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1. Introduction

Numerous seismic testing approach for reviewing the engineering model complexity, for the earthquake
turmoil is studied. Out of which the real-time dynamic sub-structuring [1, 2] is a specific type where its structure
is been divided into two [3], substructure and its numerical part by an electrically driven actuator that induces delay
which leads to destabilization [1]. The system examined in this article, has an auto parametric pendulum with a
mass-spring-damper (MSD) [2]. We analytically show how to stabilize using the theorem to retrieve its stability.
The concept of a Delay Differential Equations (DDESs) of the model for was presented in [4] to examine a single
mass-spring oscillator. The delay acts as an important part in examining the stability of the simple linear system
and to validate the outcomes is shown by the author.

NDDEs are a special category of DDEs, where the delay appears in the highest derivative of the DDEs.
Research has been done on the stability of one-dimensional wave equation using Lambert W function [5]. This
article enhance on the stability of the solution by applying sufficient condition for the for a second order linear
neutral delay differential equation.

2. Mathematical Formulation of the Model

The model consists of a mass M fastened with a linear spring, connected to a pendulum with a mass mpeng Of
weightless rod of length [ is given by

My (t) + Cy(t) + Ky(t) + mpy(t — 1) + mpendl[é(t —7)sinf(t — 1) + 6%(t — 1)cosO(t — T)] =F,u (1)
mpendlzé(t —-17)+ kpendé(t = T) + Mpenaglsind (t — 1) + MpepqlJ(t — T)sind(t — 1) =0 2

Where 1 denotes the time lag™. The force in the model is been named by the state delay for the MSD of the
numerical system, where Fey is the external force used in the y direction, K and C are the coefficients of stiffness
and damping respectively. The position, velocity and acceleration of MSD at time t are denoted by y(t), y'(t) and
y'(t) respectively. The MSD attached to a pendulum is simulated, as a result Fex = 0, and this alters model (1) into
an autonomous model of second order Neutral Delay Differential equation.

3. Stability Analysis

When the above model decouples, as 6 (0 «1) tends to zero and the equation (2) associated to decaying
oscillations of the pendulum. While we focus on the equation, that denotes the pendulum’s vertical motion in an
MSD system, the above mathematical model is reduced as second order neutral delay differential equation given
by

My(t) + Cy(t) + Ky(t) + mpendy(t —-1)= 0.
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The non-dimensionalized form for the above is described as

y(®) +py't—1)=-2¢y' 1) - y(®),t 20, (3)
y(@©) =¢(0),-t<t<0 (4)
. a N K Mpen C
and the constraints are rescaled as £ = wyt, = w,T,w,, = [, p = pTd S = The

The solution of (3) of the form y(t) = e*tfor t € IR,where 1 is a root of the characteristic equation(3)
APA+p)=-2¢1-1 (5)
Assume y be the solution of (3), which is define as x(t) = e~*%y(t), for t € [—1, o),

where 4, is a real root of the characteristic equation (3). Therefore, for all t > 0, we get by [6] as

x"(£) + 220%"(£) + A% x(£) + pe o7 (x"(t = 7) + 220%' (¢ = T) + A x(t — 7))
= —2¢x'(t) — 2¢x(t) — x(¢t)
Or

x'(t) + 22ox(t) + 2¢x(t) + pe"lof(x’(t — 1)+ 2A5x(t — ‘[))

= 2°x(t) = 2¢x(t) — x(t) + pe %" x(t — 7)
(x’(t) + (22 + 2¢)x(t) + pe 207X/ (t — 7) + pe 1T 21ox(t — ‘[)), = (—/102 —2¢—Dx(t) -
pe 20T A%x(t — 1) (6)

