
Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4739

Vlsi Implementation Of Multiply And Accumulate Unit Using Offset Binary Coding

Distributed Arithmetic

Bharathi.M1, Dr. Yasha Jyothi M Shirur2

1Research Scholar in BNMIT , VTU and Assistant Professor, Department of ECE, Center for VLSI & Embedded

Systems, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh.
2Professor of ECE, BNMIT, Bangalore, VTU.
1bharathi891@gmail.com, 2yashamallik@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 10 May 2021
Abstract: In general, Digital Signal processors are designed with Harvard architecture which in turn comprises a special block

called Multiply and Accumulate unit (MAC). The speed improvement of any processor can be done by improving the speed

of the dedicated Multiply and Accumulate unit. Offset binary coding based Distributed Arithmetic (DA) is a compelling

technique that improves the area, delay, and power trade-off in designing of MAC core, and which in-turn adds the benefits to

digital signal processor design. Also introduced the mathematical concepts which lead to offset based Distributed arithmetic

are shown below. The different optimization techniques of offset based Distributed Arithmetic based MAC core is synthesized

and implemented for efficient implementation of inner product generation. Implementation of different Offset based distributed

architectures such as LUT based four-term & two-term, single LUT inner product computations are compared with LUT-less

based architecture are done. The conclusion drawn from this research work is demonstrated on 16-bit MAC cores using offset

binary coding distributed arithmetic architectures using Xilinx ISE 14.7 and verified functionality using simulation results. The

design is synthesized to know the area, delay, power and energy issues. The offsent based Distributed Airthmetic is compared

with its counterparts. Based on the analysis it is found that LUT-LESS can save the power delay product of 7.33% over LUT

based when the worst case margin is considered with 1.754% of area reduction.

Keywords:Offset Binary coding (OBC), Distributed Arithmetic (DA),Look up Table (LUT) Adder based (LUT-LESS)

1. Introduction

System on Chip/System on a chip(SOC) is an IC that integrates most of the blocks on a single chip. Any general

SOC architecture includes DSP block, Memory elements, and Input / Output blocks. A dedicated DSP core is used

inside the SOC for real-time Computing purposes. Since Dedicated DSP block usually gives good performance

efficiency than that of a general-purpose processor. In this increasing technology, DSPs are the fastest Digital

signal Processor is an example of Harvard Architecture which fetches data and program instruction parallelly can

be suited in many real-time applications such as digital broadcast, video and signal processing, image processing,

communication systems & many more. Major DSP manufacturers are Texas, Analog Devices, and Motorola are

designing dedicated DSPs for the application intended using Harvard Architecture as shown in figure 1. The MAC,

or "Multiply and Accumulate [7]" unit core is a major kernel to perform multiplication operations in DSP systems.

Let X, Y are the inputs, the basic MAC operation includes Z = Z + x*y, where Z is an accumulator unit as shown

in figure 2. This is the most fundamental operation used in many DSP architectures.The future MAC in DSP needs

to perform more computational functions to engage in real-time signal processing operations of the complex

applications.

 Figure 1:Hardvard Architecture

mailto:bharathi891@gmail.com

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4740

The MAC, or "Multiply and accumulate" unit core is a major kernel to perform multiplication operations in

DSP systems. Let X, Y are the inputs, the basic MAC operation includes Z = Z + x*y, where Z is an accumulator

unit as shown in figure 2. This is the most fundamental operation used in many DSP architectures. The future

MAC in DSP needs to perform more computational functions to engage in real-time signal processing operations

of the complex applications.

Figure 2: Multiply and Accumulate Core

2. Existing Distributed Arithmetic

In Existing DA,computationInner product between two inputs X &Y can be done using precomputed LUT’s.

. This can be well suited for both ASIC and FPGA based implementations. The Distributed Arithmetic [5] based

MAC core can be expressed using mathematical concepts as shown below.

