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Abstract 

The aim of this paper is to study the notion classes of filter and ultra-filter with application. In section one, types 

of filter have been introduced 

 Principle, non-principle, maximal and prime filter with some basic properties are studied and we establish a proof 

of some important properties. If ℱ be a filter on the set ℳ, and let 𝑝 ⊆ ℳ, either:There is some  𝑞 ∈ ℱ , s.t 𝑝 ∩
𝑞 = 𝜙  or {𝑐 ⊆  ℳ: there is some 𝑞 ∈  ℱ, 𝑝 ∩ 𝑞 ⊆ 𝑐 } is a filter on M. Frechet filter is also introduced in this 

paper. In section, two of this paper is the major contribution; we introduced two important application with new 

proof of ultra-filter in additive measure theory and Boolean algebra. There are one to one corresponding of ultra-

filters on ℳ and finitely additive measure and Boolean algebra defined on 𝑃(ℳ). 
Keywords: Filter, Ultra-filter,  Frechet filter, Maximal filter,  Prime filter, additive measure, Boolean algebra. 
1- Preliminaries.                                     

Definition 2-1:[6] Let ℳ be any set, a filter on a set  ℳ is a non-empty set ℱ with the following 

properties: 

1- 𝜙 ∉  ℱ.  

2- If  𝑝 and q  ∈  ℱ  then  𝑝 ∩  𝑞 ∈   ℱ.   

3- If  𝑝 ∈  ℱ , and  𝑝 ⊆  𝑞 ⊆ ℳ , then 𝑞 ∈  ℱ, (ℱ is closed superset). 

Next, we will come up with two filter examples on topology and set theory.   

Example 2-1: The set ℱ of a neighborhood of a point b in a topological space X is a filter. Clearly 𝜙 ∉

 ℱ and if p = (𝑏 −
∈

2
, 𝑏 +

∈

2
), q = (𝑏 −

∈

4
 , 𝑏 +

∈

4
) in ℱ then 𝑝 ∩  𝑞 ∈   ℱ, Also a neighborhood N for any 

point in X, such that p ⊆ N ⊆ X implies N ∈  ℱ .   

Example 2-2: Let ℳ  be infinite set, and consider the set Τ = { A ⊆  ℳ s. t ℳ / A is finite } the set of 

all cofinte subset of ℳ is a cofinite filter this filter is called Frechet filter on  ℳ which is  denoted by 

𝐹𝑅.  

Note: One can see the Frechet filter is not an ultra-filter on infinite set.  

Definition 2-2:[2] Let ℳ be a non-empty set and 𝐷 ⊆ 𝜌(ℳ) be a collection of subsets of a set ℳ. We 

say that D has a finite intersection property (FIP) if the finite intersection for any specific subset of D is 

not empty.   

Remarks 2-1: 1- Filter is closed under the finite intersection property. 

2- Every filter and thus any subset of a filter has finite intersection property. Induce that we can get 

filter including ℳ iff ℳ satisfy the finite intersection property.  

Remark: If ∅ ≠ 𝐾 ⊆ ℳ, the set { 𝐷 ⊂ ℳ: 𝐾 ⊂ 𝐷} is filter generated by a set 𝐾 denoted by < {𝐾} >. 

If 𝐾 is singleton subset, i.e. 𝐾 = {𝑐} where  𝑐 ∈ ℳ, then it's called a principle filter generated by 𝐾 

consisting all subsets containing c. 

Lemma 2-4: Let ℳ be a finite set then any ultra-filter over 𝑝(ℳ) is principle.  

Example 2-3: Let ℳ be a non-empty set and let x ⊆ ℳ. Then ℱ= {D ⊆  ℳ: x ⊆ D} is a filter generated 

by 𝑥. In fact it’s a proper filter if x = {1,2,3} then 𝐹 = {𝐷  ⊆  𝑁: {1,2,3}  ⊆  𝐷} is principle proper filter 

generated by {1,2,3}. 

Definition 2-3:[1]  ℱ is prime filter if for any, 𝑞 ⊆ ℳ , satisfies  𝑝 ∪ 𝑞 ∈ ℱ, either 𝑝 ∈ ℱ or q ∈ ℱ.   
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Lemma 2-1: Let ℱ be an ultra-filter, if 𝑝 ∪ 𝑞 ∈ ℱ, then either   𝑝 ∈ ℱ or 𝑞 ∈ ℱ. 

