian States. These 

factors are obtained from the National Information Centre, India which are sampled for two important States, 

Assam and Uttar Pradesh for the model demonstration purposes. The above model can be simulated using Cirq, 

an opensource framework for TFQ Learning technique. The learning model must be given the data in such a way 

to look and behave as per the control bits shown as EDGE in the same sequence. 

 

Table III. Feasibility Matix of Electrification for State 1 

Feasibility Matrix of Electrification for Assam (FMEA) 

Feasibility Deciding 

Factors 
Environmental 

Socio 

Cultural 
Financial Geological Constructional Botanical 

Population 0. 12 0.45 0.82 0.54 0.75 0.85 

Size 0.75 0.50 0.80 0.35 0.65 0.60 

Area 0.85 0.35 0.72 0.10 0.15 0.65 

Culture 0.90 0.45 0.55 0.25 0.58 0.80 

Electrification Need 0.80 0.50 0.64 0.42 0.60 0.55 

Climate 0.77 0.60 0.85 0.40 0.75 0.90 

 

Table IV.  Feasibility Matix of Electrification for State 2 

Feasibility Matrix of Electrification for Uttar Pradesh (FMEU) 

Feasibility Deciding 

Factors 
Environmental 

Socio 

Cultural 
Financial Geological Constructional Botanical 

Population 0.90 0.50 0.65 0.80 0.90 0.75 

Size 0.45 0.20 0.47 070 0.72 0.50 

Area 0.65 030 076 0.65 0.82 0.75 

Culture 0.50 0.65 0.88 0.84 0.64 0.65 

Electrification Need 030 0.70 0.80 0.35 0.42 0.30 

Climate 085 0.65 0.92 0.62 0.84 0.45 

 

The normalized values in the above Tables III and IV are vectors where each column is a cluster of other 

factors within it. Hilbert space is a vector space over either the field of real or complex numbers equipped with an 

inner product and it is known that a qubit is a Hilbert space. That is the feasibility values are state space in the 

feasibility sphere a shown in Fig.5. 
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Fig. 5. Feasibility Sphere for Indian State Electrification 

 

6. Conclusion 

 

The research work addresses the rural electrification problem that is multi-dimensional and complex based on 

the inter-twining issues and challenges. The data set is a multitude of statistics of various features of the 

individual states incorporating the socio-economic cultural diversities of India. The data is considered to be a 

vector and varying in the direction of consideration. The classical computing may not give an amicable solution 

through a mammoth information processing in various state level and center government policy level regulations. 

The number of qubits needed for a low-level budget is from 10 to 50 but a greater number of qubits may be 

needed if the deciding factors are more and their states. The proposed model addresses the learning 

improvisation due to vanishing gradient problem and it is solved by introducing suitable modification in the 

model. The control bits are sequentially activated to determine the number of quantum gates needed to solve the 

above specified social demand issue. The actual data are to be obtained from the respective governments of state 

governments and ecological departments to apply across various learning models. The EDGE-TFQ model 

outputs the feasibility state vector and learn from the sample states. The actual limitation of the work is to 

enhance the size of the quantum circuit to a full span to cover all the states of all the factors from all the states. 

The size of the quantum circuit will be very big to incorporate the state spaces of all factors towards the 

feasibility of electrification. The performance of this model can be enhanced by considering the entanglement 

feature in the quantum circuit and error correction due to noisy data. These EDGE- TFQ enhancement options will 

be considered in the future work and extended to all other national issues that are homogeneous to the process 

considered. 
 

References 

 

1. Alpaydin, E. Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2015). 

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). 

3. Haykin, S. Neural Networks and Learning Machines, 3rd edn. Pearson, London (2009). 

4. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. 

Psychol. Rev. 65, 386–408 (1958). 

5. Nielsen, M.A., Chuang, I.L. Quantum Computation and Quantum Information. Cambridge University 

Press, Cambridge (2000). 

6. Schuld, M., Sinayskiy, I., Petruccione, F. The quest for a quantum neural network. Quantum Inf. Process. 

13, 2567–2586 (2014). 

7. S. Kak, “On quantum neural computing,” Inf. Sci. 83, 143–160 (1995). 

8. E. Behrman, L. Nash, J. Steck et al., “Quantum dot neural networks,” Inf. Sci. 128, 257 (2000). 

9. D. Ventura and T. Martinez, “Quantum associative memory,” Inf. Sci. 124 (1–4), 273–296 (2000). 

A. Vlasov, “Quantum computations and images recognition,” 1997. arxiv.org:quantph/9703010. 

10. M. Altaisky, Quantum neural network, arxiv.org:quant ph/0107012, 2001. 

11. R. Zhou and Q. Ding, “Quantum mp neural network,” Int. J. Theor. Phys. 46, 3209–3215 (2007). 

12. R. Zhou, N. Jiang, and Q. Ding, “Model and training QNN with weight,” Neural Process. Lett. 23, 261–

269 (2006). 



Turkish Journal of Computer and Mathematics Education    Vol.12 No.11 (2021), 5427-5435 

                                                                                                                         Research Article 

5435 

 

13. R. Zhou, L. Qin, and N. Jiang, “Quantum perceptron network,” in Artificial Neural Networks–ICANN 

2006, LNCS 4131, 651–657 (2006). 

14. N. Kouda, N. Matsui, and H. Nishimura, “Learning performance of neuron model based on quantum 

superposition,” in Proceedings of the 2000 IEEE International Workshop on Robot and Human 

Interactive Communications (IEEE, Osaka, 2000) pp.112–117. 

15. N. Kouda, N. Matsui, H. Nishimura, and F. Peper “Qubit neural network and its learning efficiency,” 

Neural Comput. Appl. 14, 114–121 (2005). 

16. F. Shafee, “Neural networks with quantum gated nodes,” Eng. Appl. Artif. Intell. 20, 429–437 (2007). 

17. V. Smelianskiy et al., “A nearterm quantum computing approach for hard computational problems in 

space exploration.” arXiv.org:1204.2821. 


