Types of Filter and Ultra-filter with applications Asst.Prof.Dr.Lieth A. Majed¹, Sabreen Mohameed Sabah²

^{1,2} Department of Mathematics College of Science, university of Diyala, Iraq. Email: liethen84@yahoo.com, scimathms07@uodiyala.edu.iq

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract

The aim of this paper is to study the notion classes of filter and ultra-filter with application. In section one, types of filter have been introduced

Principle, non-principle, maximal and prime filter with some basic properties are studied and we establish a proof of some important properties. If \mathcal{F} be a filter on the set \mathcal{M} , and let $p \subseteq \mathcal{M}$, either: There is some $q \in \mathcal{F}$, s.t $p \cap q = \phi$ or $\{c \subseteq \mathcal{M}: \text{there is some } q \in \mathcal{F}, p \cap q \subseteq c\}$ is a filter on M. Frechet filter is also introduced in this paper. In section, two of this paper is the major contribution; we introduced two important application with new proof of ultra-filter in additive measure theory and Boolean algebra. There are one to one corresponding of ultra-filters on \mathcal{M} and finitely additive measure and Boolean algebra defined on $P(\mathcal{M})$.

Keywords: Filter, Ultra-filter, Frechet filter, Maximal filter, Prime filter, additive measure, Boolean algebra. **1- Preliminaries.**

Definition 2-1:[6] Let \mathcal{M} be any set, a filter on a set \mathcal{M} is a non-empty set \mathcal{F} with the following properties:

1- $\phi \notin \mathcal{F}$.

2- If p and $q \in \mathcal{F}$ then $p \cap q \in \mathcal{F}$.

3- If $p \in \mathcal{F}$, and $p \subseteq q \subseteq \mathcal{M}$, then $q \in \mathcal{F}$, (\mathcal{F} is closed superset).

Next, we will come up with two filter examples on topology and set theory.

Example 2-1: The set \mathcal{F} of a neighborhood of a point b in a topological space X is a filter. Clearly $\phi \notin \mathcal{F}$ and if $p = (b - \frac{\epsilon}{2}, b + \frac{\epsilon}{2}), q = (b - \frac{\epsilon}{4}, b + \frac{\epsilon}{4})$ in \mathcal{F} then $p \cap q \in \mathcal{F}$, Also a neighborhood N for any point in X, such that $p \subseteq N \subseteq X$ implies $N \in \mathcal{F}$.

Example 2-2: Let \mathcal{M} be infinite set, and consider the set $T = \{A \subseteq \mathcal{M} \text{ s.t } \mathcal{M} / A \text{ is finite }\}$ the set of all cofinte subset of \mathcal{M} is a cofinite filter this filter is called Frechet filter on \mathcal{M} which is denoted by *FR*.

Note: One can see the Frechet filter is not an ultra-filter on infinite set.

Definition 2-2:[2] Let \mathcal{M} be a non-empty set and $D \subseteq \rho(\mathcal{M})$ be a collection of subsets of a set \mathcal{M} . We say that D has a finite intersection property (FIP) if the finite intersection for any specific subset of D is not empty.

Remarks 2-1: 1- Filter is closed under the finite intersection property.

2- Every filter and thus any subset of a filter has finite intersection property. Induce that we can get filter including \mathcal{M} iff \mathcal{M} satisfy the finite intersection property.

Remark: If $\emptyset \neq K \subseteq \mathcal{M}$, the set $\{D \subset \mathcal{M}: K \subset D\}$ is filter generated by a set K denoted by $\langle \{K\} \rangle$. If K is singleton subset, i.e. $K = \{c\}$ where $c \in \mathcal{M}$, then it's called a principle filter generated by K consisting all subsets containing c.

Lemma 2-4: Let \mathcal{M} be a finite set then any ultra-filter over $p(\mathcal{M})$ is principle.

Example 2-3: Let \mathcal{M} be a non-empty set and let $x \subseteq \mathcal{M}$. Then $\mathcal{F} = \{D \subseteq \mathcal{M} : x \subseteq D\}$ is a filter generated by x. In fact it's a proper filter if $x = \{1,2,3\}$ then $F = \{D \subseteq N : \{1,2,3\} \subseteq D\}$ is principle proper filter generated by $\{1,2,3\}$.

Definition 2-3:[1] \mathcal{F} is prime filter if for any, $q \subseteq \mathcal{M}$, satisfies $p \cup q \in \mathcal{F}$, either $p \in \mathcal{F}$ or $q \in \mathcal{F}$.