Furthermore, the initial state (4) can be identically described as
x(t) = e 2Tp(t), for t € [—T, ), @)
By applying A, is a characteristic roots of(5) and using (7), which confirms that (6) is equal to

x'(t) + (220 + 2¢9)x(t) + pe 207x'(t — 1) + peT20x(t —T) = (=1y° — 2¢ — 1) fotx(s)ds -
pe~H07 1, fotx(s —1)ds + x'(0) + pe%x'(—1) +(24¢ + 2¢)x(0) + pe~*T21,x(~T)

x'(t) + pe2Tx'(t — 1) = —(24¢ + 2¢)x(t) — pe 2T 24,x(t — 7) + (=1o> — 2¢ — 1) fotx(s)ds -
pe =0T 2,2 fotx(s —1)ds + x'(0) + pe~?7x'(—=1) +(21, + 2¢)x(0) + pe %22, x(—T)

x'(t) + pe2Tx'(t — 1) = —(24¢ + 2¢)x(t) — pe 2T 24,x(t — 7) 4+ (=Ao> — 2¢ — 1) fotx(s)ds -
pe )2 f_t;rx(s)ds + ¢'(0)=209(0) + p(¢'(—1) =20 (—7)) +(220 + 2¢)$(0) + p24,Pp(—7)
x'(t) + pe Tx'(t — 1)
t
= —(22 + 20)x(t) — pe2T22yx(t — 7) + (=Ay° — 2¢ — 1)-]- x(s)ds
0

t—-1
_ petor,? f x(s)ds + L(A; )
0

x'(t) + peMx'(t — 1)

t t-1
= —(22 + 2¢)x(t) — pe T 2A0x(t — T) — pe~H0T 1, f x(s)ds — pe"lof/lozf x(s)ds
0 0
+ L(Ao; $)
x' () + peTx'(t — 1) = —(2Ay + 2¢)x(t) — pe 20724, x(t — T) — pe 40T 2,2 ftt_re‘%’x(s)ds + L(A; ¢) (8)

where
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L(Ao; ) = ¢'(0)=209(0) + p(¢p'(—1)—20p(—7)) +(240 + 2¢)p(0) + 2ZpA,p(—7) —
pe~2073,” [° e 25 p(s)ds )
B, = —pe 2T Q0 T + (240 + 2¢) 4+ pe 0721, # 0

Define z(¢) = x(¢t) — %""’) fort > —1
2o

Then equation (6) diminishes to the subsequent form as

Z'(t) + pe 207z (t — 1) = —(2A + 2¢)z(t) — pe 10720, z(t — 7) — pe AT 2,? ft z(s)ds (10)

t—-7T

If equation (8) has its solution of the form z(t) = e%t for t € IR, thend is a root of the next characteristic
equation

S(1 + pe=PotOT) = — (24 + 2¢) — 2pAgeHo*OT 4 pe=roTY 2571(1 — 70t ) (11)
But, the initial condition (5) can be written as

2(t) = B(t)e ot — 2P 4 e 1 0] (12)
ﬁlo

Let F(8) is defined by the characteristic function of (9), i.e.,

F(8) = 8(1 + pe~Potd7) + (224 + 2¢)+2pAge~RotOT 4 pe=toTy 251 (e =0 -1)
Since removable singularity § = 0 in F(6), we consider F (&) as an entire function with

F(0) = 2Ag + 2¢+2pAoe T +pe 0T’ = B

Since by the definition 8, # 0, a root of the characteristic equation (11) will have &, # 0
Consider z be the solution of (10)-(12) and §, be a real root of the characteristic equation (11).
Express 8, # 0, then v(t) = e~%tz(t),for all t € [—1, )
Hence for every t > 0, we have

V' (t) + 8yv(t) + pe~Potd0Ty! (t — 1)
t
= —(22 + 2¢)v(t) — pe~ P+ y(t — ) — pe 0T A,2 e %0Sp(t — s)ds

t-71

v'(t) + pe” R0ty (t — 1) = —(21y + 2¢ — 8)v(t) — pe 2T (21, + Sp)v(t — 1) +
pe~*07),? f:_r e %05p(t — s)ds (13)
Furthermore, the initial condition (10) can be written equivalently as
v(t) = Q)(t)e—(l(ﬁao)f — g%t %,t € [_T’ 0] (14)
2o

Moreover, by applyingd, # 0 is a real root of (9) and considering (14), we can prove that (13) is identical to

v(t) + pe~Potd0)Ty(¢ — 1)
t t
=—2 + 2¢ — 60)J- v(s)ds — pe~Po*t60)T(21, + SO)J- v(s — 1)ds
0 0