Proof: Suppose 𝑝 ∉ ℱ, and 𝑞 ∉ ℱ, then 𝑝𝑐 , 𝑞𝑐 ∈ ℱ, it follows  that 𝑝𝑐 ∩ 𝑞𝑐 = (𝑝 ∪ 𝑞)𝑐 ∈ ℱ , then 

therefore 𝑝 ∪ 𝑞 ∉ ℱ , contradiction.    

Definition 2-4:[5] A filter Ғ on ℳ is called an ultra-filter if it is not properly contained in any other 

filter.  

An ultra-filter on M is non-principal if it is not principle.  

Example 2-4: The trivial filter {ℳ} on ℳ is not ultra-filter unless ℳ is singleton. Also the Frechet 

filter is not ultra-filter if ℳ is infinite, since there are infinite cofiinite subsets in ℳ. For example if 

ℳ = ℤ, then neither the set of positive integer numbers neither its complement is contained in ℳ 

which is not ultrafilter according to the next following lemma. 

Another characteristic for ultra-filter show in the next lemma. 

Lemma 2-2: Let ℳ be a non-empty set and ℱ be a filter on ℳ. Then ℱ  is an ultra-filter if for every 

p ⊆ ℳ  either p or ℳ\𝑝 is an element on ℱ.  

Proof: For the first direction, it is direct proof by (2) of definition.   

 Conversely, let ℱ be an ultra-filter in ℳ. Assume that for p ⊆ ℳ neither p nor its complement 

ℳ\𝑝 belong to ℱ. Case (1): p and ℳ\𝑝 ∈ ℱ implies by definition of filter p ∩ ℳ\𝑝 = ∅ ∈  ℱ, which 

is a contradiction. Case (2): we have p and ℳ\𝑝 ∉ ℱ. Note that ℱ ∪ p and ℱ ∪ ℳ\𝑝  both are filter 

and ℱ ⊆ ℱ ∪ 𝑝 and  ℱ ⊆ ℱ ∪ ℳ\𝑝 which is a contradiction. Therefore p or ℳ\𝑝 ∈
ℱ.                                                      

 Definition 2-5:[6] A filter  ℱ on ℳ is maximal filter if for any 𝑝 ⊆  ℳ and 𝑝 ∉  ℱ, 𝑡ℎ𝑒𝑛   ℱ ∪ {𝑝} is 

not a filter.  

Proposition 2-1: A filter ℱ on a non-empty set ℳ is an ultra-filter if only if it is maximal filter.   

In the following theory, we can prove that we had a non-empty set that contains the filter and ultra-

filter, and so the filter is part of the ultra-filter within this set. 

Theorem 2-1: Every filter ℱ" on anon-empty set ℳ there exists an ultra-filter ℱ 𝑜𝑛 ℳ such that ℱ" ⊆
ℱ 

Proof: Let 𝑆 = { 𝐹 ∶  𝐹 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟 𝑎𝑛𝑑 ℱ" ⊆ 𝐹 } and take the partially ordered set (S, ⊆) . Now 

consider a chain 𝐿 ⊆ 𝑆 , the set of union ∪ 𝐿 of this collection of filter indicted with ⊆ is clearly a filter 

on ℳ and containing ℱ" which is an upper bound for 𝐿. Hence, (S, ⊆) satisfies the hypotheses of Zorn's 

lemma implies has maximal element ℱ which is maximal element of (S, ⊆) . We claim that ℱ 𝑖𝑠  an 

ultra-filter. If not then there exists A ⊆ ℳ such that A ∉ ℱ and ℳ \𝐴 ∉ ℱ. Consider the collection C 

= ℱ ∪ {A }. We claim that the set C has finite intersection property.  Let 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝐶 ..  

Case1: Suppose that 𝑦𝑖  ∈  ℱ  for every 1 ≤ 𝑖 ≤ 𝑛. since ℱ  has finite intersection property then  𝑦1 ∩
𝑦2 ∩ . . .∩ 𝑦𝑛 ∈  𝐹 ⊆ 𝐶.  

