On The Homogeneous Third Degree Diophantine Equation With Four Unknowns $x^{3}+y^{3}=42 z w^{2}$

S.A. Shanmugavadivu ${ }^{1}$ R.Anbuselvi ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, T.V.K. Govt. Arts College, Thiruvarur -610003, Tamil Nadu, India.
${ }^{2}$ Associate Professor, Department of Mathematics, A.D.M. College for Women(Autonomous), Nagapattinam611001, Tamil Nadu, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

ABSTRACT :The homogeneous third degree equation with four unknowns represented by the Diophantine equation

$$
x^{3}+y^{3}=42 z w^{2}
$$

is considered for its patterns of non - zero integral solutions. A few fascinating properties among the solutions and special integer are presented.
KEYWORDS : Third degree equation with four unknowns, Integral solutions.

I. INTRODUCTION

The Diophantine equation offer an unlimited fieldfor research due to their change [1-3]. In particular, one may denote [4-15] for third degree equation with four unknowns. This communication concern withso far another interesting equation $x^{3}+y^{3}=42 z w^{2}$ demonstrating the homogeneous third degree equation with four unknowns for defining its infinitely many non - zero integral points. Varies interesting properties among the values $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w are presented.

II. NOTATION USED

- $t_{m, n}=$ Polygonal integer of order n with size m
- $\quad P_{n}^{m}=$ pyramidal integer of order n with size m
- $P_{r}^{n}=$ pronic integer of order n
- $S o_{n}=$ Stella octangular integer of order n
- $j_{n}=$ Jacobsthallucas integer of order n
- $I_{n}=$ Jacobsthal integer of order n
- $\mathrm{Gno}_{n}=$ Gnomic integer of order n
- $M_{n}=$ Mersenne integer of order n
- $H G_{n}=$ Hexagonal integer of order n
- $P P_{n}=$ Pentagonal pyramidal integer of order n
- $S P_{n}=$ Square pyramidal integer of order n
- $O H_{n}=$ Octohedral integer of order n
- $\quad \mathrm{FN}_{n}^{4}$ = Four dimensional figurate integer whose generating
polygonal is a square

1.1 METHOD OF ANALYSIS

The Third degree Diophantine equation with four unknowns to be solved for obtaining non-zero integral solution is

$$
\begin{equation*}
x^{3}+y^{3}=42 z w^{2} \tag{1}
\end{equation*}
$$

On substituting the linear transformations
$x=u+v, y=u-v, z=u$ (2)

On The Homogeneous Third Degree Diophantine Equation With Four Unknowns

$$
x^{3}+y^{3}=42 z w^{2}
$$

In (1) leads to

$$
\begin{equation*}
u^{2}+3 v^{2}=21 w^{2} \tag{3}
\end{equation*}
$$

We obtain unlike
pattern of integral solutions to (1) through solving (3) which are explained as follows:

1.1.1 PATTERN - I

Assume $w=a^{2}+3 b^{2}$
Write $21=\frac{(3 n+2 n i \sqrt{3})(3 n-2 n i \sqrt{3})}{n^{2}}, \forall n=1,2,3, \ldots$
Using (4), (5) in (3) and employing factorization it is expressed as
$(u+i \sqrt{3} v)(u-i \sqrt{3} v)$

$$
=\frac{(3 \mathrm{n}+2 \mathrm{ni} \sqrt{3})(3 n-2 n i \sqrt{3})}{n^{2}}(a+i \sqrt{3} b)^{2}(a-i \sqrt{3} b)^{2}
$$

which is corresponding to the system of equations

$$
\begin{align*}
& (\mathrm{u}+\mathrm{i} \sqrt{3} v)=\frac{(3 \mathrm{n}+2 \mathrm{ni} \sqrt{3})}{n}(a+i \sqrt{3} b)^{2} \tag{6}\\
& (\mathrm{u}-\mathrm{i} \sqrt{3} v)=\frac{(3 n-2 n i \sqrt{3})}{n}(a-i \sqrt{3} b)^{2} \tag{7}
\end{align*}
$$

Comparing the positive and negative parts either in (6) or (7), we have

In sight of (2), the non-zero different integral solutions-of (1) are

$$
\begin{gather*}
u=3 a^{2}-9 b^{2}-12 a b \tag{8}\\
v=2 a^{2}-6 b^{2}+6 a b \\
\text { In sight of (2), the non-zero different in } \\
x=5 a^{2}-15 b^{2}-6 a b \\
y=a^{2}-3 b^{2}-18 a b \\
z=3 a^{2}-9 b^{2}-12 a b \\
w=a^{2}+3 b^{2}
\end{gather*}
$$