T t
+pe 0T 1y? f e™% {f v(u— S)du} ds + v(0) + pe~(o+o0)Ty(—1)
0 0
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v(t) + pe~Po+d0)Ty(t — 1)

t t—1
= (=21y — 2¢ — 60)J- v(s)ds — pe~*o*+80)T(21, + 60)f v(s)ds
0 -T

T t—s
+ pe"lOTAOZJ. e %0s {J- v(u)du} ds +v(0) + pe~ot0)Ty(—1)
0 -s
v(t) + pe~Po+do)Ty(t — 1)
t 0 t—1
=+(=21y — 2¢ — 60)J- v(s)ds — pe~*o*80)T(22, + §,) {f v(s)ds + f v(s)ds}
0

-7 0

T 0 t—s

+ pe"lOTAOZJ. e~%s {J- v(u)du + f v(u)du} ds + v(0) + pe~Potd0)Ty(—7)
0 -s 0

v(t) + pe~Go+do)Ty(t — 1)

t
= (=21y — 2¢ — do)f v(s)ds — pe~Po+50)T (220 + §,) {f
0 0

—pe M7y’ f

0

t—-1
v(s)ds}
T t—s
e~ %0s {f v(u)du} ds + R(1y, 64; D),
0
v(t) + pe~Po+do)Ty(t — 1)
t
= pe~Ao+d0)T (22, + 50)f v(s)ds
0

t
— pe_l()‘[/lozf
0
T t—s
+ pe~toT,? f e~ %os {f v(u)du} ds + R(Aq, 8y; D),
0 0

v(t) + pe~Ro+Ty(t — 1) = pe=Ao+0T (22, + 65) [ v(s)ds —pe R 2,2 fote“sosds J_ v(s)ds +
R(2p, 60; D), (15)

t—7T

t
e“sosdsj v(s)ds — pe~ o80T (21, + 6,) {f v(s)ds}
0 0

Where R(4,80; @) = 0(0) + pd(—1) — e‘aot@(l +pe~HT) — pe~Pot60)T(2, +
20

8) f_OT e %0s (@(s)e‘aos - %) ds + pe~%0TA,? [ e S0sds {f_os e %o (Q)(u)e"l"“ - L(;—;qb)) du} ds (16)
0

0

Then we define

w(t) = v(t) — Wfor t>—1 (17)
0,90

Wheren;, 5, = 1 + pe~ (10807 — pe=Ao+80)T(22, + §o)T + §2(1 — e %7 — §yre %07 )pe 1071, ?  (18)
Then (13) reduces to the correspondent equation as

w(t) + pe~Poto)Ty (¢ — 1) = —pe~R0t0)T(22, +
do) ftt_TW(S)dS — pe~t0T)? fOTe-Sos {ftf_sw(u)du} ds,t >0 (19)

Moreover, the initial condition (12) can be denoted as

W(t) = Q)(t)e—(lo"'do)T — Me—aot — w’for t e [_T, 0] (20)
Bag M19.80

Theorem 1: let A, and &,(8, # 0)be real characteristic roots of the equations (5) and (11). Assume that the
roots 1, and &, have the resulting property

a5, = (=Ipl + [p(22 + 89)7])e~Po+00)T 4 §72(1 — e =007 — §yze~0%7)| — pAs®le™ T <1 (21)
and B, = —pe T4y’ T + (22 + 2¢) + pe 10722, # 0

Then, for any @ € C*([—1, 0], R), the solution y of (1)-(2) satisfies
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y(t)e~Gotdo)r _ LA0®) o-s5c _ RA0boDI  pr) s - @) forall ¢ > 0, 22)
B M20.80

where L(4q; ), R(Ao, 8o; @) and 1, s, Were given in (9),(16) and (18), respectively and