Algorithm:

Suppose that X is the vector of input samples and X is a constant vector of input coefficient, corresponding to

the MAC unit. Vector X and Y each consist of M elements XK and YK. The dot product Z of X and Y can be

written as

Consider the following sum of product:

𝑍 = ∑ 𝑋𝑘𝑌 𝑘 … … … (1)

𝑘

𝑘=1

• Let 𝑌𝑘 be an N-bit scaled two’s complement number. In other words,

|𝑌𝑘 | < 1

𝑌𝑘 : {𝑏𝑘0,𝑏𝑘1,𝑏𝑘2………,𝑏𝑘(𝑛−1)

Where 𝑏𝑘0 is the sign bit

• b. We can express 𝑋𝑘 as

𝑌𝑘 = −𝑏𝑘0 + ∑ 𝑏𝑘𝑛2−𝑛

𝑁−1

𝑛=1

 … . . (2)

c. Substituting (2) in (1),

𝑍 = ∑ 𝑋𝑘

𝑘

𝑘=1

[−𝑏𝑘0 + ∑ 𝑏𝑘𝑛

𝑁−1

𝑛=1

2−𝑛]

𝑍 = ∑(𝑏𝑘𝑛

𝑘

𝑘=1

∗ 𝑋𝑘) + ∑ ∑(𝑋𝑘 ∗ 𝑏𝑘𝑛) . . (3)

𝑁−1

𝑛=1

𝑘

𝑘=1

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4741

𝑍 = − ∑(𝑏𝑘0

𝑘

𝑘=1

∗ 𝑋𝑘) + ∑[(𝑋𝑘

𝑘

𝑘=1

∗ 𝑏𝑘1)2−1 + (𝑋𝑘 ∗ 𝑏𝑘2)2−2 + ⋯ + (𝑋𝑘 ∗ 𝑏𝑘(𝑁−1))2−(𝑁−1)]

𝑍 = −[𝑏10 ∗ 𝑋1 + 𝑏20 ∗ 𝑋2 + 𝑏𝑘0 ∗ 𝑋𝑘]

 +[(𝑏11 ∗ 𝑋1)2−1 + (𝑏12 ∗ 𝑋1)2−2 + ⋯ + (𝑏1(𝑁−1) ∗ 𝑋1)2−(𝑁−1)]

 +[(𝑏21 ∗ 𝑋2)2−1 + (𝑏22 ∗ 𝑋2)2−2 + ⋯ + (𝑏2(𝑁−1) ∗ 𝑋2)2−(𝑁−1)]

 ……

 +[(𝑏𝑘1 ∗ 𝑋𝑘)2−1 + (𝑏𝑘2 ∗ 𝑋𝑘)2−2 + ⋯ + (𝑏𝑘(𝑁−1) ∗ 𝑋𝑘)2−(𝑁−1)]

𝑍 = −[𝑏10 ∗ 𝑋1 + 𝑏20 ∗ 𝑋2 + 𝑏𝑘0 ∗ 𝐴𝑋𝑘]
 +[(𝑏11 ∗ 𝑋1) + (𝑏21 ∗ 𝑋2) + ⋯ + (𝑏𝑘1 ∗ 𝑋)]2−1

 +[(𝑏12 ∗ 𝑋1) + (𝑏22 ∗ 𝑋2) + ⋯ + (𝑏𝑘2 ∗ 𝑋)]2−1

 …….

 +[(𝑏1(𝑁−1) ∗ 𝑋1) + (𝑏2(𝑁−1) ∗ 𝑋2) + ⋯ + (𝑏𝑘(𝑁−1) ∗ 𝑋𝑘)]2−(𝑁−1)

𝑍 = − ∑(𝑏𝑘0) ∗ 𝑋𝑘

𝑘

𝑘=1

+ ∑[

𝑁−1

𝑛=1

𝑏1𝑛 ∗ 𝑋𝑘 + 𝑏2𝑛 ∗ 𝑋2 + ⋯ + 𝑏𝑘𝑛 ∗ 𝐴𝑋𝑘]2−𝑛

𝑍 = − ∑ 𝑋𝑘

𝑘

𝑘=1

∗ (𝑏𝑘0) + ∑[∑ 𝑋𝑘

𝑘

𝑘=1

𝑁−1

𝑛=1

∗ 𝑏𝑘𝑛]2−𝑛 … . (4)

Consider the equation (4) rewritten as:

𝑍 = ∑ [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏]

𝑁−1

𝑛=1

2−𝑛 + ∑ 𝑋𝑘

𝑘

𝑘=1

(−𝑏𝑘0)

 ∎ [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏𝑘𝑛] has only 2k possible values

 ∎ [∑ 𝑋𝑘

𝑘

𝑘=1

𝑏𝑘𝑛] ℎ𝑎𝑠𝑜𝑛𝑙𝑦 2𝑘𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑣𝑎𝑙𝑢𝑒𝑠

 ∎ With the sign bit as an input,we can store it in a ROM of size=2*2𝑘

To realize the inner product computation, the conventional DA uses a LUT-based architecture as shown in

Figure 3 .It includes 3 blocks mainly

1)Input Data Section

2)LUT section

3)Accumulator Section

Figure 3: Conventional Distributed Arithmetic MAC core

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4742

In the data section, the bits of inputs are ({X0, X1,···, Xi}) are applied to create LUT addresses. The contents

in LUT follow accumulator which in turn includes adder and register fork rising from to N-1as appeared in

Equation (3). Several updating shifters within the accumulator can take place with previous output is to create

progressive scaling with powers of two. After N cycles, compared to the bit-width of input vector X, the ultimate

esteem of yield Z can be a final result as the result of the accumulation.