PROPERTIES :

1. $x(a+1, a-1)-$ Star $_{\alpha}+22 T_{4, a} \equiv 5(\bmod 46)$
2. $y\left(a^{2}, a+1\right)-T_{4, a^{2}}+36 P_{a}^{5}+3$ Pro $_{a} \equiv 3(\bmod 3)$
3. $z\left(a, 2 a^{2}-1\right)+432 F N_{\alpha}^{4}+12 S o_{a}-3 T_{4, a}+9=0$
4. $3 x(a, a+1)-y(a, a+1)+42(o b l)_{a}-14 T_{4, a} \equiv 42(\bmod 42)$
5. $w\left(a^{2}, a^{2}\right)-4 T_{4, a^{2}}=0$
6. $x\left(a^{2}, a^{2}-1\right)+10 T_{4, a^{2}}-30 T_{4, a}+72 F N_{a}^{4}+15=0$
7. $x\left(a^{2}, 2 a-1\right)+12 C P_{\alpha}^{6}-60 F N_{\alpha}^{4}+49 T_{4, a} \equiv 15(\bmod 60)$
8. $z(2, a+1)+9$ Pro $_{a} \equiv 21(\bmod 33)$
9. $y(a, 2 a-1)-T_{4, a}+18 H G_{a}+12(\mathrm{Obl})_{a} \equiv 3(\bmod 24)$
10. $w\left(a_{,} a+2\right)-4$ Pro $_{a} \equiv 12(\bmod 8)$

1.1.2 PATTERN - II

Equation (3) can also be written as

$$
\begin{equation*}
u^{2}+3 v^{2}=21 w^{2} * 1 \tag{9}
\end{equation*}
$$

Put 1 as

$$
\begin{equation*}
1=\frac{(n+i n \sqrt{3})(n-i n \sqrt{3})}{(2 n)^{2}}, \forall n=1,2,3, \ldots \tag{10}
\end{equation*}
$$

Using (4), (5) and (10) in (9) and using the method of factorization as in pattern - I, the equivalentintegral solutions are given by

$$
\begin{aligned}
& x=\frac{1}{2}\left[2 a^{2}-6 b^{2}-36 a b\right] \\
& y=\frac{1}{2}\left[-8 a^{2}+24 b^{2}-24 a b\right] \\
& z=\frac{1}{2}\left[-3 a^{2}+9 b^{2}-306 a b\right]
\end{aligned}
$$

$$
w=a^{2}+3 b^{2}
$$

As our plan is to find integral solutions, take a and b suitably so that the solutions are in integers. In particular, the choice $a=2 A, b=2 B$ leads to the integer solution to equation (1) are given by,
$x=4 A^{2}-12 B^{2}-72 A B$

$$
y=-16 A^{2}+48 B^{2}-48 A B
$$

$$
z=-6 A^{2}+18 B^{2}-60 A B
$$

$$
w=4 A^{2}+12 B^{2}
$$

PROPERTIES :

1) $y(A+1, A-1)+16$ Pro $_{A} \equiv 80(\bmod 112)$
2) $z(A+1, A+2)+48$ Pro $_{A}+M_{6} \equiv 9(\bmod 72)$
3) $x\left(A^{2}, A+1\right)-4 T_{4, A^{2}}-$ Star $_{A}+18$ Pro $_{A}+144 P_{A}^{5}+13=0$
4) $w(A, A)-16 T_{4, A}=0$
5) $y(2 B-1, B)-16 T_{4, A}+48 H G_{B} \equiv 16(\bmod 64)$
6) $z\left(7 A^{2}-4, A\right)+180 C P_{A}^{14}-354 T_{4, A}+294 T_{4, A^{2}}+M_{6}+33=0$
7) $x\left(A, 2 A^{2}+1\right)+92 T_{4, A}+216(O H)_{B}+576 F N_{A}^{4}+12=0$
8) $x\left(A, A^{2}\right)+48 F N_{A}^{4}-8 T_{4, A}-72 C P_{A}^{6}=0$
9) $z(A, A(A+1))-\left(S o_{A} * G n o_{A}\right)-48 F N_{A}^{4}-10 T_{4, A^{z}}-38 C P_{A}^{6}$
$+120 P_{A}^{5} \equiv 18(\bmod 1)$
10) $y(A, 8 A-7)+2688(o b l)_{A}+400 T_{4, A}+J_{13}-M_{8}+48 T_{18, A}=124$