M(2,80;0) = max_|g(t)e~Goto0)r — LoD psor _ KC000) (23)
—T<t<0 Bag M4o.80

Proof: The property (21) assures that 17, 5, > 0.
By using the descriptions of X, z, v and w, we get that (22) is equal to
(w(t)] < M(Ag, 80; DIp,,5, VE = 0. (24)
Hence we conclude (24)
From (20) and (23) it trails that
lw(t)| < Mg, 8y; D), for t € [—1,0] (25)
To proveM (4, 84; @) is a bound of w on the entire interval [-t, oo].
Specifically|lw(t)| < M(A,, 8y; @), for t € [—T, ] (26)
Assume an arbitrary constant € > 0. We define that
[w()| < M(2o,8¢; @) + ¢, for every t € [—1, ) @7)
otherwise, by (23) there exists a t* > 0,where |w(t)| < M(Ay, &q; D) + ¢,
whent < t*and |[w(t™)| < M(Ag, 6p; D) + €.
Then by applying (19), we get

MLy, 69; 0) + € = [w(tM)|
< |ple” ot |w(t* — 7)|
t T t
+ |p(21, + 60)|e'(’10+50)rf lw(s)|ds +|—p Aozle"loff e %08 {f |W(u)|du} ds
t-7 0 t—s
< {Ipl + Ip(22g + Sp)tle~Po+80)T 4 §,72(1 — e 00T — §yze =507 )| — p Ag*|e =T} [M (Ao, So; ©) + €]
< [M(/lo; So; ?) + €]
But this contradicts, which we assume in equation (21). So, our assumption is correct.
Therefore (27) is true for all € > 0 ,it trails that (26) is confirm invariably.

By applying (26) and (19), we derive

w(®)| < |ple” P+ |w(t - 1)

t T t
+ |p(22, + 60)|e‘(’10+‘50)TJ- lw(s)|ds + | —p /102|e"10TJ- e~ Bos {J’ |w(u)|du} ds
0 ¢

t-t1 =S

lw(®)] < |ple” 0T |lw(t — 7)| + [p(24, + §p)|e~Pote0) ftt_, lw(s)|ds +
|p Ao%le~7 [ e~00 {ff_slw(u)uu} ds < {Ipl + Ip(22y + 8,)t|e~Fo*80)T 4 5, 72(1 — ¢=007 —
8oTe™9%%)| — p Ap?leHTIM (Ao, 80; @) = M (Ao, 8o; D)tz 5, FOr all £ > 0.that means (24) holds.

Theorem 2: Let A, and §,(6, # 0)be real roots of the characterisitic equations (5) and (11). Consider 8, as
in theorem 1. Then, for any @ € C*([—, 0], R),the solution y of (3)-(4) satisfies
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: —(o+80)T _ L20id) _50t} _ R(10,60:9)
1£1—r>r01° {y(t)e Bao ¢ Ng.60
Where L(4o; ¢), R(Ao, 8o; @) andn,, s, Were given in (9),(16) and (18) respectively.
Proof: By the definitions of x,z,v and w, we have to prove that

limw(t) = 0. (28)

n—-oo

In the end of the proof we will establish (28). By using (19) and taking into account (24) and (26), one can
show, by an easy induction, that w satisfies

W@ < (uag6,)"™ M(Ag, 80; @), Forallt =2nt —7,(n =0,1,..) (29)

But, (20) guarantees that 0 < 5, < 1. thus from (29) it follows immediately that w tends to zero as t —
o,i.e (28) holds.

The proof of the theorem 2 is completed.
Theorem 3: Let A, and §,(5, # 0)be real roots of the characterisitic equations (5) and (11) and also the

conditions in theorem 1 B, and p,  s,be provided. Then, for any @ € C([-7,0],IR), the solution y of (3)-(4)
satisfies forall t > 0

Y1 < [N G 8y 0)e s + [”— + (1 4 Zo%0 4 h—) mo,so] N (Ao, 0; B)eFotéo)t, (30)

L7
Bag 10,80 |ﬁlo| M20.60

Where 1, 5, was given in (18),

kag = 1+ 120] + P11+ 140]) + 1220 + 29)| + [2pAgle ™" + | — p 2y |e o7z (31)
M6, = 1+ Ipl + iy (1 + Iple™%) + 8, (€757 — 1) |p(—22y — &p)|e~Po*éo) (1 + o ) +
|ﬁ/10| |ﬁ/10|
8o *(oT + €727 = 1)|p Ag*[e M <1 ’ |IIZZ|> 2
es, = max {e~%t} (33)