Case 2: Suppose that 𝑦𝑖  ∉  ℱ for some 1 ≤ 𝑖 ≤ 𝑛 . By changing these sets without changing them 

intersection, we can suppose without loss of generality that 𝑦1 = A and  𝑦2, … , 𝑦𝑛 ∈ ℱ. As ℱ  has finite 

intersection property, we have that 𝑦2 ∩ . . .∩  𝑦𝑛  ∈  ℱ. It follows that any superset of 𝑦2 ∩ . . .∩  𝑦𝑛 is 

in ℱ. From the other side, ℳ\𝐴 ∉  ℱ and hence 𝑦2 ∩ . . .∩ 𝑦𝑛 ⊈ ℳ\𝐴 , that is A ∩ 𝑦2 ∩ . . .∩  𝑦𝑛 ≠ ∅. 

Therefore, C has finite intersection property and can be extension to a filter.Hence   𝐹 ⊆ 𝐶 ⊆  ℱ which 

is a contradiction by Zorn's lemma ℱ  is maximal.        

Theorem 2-2: Let ℳ be a set, ℳ ≠ ∅ then 𝑝 ⊆ ℳ, and let ℱ be a filter on ℳ. Then there is some  

𝑞 ∈ ℱ , such that 𝑝 ∩ 𝑞 = 𝜙 or if there exist 

 𝐶 ⊆  ℳ and some 𝑞 ∈  ℱ, 𝑝 ∩ 𝑞 ⊆ 𝐶 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟 𝑜𝑛 ℳ. 

Proof: Suppose a for all 𝑞 ∈  ℱ, 𝑝 ∩ 𝑞 ≠ 𝜙, we need to show the set 𝑘 = {𝐶 ⊆  ℳ, ∃ some 𝑞 ∈  ℱ with  

𝑝 ∩ 𝑞 ⊆ 𝐶} is actually a filter. Let 𝑝1, 𝑝2 ∈ 𝑘, then there exist q1,q2 ∈  ℱ 𝑠. 𝑡  𝑝 ∩ 𝑞1⊆ 𝑝1  , 𝑝 ∩q2⊆ 𝑝2. 
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Then 𝑝 ∩ (𝑞1 ∩ 𝑞2) ⊆ 𝑝1 ∩ 𝑝2 ∈ 𝑘. If  𝑝′ ∈ 𝑘 take 𝑞 ∈  ℳ  such that 𝑝′ ⊆ 𝑞 ⊆  ℳ to show that that 

𝑞 ∈ 𝑘. Now 𝑝′ ∈ 𝑘 implies that ∃𝑞′ ∈  ℱ such that ∩ 𝑞′ ⊆ 𝑝′ , hence 𝑝 ∩ 𝑞′ ⊆ 𝑞   and then 𝑞 ∈ 𝑘. By 

negative condition of (a) then  𝜙 ∉ 𝑘 . 

The next lemma it is easy to show, as a one of an important fact for the ultra-filter. 

Lemma 2-3: Let ℳ be a set and  ℱ and 𝐿 be ultra-filters on ℳ then  ℱ = L  if and only if ℱ ⊆ L.  

Proof: The first direction is clear. Conversely, let ℱ ⊆ L, ℱ  is ultra-filter. Then by definition of ultra-

filter  ℱ = 𝐿 .  

The next theory it's called ultra-filter theorem, the content of this theory that the filter can be extended 

to ultra-filter.   

Theorem 2-3: Any filter  ℱ on a non-empty set ℳ be expansion to an ultra- filter. 

Proof: For some filter ℱ, suppose that 𝐴 = {F′ ⊆ ℳ: F′ is filter s.t ℱ ⊆ 𝐹′}. Note that A is nonempty 

since ℱ ∈ A. Claim that for each chain { ℱ𝛼: 𝛼 ∈ 𝐼 } in A , their union ⋃∝∈𝐼ℱ𝛼 is still a filter in A. It is 

clear that  ∅ ∉ ⋃∝∈𝐼ℱ𝛼. For an element B  ∈ ⋃∝∈𝐼ℱ𝛼, 𝐵 ∈ ℱ𝛼 for some 𝛼 ∈ 𝐼. Then for all 𝐶 such that 

𝐵 ⊆ 𝐶 , 𝐶 ∈ ℱ𝛼  ⊂  ⋃∝∈𝐼ℱ𝛼. Similarly, for 𝑃 and 𝑄 ∈ ⋃∝∈𝐼ℱ𝛼  𝑃 ∈ ℱ𝛼    and C ∈ ℱ𝛽   . Without loss of 

generality, assume ℱ𝛽  ⊆ ℱ𝛼; thus, C ∈ ℱ𝛼    𝑎𝑛𝑑  B ∩ C ∈ ℱ𝛼 ⊆ ⋃∝∈𝐼ℱ𝛼. Hence, by Zorn's lemma, there 

exists a maximal element in A and by proposition {2-1}; it is an ultra-filter.  