1.1.3 PATTERN- III

Let 21 can be written as (7*3)
In equation (3) can be written as,

$$
\begin{equation*}
u^{2}+3 v^{2}=(7 * 3) w^{2} \tag{11}
\end{equation*}
$$

Write (7) and (3) as

$$
\begin{aligned}
& 7=\frac{(2 \mathrm{n}+\mathrm{ni} \sqrt{3})(2 n-n i \sqrt{3})}{n^{2}}, \forall n=1,2,3, \ldots(12) \\
& 3=\frac{(3 \mathrm{n}+\mathrm{ni} \sqrt{3})(3 n-n i \sqrt{3})}{(2 n)^{2}}, \forall n=1,2,3 \ldots(13)
\end{aligned}
$$

Using (4), (12) and (13) in (11) and employing factorization, it is expressed as

On The Homogeneous Third Degree Diophantine Equation With Four Unknowns

$$
x^{3}+y^{3}=42 z w^{2}
$$

$$
\begin{align*}
& (u+\mathrm{i} \sqrt{3} v)(u-i \sqrt{3} v) \\
& =\frac{(2 \mathrm{n}+\mathrm{ni} \sqrt{3})(2 n-n i \sqrt{3})}{n^{2}} \frac{(3 \mathrm{n}+\mathrm{ni} \sqrt{3})(3 n-n i \sqrt{3})}{(2 n)^{2}} \\
& (a+i \sqrt{3} b)^{2}(a-i \sqrt{3} b)^{2} \\
& \quad \text { which is corresponding to the system of equations } \\
& \quad(\mathrm{u}+\mathrm{i} \sqrt{3} v)=\frac{(2 \mathrm{n}+\mathrm{ni} \sqrt{3})}{n} \frac{(3 \mathrm{n}+\mathrm{ni} \sqrt{3})}{2 n}(a+i \sqrt{3} b)^{2} \tag{14}\\
& \quad(\mathrm{u}-\mathrm{i} \sqrt{3} v)=\frac{(2 n-n i \sqrt{3})}{n} \frac{(3 \mathrm{n}-\mathrm{ni} \sqrt{3})}{2 n}(a-i \sqrt{3} b)^{2} \tag{15}
\end{align*}
$$

Comparing the positive and negative parts either in (14) or (15), we have

$$
\begin{gather*}
u=\frac{1}{2} 3 a^{2}-9 b^{2}-30 a b \\
v=\frac{1}{2} 5 a^{2}-15 b^{2}+6 a b \tag{16}\\
\text { In sight of (2), the non-zero different integral solutions of (1) are } \\
x=\frac{1}{2}\left(8 a^{2}-24 b^{2}-24 a b\right) \\
y=\frac{1}{2}\left(-2 a^{2}+6 b^{2}-36 a b\right) \\
z=\frac{1}{2}\left(3 a^{2}-9 b^{2}-30 a b\right) \\
w=a^{2}+3 b^{2}
\end{gather*}
$$

As our plan is to find integral solutions, take \boldsymbol{a} and b suitably so that the solutions are in integers. In particular, the choice $a=2 A, b=2 B$ leads to the integer solution to equation (1) are given by,

$$
\begin{aligned}
& x=16 A^{2}-48 B^{2}-48 A B \\
& y=-4 A^{2}+12 B^{2}-72 A B \\
& z=6 A^{2}-18 B^{2}-60 A B \\
& w=4 A^{2}+12 B^{2}
\end{aligned}
$$

PROPERTIES :

1) $z(A+1, A-1)+72 T_{4, A} \equiv 48(\bmod 48)$
2) $x\left(2 B^{2}-1, B\right)+48 T_{4, B}-768 F N_{B}^{4}+48 S o_{A}=16$
3) $y\left(B, 2 B^{2}+1\right)-48 B i q_{B}+52 T_{4, B}+72(\mathrm{OH})_{B}=12$
4) $\quad x(A, A+1)+4 y(A, A+1)+336$ Pro $_{A}=0$
5) $w(A+1, A+1)-16(O b l)_{A} \equiv 16(\bmod 16)$
6) $z\left(B, B^{2}+1\right)+24 C P_{B}^{6}-60 T_{4, B}+18 T_{4, B^{2}}+72 P_{B}^{5} \equiv 18(\bmod 60)$
7) $x(A, 2 A-1)+192 T_{4, A}+48(H G)_{A}-16$ Pro $_{A} \equiv 48(\bmod 192)$
8) $x\left(A^{2}, A+1\right)-16 B i q_{A}+48 T_{4, A}+96 P P_{A} \equiv 48(\bmod 96)$
9) $y(A(A+1), A+2)+16 P_{A}^{5}+4 T_{4, A^{2}}+432 P_{A}^{3}$
$-16 \mathrm{Pro}_{A} \equiv 48(\bmod 32)$
10) $z(A, A+2)+72$ Pro $_{A} \equiv 72(\bmod 120)$