—T<t<0

And
N(2o, 80; @) = max { max |e”%t@(t)|, max |[e"Pot9)@p(¢)|, max |@'(t)|, max |B(t)]} (34)
—T<t<0 —T<t<0 —T<t<0 —T<t<0

Furthermore, when 44 < 0,1, + &, < 0, the trivial outcome of (1)is stable ,when 4, < 0,44 + &, < 0 ,it is
asymptotically stable and when 4, > 0,4, + &, > 0,we say that it is unstable.

Proof: By theorem 1, equation (22) is proved, whereM (1,, 6o; @) and L(A,; @) are described by (23) and (9)
correspondingly.

Equation (22) leads that e~o*+30)t|y ()| < %e-%f + W + M(Ag, 80; B)ta, 5, (35)
0 0,90

Furthermore, by using (31), (32), (33) and (34), from (9), (16) and (23), we obtain

IL(Ag; $)I < 16 (0)] + |20]16(O)] + IpI(|¢' (DI +[ Al (=D)| ) +I220 + 2611 (0)] + [p2A0||p(—T)] + |
p Ao2le %7 [° e=2%|¢p(s)|ds
< (14 ol + IpICL + [Ao]) + 12220 + 20| + [2pA0]e ™27 + |=p Ag%|e™20TT)N (Ag, 0; B) = kN (Ao, 8; B)
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IL(20; )

B
° A

# Ip(-2 e [ =0 (Jogsy e+ )
z o

t t y)
+Ip 102|e‘aﬂff e %0sds {j e~ %ot <|¢(u)|e"1°” ILC 0'¢)|>du} ds
0 s B2, |

1+ Ipl+ | N 20 (1 + Iple™07) + 8,7 (e 7907 — 1)|p(=22g — §p)|e~Ro+é0)T (1 + |BAO ) +

lol

IR (40, 80; D) < [B(0)| + Ipl@(=D)| - (1 + Iple~7)

50—2(50-[ + g~ %07 _ 1)|p 102|e—lof <1 + | |>] N (Ao, 805 B)=hy,,5,N (Ao, 80; D),

| ( 07 ¢)| max {e_(got}_l_ |R(AOI(§0; ®)|

|Br,]  -vstso M20,50

{1 =% ’”0'50} N(ho, 80; 8) (36)

|ﬁ10| M40.80

M (A, 80; D) < magxo{e‘@o*‘g“)tl@(t)l} +—
—T<t<

k
> 1, by taking into account the fact that L'| <1+ |B |>H/1050+
2o

For every t > 0.since |
)

| /10|

hy
(1 +u,1050)n 0% ~ 1,we have

kj ka.es, hao,6
D<=+ 11+ 20 + (1+ 020  N(Ag, 6y; @),for all t € [—1, ),
ly(®] {|l>’/10| ( |ﬁ,10| )H/lo,so ( Mao,so) ’7/10.50} (40, 60; ) [ )

Which implies that equation (3) has stable trivial solution (at 0).

Next, if 4o <0 and Ay + 8, <0, implies that (30) proves that gim y(t) =0 and equation (3) has
asymptotically stable trivial solution (at 0).

Finally, if 6§, > 0,4, + &, > 0. then the trivial solution of (3) is unstable (at 0). Otherwise, there exists a
number [ = (1) > 0 such that, for any @ € C*([—7, 0], R)with ||@]| < Ithe solution y of problem (3)-(4) satisfies

ly@®)| < 1forallt > —1 (37)
Define @, (t) = eo+d0)t — got for t € [—1, 0]
Furthermore, by the definition of L(4,; @) and R(4,, 8y; ©), by using (11), we have

L(Ag; §) = 8o+ pSoe~0t0)T 4 2phg(e~Ro+OT — ghoT) — pe~Hot Aoz(f_oressds -7
= — (220 + 2¢) — 2pAge "7 + pe T 2’1 = =B,
L(Ay;
R(%g, 60; ®) = #(0) + p@B(—1) — e‘sot%(l + pe~to7)
Ao