The two limitations of using this DA are:

1) This bit-serial multiplication design of LUT based DA gets to be a bottleneck when achieving the result for

each clock cycle.

2) Another issue with LUT-based DA is that its LUT measure (2K word) develops exponentially as K

increments. As the number of inputs are growing further tends to increase the LUT entries. LUT Based DA speeds

up the duplication preparation by pre-computing all conceivable values and putting away them in a LUT Section.

3. Method

Offset Binary Coding method is based on a modified two's-complement representation of the values and

reduces the size of LUT by half. The OBC can be further extended, reducing the memory size in steps by factor

of two from 2K to K in theory. However, this requires additional hardware in terms of adders and multiplexers,

thus increasing the delay.

Offset Binary Coding Algorithm:

.

𝑌𝑘 =
1

2
[𝑥𝑘 − (−𝑥𝑘)]

𝑌𝑘 = −𝑏𝑘0 + ∑ 𝑏𝑘𝑛2−𝑛

𝑁−1

𝑛=1

 … (5)

Equation (5) is converted into 2’s complement

−𝑌𝑘 = −𝑏𝑘0
̅̅ ̅̅ + ∑ 𝑏𝑘𝑛

̅̅ ̅̅̅

𝑁−1

𝑛=1

2−𝑛 + 2−(𝑁−1)

𝑌𝑘 =
1

2
[−(𝑏𝑘0 − 𝑏𝑘0

̅̅ ̅̅) + ∑(𝑏𝑘𝑛 − 𝑏𝑘𝑛
̅̅ ̅̅̅)

𝑁−1

𝑛=1

2−𝑛 − 2−(𝑁−1)]

▪ Define: Offset code

𝑐𝑘𝑛 = {
𝑏𝑘𝑛 − 𝑏𝑘𝑛

̅̅ ̅̅̅ , 𝑛 ≠ 0

−(𝑏𝑘𝑛 − 𝑏𝑘𝑛
̅̅ ̅̅̅ , 𝑛 = 0

𝑤ℎ𝑒𝑟𝑒𝑐𝑘𝑛 ∈ {−1,1}

▪ Finally

𝑌𝑘 =
1

2
[∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)]

Using the new 𝑥𝑘 we have

𝑌𝑘 =
1

2
[∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)]

▪ Substitute the new 𝑥𝑘 in

𝑍 = ∑ 𝑋𝑘𝑌𝑘

𝑘

𝑘=1

𝑍 =
1

2
∑ 𝑋𝑘 [∑ 𝑐𝑘𝑛2−𝑛

𝑁−1

𝑛=0

− 2−(𝑁−1)]

𝑘

𝑘=1

𝑍 =
1

2
∑ ∑ 𝑋𝑘

𝑁−1

𝑛=0

𝑐𝑘𝑛2−𝑛 −
1

2
∑ 𝑋𝑘

𝑘

𝑘=1

2−(𝑁−1)

𝑘

𝑘=1

−

1

2
∑ 𝑋𝑘

𝑘

𝑘=1

2−(𝑁−1)

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4743

𝑍 = ∑
1

2

𝑁−1

𝑛=0

∑ 𝑋𝑘

𝑘

𝑘=1

𝑐𝑘𝑛2−𝑛 … (6)

If we let

𝑄(𝑐1𝑛𝑐2𝑛𝑐3𝑛 … 𝑐𝑘𝑛) =
1

2
∑ 𝑋𝑘

𝑘

𝑘=1

𝑐𝑘𝑛

𝑦 = ∑ 𝑄(𝑐1𝑛

𝑁−1

𝑛=0

𝑐2𝑛𝑐3𝑛 … 𝑐𝑘𝑛)2−𝑛 + 2−(𝑁−1)𝑄(0) … . . (7)

Figure 4: Offset Binary Coding Distributed Arithmetic MAC core

It can be seen from the figure3 that Distributed Arithmetic, LUT section with N inputs have 2N entries which

takes different magnitude values, where as in figure 4, Offset Binary Coding architecture take the magnitude values

with a sign which are still consistent with the statements as DA architecture.