Lemma 2-1: Let \mathcal{F} be an ultra-filter, if $p \cup q \in \mathcal{F}$, then either $p \in \mathcal{F}$ or $q \in \mathcal{F}$.

Proof: Suppose $p \notin \mathcal{F}$, and $q \notin \mathcal{F}$, then $p^c, q^c \in \mathcal{F}$, it follows that $p^c \cap q^c = (p \cup q)^c \in \mathcal{F}$, then therefore $p \cup q \notin \mathcal{F}$, contradiction.

Definition 2-4:[5] A filter F on \mathcal{M} is called an ultra-filter if it is not properly contained in any other filter.

An ultra-filter on M is non-principal if it is not principle.

Example 2-4: The trivial filter $\{\mathcal{M}\}$ on \mathcal{M} is not ultra-filter unless \mathcal{M} is singleton. Also the Frechet filter is not ultra-filter if \mathcal{M} is infinite, since there are infinite cofinite subsets in \mathcal{M} . For example if $\mathcal{M} = \mathbb{Z}$, then neither the set of positive integer numbers neither its complement is contained in \mathcal{M} which is not ultrafilter according to the next following lemma.

Another characteristic for ultra-filter show in the next lemma.

Lemma 2-2: Let \mathcal{M} be a non-empty set and \mathcal{F} be a filter on \mathcal{M} . Then \mathcal{F} is an ultra-filter if for every $p \subseteq \mathcal{M}$ either p or $\mathcal{M} \setminus p$ is an element on \mathcal{F} .

Proof: For the first direction, it is direct proof by (2) of definition.

Conversely, let \mathcal{F} be an ultra-filter in \mathcal{M} . Assume that for $p \subseteq \mathcal{M}$ neither p nor its complement $\mathcal{M} \setminus p$ belong to \mathcal{F} . Case (1): p and $\mathcal{M} \setminus p \in \mathcal{F}$ implies by definition of filter $p \cap \mathcal{M} \setminus p = \emptyset \in \mathcal{F}$, which is a contradiction. Case (2): we have p and $\mathcal{M} \setminus p \notin \mathcal{F}$. Note that $\mathcal{F} \cup p$ and $\mathcal{F} \cup \mathcal{M} \setminus p$ both are filter and $\mathcal{F} \subseteq \mathcal{F} \cup p$ and $\mathcal{F} \subseteq \mathcal{F} \cup \mathcal{M} \setminus p$ which is a contradiction. Therefore p or $\mathcal{M} \setminus p \in \mathcal{F}$.

Definition 2-5:[6] A filter \mathcal{F} on \mathcal{M} is maximal filter if for any $p \subseteq \mathcal{M}$ and $p \notin \mathcal{F}$, then $\mathcal{F} \cup \{p\}$ is not a filter.

Proposition 2-1: A filter \mathcal{F} on a non-empty set \mathcal{M} is an ultra-filter if only if it is maximal filter.

In the following theory, we can prove that we had a non-empty set that contains the filter and ultra-filter, and so the filter is part of the ultra-filter within this set.

Theorem 2-1: Every filter \mathcal{F}'' on anon-empty set \mathcal{M} there exists an ultra-filter \mathcal{F} on \mathcal{M} such that $\mathcal{F}'' \subseteq \mathcal{F}$

Proof: Let $S = \{F : F \text{ is a filter and } \mathcal{F}^{"} \subseteq F\}$ and take the partially ordered set (S, \subseteq) . Now consider a chain $L \subseteq S$, the set of union $\cup L$ of this collection of filter indicted with \subseteq is clearly a filter on \mathcal{M} and containing $\mathcal{F}^{"}$ which is an upper bound for L. Hence, (S, \subseteq) satisfies the hypotheses of Zorn's lemma implies has maximal element \mathcal{F} which is maximal element of (S, \subseteq) . We claim that \mathcal{F} is an ultra-filter. If not then there exists $A \subseteq \mathcal{M}$ such that $A \notin \mathcal{F}$ and $\mathcal{M} \setminus A \notin \mathcal{F}$. Consider the collection $C = \mathcal{F} \cup \{A\}$. We claim that the set C has finite intersection property. Let $y_1, y_2, ..., y_n \in C$.

Case1: Suppose that $y_i \in \mathcal{F}$ for every $1 \le i \le n$. since \mathcal{F} has finite intersection property then $y_1 \cap y_2 \cap \ldots \cap y_n \in F \subseteq C$.