0 L(Ay;
— pe—(lo+60)r(2/10 + 50)f e~ 008 <®(S)e_’105 _ (‘80 (b)) ds
-7 o

t t L(Ay;
+ pe~toT },? f e %05ds {J- e~dov <(D(u)e_/1°u - %) du} ds
0 -s %o

R(Ag,00;0) =1+ pe—(loﬂso)r
0
+ (pe~Po+80)T(—2) — 50).[ =005 (208 (¢=(R0*)T _ phoT) 1 1)ds
-T

T 0
+ peor 1,2 f e_‘sosds{f e-ﬁou(e-lou(e-@owﬁ—elof)+1)d”}ds
0 -5

=1 + pe~(Ro+80)T ¢ (pe=(ot60T(—21 — §))T + &, (1 — e %0T—F,Te %07 p A’ HoT = Ng5y > 0.

Let @ € C*([~, 0], R) be defined by 0 = - é -8,
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Where [, is a number with 0 < I[; < l. Moreover, let y be the solution of (3)-(4). From theorem 2 it follows
that y satisfies

J =i forariony ) - i) P02 0)
tmee 1Dl

L(AO; ¢) 6_50t
Ao

t—oo

llm {e _(AO+60)ty(t) —
N20.50

(l—l)R(lo,&);@)_ Iy

2ol

060 ool =

But, we have ||@,]| = [; < [ and hence from (37) and conditions §, > 0,1, + &, > 0 it follows that

lim {e—(/10+50)ty(t) _ L(’;O_“’b)e—sor} -0

t—ooo AO
This is a contradiction. The proof of theorem 3 is completed.

Example 1:

Consider y'(t) = Q" (¢ =3) = =2y =¥(©.¢ > 0, )
y() =0(t),—1/2 < t <0,

where @(t) is an arbitrary continuously differentiable initial function on the interval [— % 0]. In this example
we apply the characteristic equations (5) and (11).

That is, the characteristic equation (5) is
1 “Ao
Az(l—ge2)=—2/1—1 (39)

and using Newton Raphson method )\ = -0.7101 is a root of (39). Then, for 4, = —0.7101 the characteristic
equation (11) is

1 1 0.7101
§(1-2e7COTIOMT) = —(2(—0.7101) +2) —20.7101e” OO 4 (— D)t (—0.7101)2571(1 -
6—6(—0.7101)) )

Therefore, § = 6, = —0.3524 is a root, and the conditions of Theorems 3 are satisfied.
Thatis, py, 5, = t-0.7101,-0.3524 = 0.6016 < 1
Br, = B-0.7101 = 0.9773 # 0
Since A4o=-0.7101 <0 and 4, + §,=-1.0625 <0, the zero solution of (38) is asymptotically stable.

Example 2: Consider

Y'O+Gy (t-3) =4 -yt >0, (40)
y(t)=0(),—1/2 <t <0,

where @(t) is an arbitrary continuously differentiable initialfunction on [—% ,0]. The characteristic equation
(5) is

5 1 Zhe
A 1+;ez =+41-1 (41)

and we see easily that A = 0.2719 is a root of (41). Taking 4, = 0.2719, the characteristic equation (11) is
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s (1 _ ie—(0.2719+5)%)

1 1 1 0.2719
= —(2(0.2719) — 4) + ;0.27196_(0'271%6)5 + (- Z)f—z (0.2719)%571(1
_ 6—6(0.2719))

Therefore, we find that 6 = §, = 0.3279 is a root.

Corresponding to the roots 4, = 0.2719 and §, = 0.3279, the conditions of Theorem 3 are satisfied. Since
Ao>0and A, + 6,>0, the zero solution of (38) is unstable.

4, Conclusion

The stability is examined for the real-time sub-structuring testing method to a mass-spring-damper system
attached with a pendulum. Numerically, the system is modeled and necessary conditions are derived through
Neutral Delay Differential Equations (NDDES).
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