1.1.4 PATTERN - IV

Let 21 can be written as $(7 * 3)$

$$
\begin{align*}
& u^{2}+3 v^{2}=21 w^{2} * 1 \\
& u^{2}+3 v^{2}=(7 * 3) w^{2} * 1 \tag{17}
\end{align*}
$$

Using (4), (10),(12) and (13) in (17) and employing factorization, it is expressed as
$(u+i \sqrt{3} v)(u-i \sqrt{3} v)$
$=\frac{(2 \mathrm{n}+\mathrm{ni} \sqrt{3})(2 n-n i \sqrt{3})}{n^{2}} \frac{(3 \mathrm{n}+\mathrm{ni} \sqrt{3})(3 n-n i \sqrt{3})}{(2 n)^{2}}$
$\frac{(n+i n \sqrt{3})(n-i n \sqrt{3})}{(2 n)^{2}}(a+i \sqrt{3} b)^{2}(a-i \sqrt{3} b)^{2}$
which is corresponding to the system of equations

$$
\begin{align*}
& (\mathrm{u}+\mathrm{i} \sqrt{3} v)=\frac{(2 \mathrm{n}+\mathrm{ni} \sqrt{3})}{n} \frac{(3 \mathrm{n}+\mathrm{ni} \sqrt{3})}{2 n} \frac{(\mathrm{n}+\mathrm{ni} \sqrt{3})}{2 n}(a+i \sqrt{3} b)^{2} \tag{18}\\
& (\mathrm{u}-\mathrm{i} \sqrt{3} v)=\frac{(2 n-n i \sqrt{3})}{n} \frac{(3 \mathrm{n}-\mathrm{ni} \sqrt{3})}{2 n} \frac{(\mathrm{n}-\mathrm{ni} \sqrt{3})}{2 n}(a-i \sqrt{3} b)^{2} \tag{19}
\end{align*}
$$

Comparing the positive and negative parts either in (18) or (19), we have

$$
\begin{gathered}
u=\frac{1}{4}\left(-12 a^{2}+36 b^{2}-48 a b\right. \\
v=\frac{1}{4}\left(8 a^{2}-24 b^{2}-24 a b\right)(20)
\end{gathered}
$$

In sight of (2), the non-zero different integral solutions of (1) are

$$
\begin{gathered}
x=\frac{1}{4}\left(-4 a^{2}+12 b^{2}-72 a b\right) \\
y=\frac{1}{4}\left(-20 a^{2}+60 b^{2}-24 a b\right) \\
z=\frac{1}{4}\left(-12 a^{2}+36 b^{2}-48 a b\right) \\
w=a^{2}+3 b^{2}
\end{gathered}
$$

As our plan is to find integral solutions, take a and b suitably so that the solutions are in integers. In particular, the choice $a=4 A, b=4 B$ leads to the integer solution to equation (1) are given by,
$x=-16 A^{2}+48 B^{2}-288 A B$

$$
\begin{aligned}
& y=-80 A^{2}+240 B^{2}-96 A B \\
& z=-48 A^{2}+144 B^{2}-192 A B \\
& w=16 A^{2}+48 B^{2}
\end{aligned}
$$

PROPERTIES :

1) $x\left(A+1, A^{2}\right)-32 B i q_{A}-144 F N_{A}^{4}+576 P_{A}^{5} \equiv 16(\bmod 32)$
2) $w\left(A, A^{2}\right)-48 B i q_{A}-16 T_{4, A}=0$
3) $z(A, 2 A-1)-528 T_{4, A}+192(H G)_{A}-M_{7} \equiv 17(\bmod 576)$
4) $y(A+1, A)+96(\mathrm{Obl})_{A}-160 T_{4, A} \equiv 80(\bmod 160)$
5) $x(A(A+1), 2 A+1)+1728 P_{A}^{4}+32 T_{4, A}+32 C P_{A}^{6}+144 F N_{A}^{4}$ -192 Pro $_{A}=48$
6)

$$
y\left(2 A^{2}+1, A\right)+240 \text { Biq }_{A}+288(O H)_{A}+80=0
$$

On The Homogeneous Third Degree Diophantine Equation With Four Unknowns

$$
x^{3}+y^{3}=42 z w^{2}
$$

7) $x(A+2,2)+w(A+2,2)+M_{9}+j_{8} \equiv 8(\bmod 572)$
8) $w\left(A^{2}, A^{2}\right)-64 B i q_{A}=0$
9) $z\left(A, A^{2}+1\right)+192 C P_{A}^{6}-144 T_{4, A^{z}}-240$ Pro $_{A} \equiv 17(\bmod 432)$
10) $x(A+2, A+1)+256 T_{4, A}+M_{9} \equiv 81(\bmod 592)$

III. CONCLUSION

In conclusion, one may study other methods of third degree equation with four unknowns and examine for their integer solutions.