Case 2: Suppose that $y_i \notin \mathcal{F}$ for some $1 \leq i \leq n$. By changing these sets without changing them intersection, we can suppose without loss of generality that $y_1 = A$ and $y_2, \dots, y_n \in \mathcal{F}$. As \mathcal{F} has finite intersection property, we have that $y_2 \cap \ldots \cap y_n \in \mathcal{F}$. It follows that any superset of $y_2 \cap \ldots \cap y_n$ is in \mathcal{F} . From the other side, $\mathcal{M} \setminus A \notin \mathcal{F}$ and hence $y_2 \cap \ldots \cap y_n \notin \mathcal{M} \setminus A$, that is $A \cap y_2 \cap \ldots \cap y_n \neq \emptyset$. Therefore, C has finite intersection property and can be extension to a filter. Hence $F \subseteq C \subseteq \mathcal{F}$ which is a contradiction by Zorn's lemma \mathcal{F} is maximal.

Theorem 2-2: Let \mathcal{M} be a set, $\mathcal{M} \neq \emptyset$ then $p \subseteq \mathcal{M}$, and let \mathcal{F} be a filter on \mathcal{M} . Then there is some $q \in \mathcal{F}$, such that $p \cap q = \phi$ or if there exist

and some $q \in \mathcal{F}, p \cap q \subseteq C$ is a filter on $\mathcal{M}. C \subseteq \mathcal{M}$

Proof: Suppose a for all $q \in \mathcal{F}$, $p \cap q \neq \phi$, we need to show the set $k = \{C \subseteq \mathcal{M}, \exists \text{ some } q \in \mathcal{F} \text{ with } p \cap q \subseteq C\}$ is actually a filter. Let $p_1, p_2 \in k$, then there exist $q_1, q_2 \in \mathcal{F} \text{ s.t } p \cap q_1 \subseteq p_1$, $p \cap q_2 \subseteq p_2$.

Then $p \cap (q_1 \cap q_2) \subseteq p_1 \cap p_2 \in k$. If $p' \in k$ take $q \in \mathcal{M}$ such that $p' \subseteq q \subseteq \mathcal{M}$ to show that that $q \in k$. Now $p' \in k$ implies that $\exists q' \in \mathcal{F}$ such that $\cap q' \subseteq p'$, hence $p \cap q' \subseteq q$ and then $q \in k$. By negative condition of (a) then $\phi \notin k$.

The next lemma it is easy to show, as a one of an important fact for the ultra-filter.

Lemma 2-3: Let \mathcal{M} be a set and \mathcal{F} and L be ultra-filters on \mathcal{M} then $\mathcal{F} = L$ if and only if $\mathcal{F} \subseteq L$.

Proof: The first direction is clear. Conversely, let $\mathcal{F} \subseteq L$, \mathcal{F} is ultra-filter. Then by definition of ultra-filter $\mathcal{F} = L$.

The next theory it's called ultra-filter theorem, the content of this theory that the filter can be extended to ultra-filter.

Theorem 2-3: Any filter \mathcal{F} on a non-empty set \mathcal{M} be expansion to an ultra-filter.

Proof: For some filter \mathcal{F} , suppose that $A = \{F' \subseteq \mathcal{M}: F' \text{ is filter s.t } \mathcal{F} \subseteq F'\}$. Note that A is nonempty since $\mathcal{F} \in A$. Claim that for each chain $\{\mathcal{F}_{\alpha}: \alpha \in I\}$ in A, their union $\bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$ is still a filter in A. It is clear that $\emptyset \notin \bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$. For an element $B \in \bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$, $B \in \mathcal{F}_{\alpha}$ for some $\alpha \in I$. Then for all *C* such that $B \subseteq C$, $C \in \mathcal{F}_{\alpha} \subset \bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$. Similarly, for *P* and $Q \in \bigcup_{\alpha \in I} \mathcal{F}_{\alpha} P \in \mathcal{F}_{\alpha}$ and $C \in \mathcal{F}_{\beta}$. Without loss of generality, assume $\mathcal{F}_{\beta} \subseteq \mathcal{F}_{\alpha}$; thus, $C \in \mathcal{F}_{\alpha}$ and $B \cap C \in \mathcal{F}_{\alpha} \subseteq \bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$. Hence, by Zorn's lemma, there exists a maximal element in A and by proposition $\{2-1\}$; it is an ultra-filter.

Remark 2-2: The Frechet filter in infinite set \mathcal{M} is non-principle. In the next proposition show whatever an ultra-filter is principle or non-principle by checking if it have Frechet filter.

Lemma 2- 4:[6] Let \mathcal{M} be a finite set then any ultra-filter over $p(\mathcal{M})$ is principle.