Let us have a look at how the OBC architecture works. The values stored in the LUT section are shown in the

figure. For (0111) the output of LUT is -1/2(a0-a1-a2-a3) and for (1000) the output is -1/2(-a0+a1+a2+a3) . It can

be noticed that the upper half of the LUT is the same as the lower half but with the sign reversed thereby the size

can still reduce by half. When N clock cycles' accumulation is done, the architecture will give the final result for

OBC computation.

Various Techniques:

The different optimization techniques of offset based Distributed Arithmetic based MAC core are synthesized

and implemented using Xilinx ISE P5.8f.

Two LUT OBC:

For the given N term, the number of LUT entries are 2N (Single LUT). In Two LUT, each of LUT

2N/2requires half compared with Single LUT but it requires an extra adder as shown in below figure.

𝑄(0) =
1

2
∑ 𝑋𝑘

𝑘
𝑘=1 Constant

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4744

Figure 5: Offset Binary Coding Distributed Arithmetic MAC core using two LUT’s

Four LUT OBC:

For example, for N = 16 the LUT in the baseline implementation requires 65,536 (216) rows.

Figure 6: Offset Binary Coding Distributed Arithmetic MAC core with Four LUT’s

With 2-bank splitting the implementation requires two LUTs each with 256 (28) rows, which is still

prohibitively large. Thus, for four LUT of N, the coefficients can be split into four banks.

LUT-LESS OBC (ADDER based OBC):

4. Experimental Results and Evaluation

The simulation and synthesis of the above architectures are done using Xilinx ISE P5.8f. The results are shown

below:

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4745

Simulation 1: OBC DA-based implementation of single LUT for inner-product computation

Inputs = a0,a1,a2,a3 = 2,3,4,5

ADDR = 0011

Out =-(a0+a1-a2-a3)/2; = 2(0010)

 sum = Out+cin = 2+1 = 3(0011)

Clk , clken =1 then z =0 else accumulation can be done

Simulation 2: OBC DA-based implementation of a four-term LUT inner-product computation.

Inputs = a0,a1,a2,a3 = 2,3,4,5

ADDR = 0011

Out1 = -1/2(a0) =-1(0111)

Out2 =-1/2(a1) = -2(1110)

Out3 = -1/2(-a2) =2(0010)

Out4 = -1/2(-a3) =2(0010)

X = Out1+Out2 = -3(1101)

Y = Out3+Out4 = 4(0100)

Out = X+Y = -3+4 =1(0001)

 sum = Out+cin = 1+1 = 2(0010)

Clk , clken =1 then z =0 else accumation can be done

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4746

Simulation 3: OBC DA-based implementation of a two-term LUT inner-product computation.

Inputs = a0,a1,a2,a3 = 2,3,4,5

ADDR = 0011

Out1 = -(a0+a1) /2=-3(1101)

Out2 = -(-a2-a3) = 4(0100)

Out = Out1+Out2= -3+4 = 1(0001)

 sum = Out+cin = 1+1 = 2(0010)

Clk , clken =1 then z =0 else accumation can be done

Simulation 4: OBC DA-based implementation of a LUT-LESS(Adder based) inner-product computation.

Inputs = a0,a1,a2,a3 = 2,3,4,5

ADDR = 0011

Out1 = -1/2(a0) =-1(0111)

Out2 =-1/2(a1) = -2(1110)

Out3 = -1/2(-a2) =2(0010)

Out4 = -1/2(-a3) =2(0010)

X = Out1+Out2 = -3(1101)

Y = Out3+Out4 = 4(0100)

Out = X+Y = -3+4 =1(0001)

 sum = Out+cin = 1+1 = 2(0010)

Clk , clken =1 then z =0 else accumation can be done

Performance Analysis of Area

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4747

Here in OBC-DA architectures, comparison is done with four bank, two bank and adder based(LUT-

Less)architectures and compared. Among them adder based consumes less area among all types of other

architectures. From the above chart adder based reduces area of 1.754% slices compared with conventional Single

LUT based OBC.

From the above chart adder based OBC-DA has 71.41 ns where as conventional OBC has a delay of

76.2ns.so that delay consumption is decreased.