REFERENCES

1. Dickson L.E.," History of the theory numbers", Vol.2: Diophantine Analysis, New York Dover, 2005.
2. Carmichael R.D., "The theory of numbers and Diophantine Analysis", New York:Dover, 1959.
3. Gopalan. M.A, ManjuSomanath and Vanitha,N., "On Ternary Cubic Diophantine Equation $x^{2}+y^{2}=2 z^{3}$ ",Advances in Theoretical and Applied Mathematics Vol.1,No. 3 Pp.227-231, 2006.
4. Gopalan. M.A, Manju Somanath and Vanitha,N., "On Ternary Cubic Diophantine Equation $x^{2}-y^{2}=z^{3}$ ", Acta Ciencia Indica, Vol,XXXIIIM, No.3. Pp.705-707, 2007.
5. Gopalan, M.A., and Anbuselvi,R., "Integral solution of ternary cubic Diophantine equation $x^{2}+y^{2}+4 N=z x y^{\prime}$, Pure and Applied Mathematics Sciences, Vol.LXVII, No. 1-2, March Pp.107111, 2008.
6. Gopalan. M.A, ManjuSomanath and Vanitha,N., "Note on the equation $x^{3}+y^{3}=a\left(x^{2}-y^{2}\right)+b(x+y)$ ", International Journal of Mathematics, Computer Sciences and Information Technologies Vol.No-1, January-June ,pp 135-136, 2008.
7. Gopalan M.A and Pandichelvi V," Integral Solutions of Ternary Cubic Equation $x^{2}-x y+y^{2}=\left(k^{2}-2 k+4\right) z^{3}$, Pacific-Asian Journal of Mathematics Vol2, No 1-2,91-96, 2008.
8. Gopalan M.A.and Kaliga Rani J. " Integral solutions of $x^{2}-x y+y^{2}=\left(k^{2}-2 k z+\right.$ $4) z^{3}(\alpha>1)$ and α is square free",ImpactJ.Sci.Tech., Vol.2(4)Pp201-204,2008.
9. Gopalan.M.A.,Devibala.S., and Manjusomanath,"Integral solutions of $x^{3}+x+y^{3}+y=4(z-2)(z+$ 2)",Impact J.Sci.Tech., Vol.2(2)Pp65-69,2008.
10. Gopalan M.A, ManjuSomanath and Vanitha N., "On Ternary Cubic Diophantine Equation $2^{2 \alpha-1}\left(x^{2}+y^{2}\right)=z^{3}$ ", ActaCienciaIndica, Vol,XXXIVM, No.3, Pp.135-137, 2008.
11. Gopalan M.A., KaligaRani .J. "Integral Solutions of $\quad x^{3}+y^{3}+8 k(x+y)=(2 k+$ 1) $z^{3 \prime \prime}$,Bulletin of pure and Applied Sciences,Vol.29E,(No.1)Pp95-99,2010.
12. Gopalan M.A.and Janaki G., "Integral solution of
$\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{xy}=\left(\mathrm{m}^{2}-\right.$ $\left.5 n^{2}\right) \mathrm{z}^{3 \times,}$,Antartica J.Math.,7(1)Pg.63-67,2010.
13. Gopalan M.A.,andShanmugananthamP. "OntheEquation $\quad x^{2}+x y-y^{2}=\left(n^{2}+4 n-1\right) z^{3}$ ", Bulletin of pure and Applied Sciences',Vol.29E, Pg231-235 Issue2, 2010.
14. Gopalan M.A. and Vijayasankar A,. "Integral Solutions of Ternary Cubic Equation $x^{2}+y^{2}-x y+2(x+y+$ 2) $=z^{3 "}$ "Antartica J.Math.,Vol.7(No.4)pg.455-460,2010.
15. Gopalan. M.A and Pandichelvi.V,"Observation on the cubic equation with four unknowns $x^{2}-y^{2}=z^{3}+w^{3}$ ", Advances in Mathematics Scientific Developments and Engineering Applications, Narosa Publishing house, Chennai,Pp-177-187,2009.