Proposition 2-2: Let \mathcal{M} be an infinite set and \mathcal{F} be an ultrafilter on \mathcal{M} . Then \mathcal{F} is non-principle if and only if it include the Frechet filter.

Proof: Assume that \mathcal{F} is principal, let it be $\mathcal{F} = \{B \subseteq \mathcal{M} : b \in B\}$. Then, since $\{b\} \in \mathcal{F}$, we have $\mathcal{M} - \{b\} \notin \mathcal{F}$. On the other hand, $\mathcal{M} - \{b\}$ is cofinite. Hence, \mathcal{M} dose not have the frechet filter. Suppose that \mathcal{F} dose not include the frechet filter. Then there are a cofinite set $B \subseteq \mathcal{M}$ such that $B \notin \mathcal{F}$ and hence $\mathcal{M} - B \in \mathcal{F}$. Redefine the set $\mathcal{M} - B$, say, $\mathcal{M} - B = \{d_1, d_2, \dots, d_n\}$. If $\mathcal{M} - \{di\} \in \mathcal{F}$ for every $1 \leq i \leq n$, then we would have

$$\bigcap_{i=1}^{n} \mathcal{M} - \{d_i\} = \{d_1, d_2, \dots, d_n\} \in F$$

Which is a contradiction, also the intersection of this set and $\mathcal{M} - B$ is empty. Therefore, there exists $1 \le i \le n$ such that $\mathcal{M} - \{d_i\} \notin \mathcal{F}$ and hence $\{di\} \in \mathcal{F}$. Therefore, as in the proof of lemma $\{2-4\}$ we should have $\{B \subseteq \mathcal{M} : b \in B\} = \mathcal{M}$.

2- Ultra-filter application.

In the present section of this paper, we will cove two main application of ultra-filter.

Definition 2-6: [3] A finitely-additive measure on X is a function $\mu : 2^X \rightarrow \{0, 1\}$ that satisfies

 $1.\,\mu(X) = 1\,,\ \mu(\emptyset) = 0$

2. If A_1, \ldots, A_n are pairwise disjoint, then $\mu(\bigcup_i A_i) = \sum_i \mu(A_i)$.

The next theorem give us an application of ultra-filter by showing that the ultra-filter can significant as a finitely additive measure.

Theorem 2-4: Let \mathcal{M} be any set, show that the ultra-filters on \mathcal{M} are one to one corresponding with finitly additive measurs defined on $P(\mathcal{M})$ which takes values in $\{0,1\}$ and are not identically zero.

Proof: Define a map μ : P(\mathcal{M}) \rightarrow {0,1} by

$$\begin{cases} 1 & if \quad A \in \mathcal{F} \\ 0 & if \quad A \notin \mathcal{F} \end{cases} \qquad \mu(A) =$$

Since F is a filter then $\emptyset \notin \mathcal{F}$ then $\mathcal{M} \in \mathcal{F}$, by define implies $\mu(\mathcal{M}) = 1$. It is enough to prove that for disjoint set A and B, $\mu(A \cup B) = \mu(A) + \mu(B)$. Case (1): if $A \in \mathcal{F}$ and $B \notin \mathcal{F}$ or vice versa, then by definition it's clear that they are equal. Case (2): Since A and B are disjoint then $A \cap B = \emptyset$. Therefore A or $B \in \mathcal{F}$ but not both, led to

, implies that $A^c \cap B^c = (A \cup B)^c \in \mathcal{F}$. We get $A \cup B \notin \mathcal{F}$ and therefore $\mu(A \cup A^c and B^c \in \mathcal{F} B) = \mu(A) + \mu(B) = 0$.

For the other direction, suppose we has non-zero finitely additive measure. Clearly by definition $\mu(\emptyset) = 0$. Let $A, B \in \mathcal{F}$, by definition $\mu(A) = \mu(B) = 1$ therefore $(A \cup A^c) = \mu(A) + \mu(A^c) = \mu(M)$

$$\Rightarrow$$
 1 + μ (A^c) = 1

$$\Rightarrow \mu(\mathbf{A}^c) = 0$$

Similarly one can get $\mu(B^c) = 0$. Now if $A \cup B \in \mathcal{F}$ then $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$

$$\Rightarrow 1 = 1 + 1 - \mu (A \cap B)$$
$$\Rightarrow \mu (A \cap B) = 1$$

Finally, let $A \in \mathcal{F}$ such that $A \subseteq B \subseteq \mathcal{M}$, $B \in \mathcal{M}$. Since $A \subseteq B$ then $\mu(A) \leq \mu(B)$. But $\mu(A) = 1$ and hence $\mu(B) = 1$.