OBC two lut OBC
four lut

OBC
adder

based OBC

 input lut's 264 281 228 224

 occupied slices 147 144 121 118

 bonded IOBs 38 38 38 38

non-clock nets 2.89 2.69 2.97 2.87

264 281
228 224

147 144 121 118

38 38 38 38
2.89 2.69 2.97 2.87

0
50

100
150
200
250
300

ar
ea

 v
al

u
es

(n
o

.o
f

sl
ic

es
)

Comparison of Different Techniques of DA

Techniques for area Optimization of
OBC-Based Implementations

OBC
two lut

OBC
four lut

OBC
adder

based OBC

dalay(ns) 76.2 74 71.45 71.41

power delay(mwns) 43.4 43.6 30 27.8

energy(j) 7.12 7.37 5.25 4.87

76.2 74 71.45 71.41

43.4 43.6

30 27.8

7.12 7.37 5.25 4.87

0
10
20
30
40
50
60
70
80
90

d
el

ay
,e

n
er

gy
 v

al
u

es

Comparison of Different Techniques of DA

Techniques for delay and energy
Optimization of OBC-Based

Implementations

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4748

Fr om the above chart

OBC-DA consumes increase in power of 7.14% compared with conventional OBC-DA but the power delay

product is saved by 7.333%.

5. Results

MAC is the most essential block which can be seen in most DSP Applications [2]. Offset binary coding based

Distributed arithmetic plays a key role in implementing DSP functions in ASIC and FPGA devices. The proposed

design relies on LUT based and LUT-Less based. In LUT based designs, partitioning the size of LUT leads to a

trade-off between area and speed performance. LUT-Less implementation requires several cycles with adders to

compute k bits of input data. The architectures are modelled in Verilog HDL and verified using Xilinx ISE. As

there is a huge demand for DSP applications, in calculating the pre-computed SOP, the proposed Offset binary

coding discussed can be used in high-speed DIP and DSP applications. From the charts, it is observed that LUT-

less based design has a less critical path over LUT based MAC core using OBC based DA. This work includes

analysis of the area, delay, power, power-delay, and energy-delay products of LUT-Less based and LUT based

four-term, two-term, and conventional OBC based DA MAC architectures. Finally, the power delay product of

LUT-less is saved by 7.333% compared with conventional DA.

6. Future work

Researchers have many choices of flexibility in designing the desired LUT implementation also able to change

the parameters for implementation. Also, low power techniques can be added to still reduce the power.

7. Acknowledgments

Acknowledgments: I would be grateful to thank Yasha Jyothi M Shirur for constantly supporting in my research

work

8. Conflicts of interest

 The authors are declaring no conflict of interest.

OBC
two lut

OBC
four lut

OBC
adder

based OBC

power(mw) 0.57 0.59 0.42 0.39

hierarchy(mw) 0.61 0.63 0.46 0.44

1.14 0.5

0.47 0.59

1.51 0.59

0.56 0.68

0

0.2

0.4

0.6

0.8

p
o

w
er

,h
ie

ra
rc

h
y

va
lu

es

Comparison of Different Techniques of DA

Techniques for power and
hierachyOptimization of OBC-Based

Implementations

Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 4739-4749

 Research Article

4749

References

1. Mahesh Mehandale, Mohit Sharma, and Pramod Kumar Meher, DA-Based Circuits for Inner-Product

Computation, pp:77-103.

2. JiafengXie, jianjun He and guanzheng Tan, FPGA realization of FIR filters for high speed and medium

speed by using modified distributed arithmetic architectures, June 2010, pp: 365-370.

3. Wayne P.Burleson, Louis L.Scharf, A VLSI design methodology for distributed arithmetic, June 1991

4. Sonali Mehta, Balwindersingh and Dilip Kumar, performance Analysis of Floating Point MAC Unit,

September 2013.

5. R.Prakash Rao, N.Dhanunjaya Rao , K.Naveen and P.Ramya, Implementation of the Standard Floating

point MAC Using IEEE 754 Floating point adder, Feb 2018.

6. Yadagiri Karri, Rajesh Misra, Implementation of 32 Bit Floating point MAC Unit to Feed Weighted

Inputs to Neural Networks, April 2015.

7. Mohamed Asan Basiri M, Noor Mahammad Sk, An Efficient Hardware-Based Higher Radix Floating

Point MAC Design, November 2014.

8. Dhananjaya A, Deepali Koppad, Design Of High Speed Floating Point MAC Using Vedic Multiplier And

Parallel Prefix Adder, June 2013.