Theorem 2-5: Let \mathcal{M} be a non-empty set. The ultra-filters on \mathcal{M} are in one-to-one corresponding with the Boolean algebra homomorphism mapping (p (\mathcal{M}), \cup , \cap) on to Bolean algebra ({0, 1}, \vee , \wedge).

Solution: Let $f: (p(\mathcal{M}), \cup, \cap) \rightarrow (\{0,1\}, \vee, \wedge)$ defined by:

$$f(A) = \begin{cases} 1 & \text{if } A \in \mathcal{F} \\ 0 & \text{if } A \notin \mathcal{F} \end{cases}$$

Where $A \in p(\mathcal{M})$ and \mathcal{F} is some ultra-filter on \mathcal{M} . We claim that f is onto and Boolean homomorphism. If $A \in \mathcal{F}$ then f(A) = 1 and if $A \notin \mathcal{F}$ then $f(A^c) = 0$ this implies f is onto. For f is Boolean homomorphism, take $A, B \in p(\mathcal{M})$ then:

Case1: If $A, B \in U$. Note $A \in \mathcal{F} \subseteq A \cup B \subseteq p(\mathcal{M})$ then $A \cup B \in \mathcal{F}$ and therefore $f(A \cup B) = 1$

$$= 1 \vee 1$$
$$= f(A) \cup f(B)$$

Also since A, B $\in \mathcal{F}$ then $A \cap B \in \mathcal{F}$. Hence $f(A \cap B) = 1$

$$= 1 \wedge 1$$
$$= f(A) \wedge f(B) .$$

Case2: If $A, B \notin \mathcal{F}$ then $A \cap B \notin \mathcal{F}$ otherwise it's a contradiction.

Therefore $f(A \cap B) = 0$

$$= 0 \wedge 0$$
$$= f(A) \wedge f(B) .$$

Also $A \cup B \in \mathcal{F}$. Hence $f(A \cup B) = 1$

$$= 1 \vee 1$$
$$= f(A) \cup f(B).$$

Case 3: If $A \in \mathcal{F}$ and $B \notin \mathcal{F}$ then it will be similar to case 2.

Conversely, to show that \mathcal{F} is a filter. Let $A \notin \mathcal{F}$ then $f(A \cup \emptyset) = f(A) \vee f(\emptyset) = f(A)$. Since f(A) = 0 then $f(A) \vee f(\emptyset) = 0$ i.e. it must be $f(\emptyset) = 0$. Let $B \in \mathcal{F}$, since f is homo then $f(A \cap B) = f(A) \cap f(B) = 1 \wedge 1 = 1$. Hence $A \cap B \in \mathcal{F}$. To obtain a filter we need also show if $A \in \mathcal{F}$ s.t $A \subseteq B \subseteq p(\mathcal{M})$ then $B \in \mathcal{F}$. Note that because f is homo then $f(A \cap B) = f(A) \cap f(B) = f(A)$ Since f(A) = 1 then $f(A) \cap f(B) = 1 \wedge 1 = 1$ one must obtain f(B) = 1, therefore $B \in \mathcal{F}$. Finally for ultra-filter, note that $f(A \cap A^c) = f(A) \wedge f(A^c) = f(\emptyset) = 0$. So $f(A^c) = 0$. To show either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$. Suppose $A \in U$ then $(A \cup Ac) = f(A) \vee f(A^c) = f(\mathcal{M})$. But $f(\mathcal{M}) = 1$ and f(A) = 0. Therefore $f(A^c) = 0$.

References

1- A.Rahnemai-Barghi, The Prime Ideal theorem for distributive hyperlattices, Ital.J.Pure Apple.Math, 10(2010), 75-78.

2- Damir D.Dzhafarov, Carl Mummert. On the strength of the finite intersection principle. Israel Journal of Mathematics 196(1).2011.DOI:10.1007\ s11856-012-0150-9.

3-Kallen bery,Olav(2017).Random Measures,theory and Applications. Switzerland:Springer. P.122. DOI:10.1007 \ 978 -3-319-41598.ISBN 978-3-319-41596-3.

4 - Lieth A Majed. On Connection between the Dynamical System and the Ellis Compactification with Transitive Pointed System. Baghdad Science Journal.2017. DOI: https//doi.org/10.21123/bsj . 2017.14.4.0820.ISSN: 2078-8665.

5-Leinster, Tom. Codensity and the Uitrafilter Monad.theory and Applications of Catagories, 28:332, 2012.

6 – Neil Hindman and Dona struss, Algedra in The stone-cech compactification, theory and Application . Gradute . Walter de Gruyter Publications Inc., Germany, 2012.