Remark 2-2: The Frechet filter in infinite set ℳ is non–principle. In the next proposition show 

whatever an ultra-filter is principle or non-principle by checking if it have Frechet filter.  

 Lemma 2- 4:[6] Let ℳ be a finite set then any ultra-filter over 𝑝(ℳ) is principle. 

Proposition 2-2: Let ℳ be an infinite set and ℱ be an ultrafilter on ℳ. Then ℱ is non-principle if and 

only if it include the Frechet filter. 

Proof: Assume that ℱ is principal, let it be ℱ = { 𝐵 ⊆  ℳ: 𝑏 ∈ 𝐵}. Then, since {b}∈  ℱ, we have ℳ −
{𝑏} ∉ ℱ. On the other hand, ℳ − {𝑏} is cofinite. Hence, ℳ dose not have the frechet filter. Suppose 

that ℱ dose not include the frechet filter. Then there are a cofinite set 𝐵 ⊆  ℳ such that 𝐵 ∉ ℱ and 

hence ℳ − 𝐵 ∈  ℱ. Redefine the set ℳ − 𝐵, say, ℳ −B ={𝑑1, 𝑑 2, … … , 𝑑𝑛}. If ℳ − {𝑑𝑖} ∈ ℱ for 

every 1≤ 𝑖 ≤ 𝑛, then we would have  

                            ⋂ ℳ − {𝑑𝑖} = {𝑑1, 𝑑 2, … … , 𝑑𝑛}𝑛
𝑖=1 ∈  𝐹    

Which is a contradiction, also the intersection of this set and ℳ − 𝐵 is empty. Therefore, there exists 

1≤ 𝑖 ≤ 𝑛 such that ℳ − {𝑑𝑖} }∉ ℱand hence {𝑑𝑖} ∈  ℱ .Therefore , as in the proof of lemma {2-4 } 

we should have { 𝐵 ⊆  ℳ: 𝑏 ∈ 𝐵} = ℳ.  

2- Ultra-filter application. 

In the present section of this paper, we will cove two main application of ultra-filter. 

Definition 2-6:[ 3] A finitely-additive measure on 𝑋 is a function µ ∶  2𝑋  →  {0, 1} that satisfies  

1. µ(𝑋)  =  1 ,  𝜇(∅)  =  0 

2. If 𝐴1, . . . , 𝐴𝑛 are pairwise disjoint, then µ(∪𝑖 𝐴𝑖)  =  ∑ µ(𝐴𝑖)𝑖  .   

The next theorem give us an application of ultra-filter by showing that the ultra-filter can significant 

as a finitely additive measure.  

Theorem 2- 4: Let ℳ be any set, show that the ultra-filters on ℳ are one to one corresponding with 

finitly additive measurs defined on P(ℳ) which takes values in {0,1} and are not identically zero. 

Proof: Define a map  𝜇: P(ℳ ) →{0,1} by 

𝜇(𝐴) =  {
1    𝑖𝑓     𝐴  ∈  ℱ            
0     𝑖𝑓   𝐴 ∉   ℱ             
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Since F is a filter then ∅ ∉ ℱ then  ℳ ∈ ℱ, by define implies 𝜇 (ℳ) = 1. It is enough to prove that for 

disjoint set A and B,  𝜇(𝐴 ∪ 𝐵 ) =  𝜇 (𝐴) +  𝜇 (𝐵). Case (1): if 𝐴 ∈  ℱ and 𝐵 ∉  ℱ  or vice versa, 

then by definition it's clear that they are equal. Case (2): Since 𝐴 and 𝐵 are disjoint then 𝐴 ∩ 𝐵 = ∅. 

Therefore 𝐴or 𝐵 ∈ ℱ but not both, led to  

𝐴𝑐𝑎𝑛𝑑 𝐵𝑐 ∈ ℱ, implies that  𝐴𝑐 ∩ 𝐵𝑐 = ( 𝐴 ∪ 𝐵)𝑐 ∈ ℱ. We get 𝐴 ∪ 𝐵 ∉ ℱ and therefore 𝜇(𝐴 ∪
𝐵 ) =  𝜇 (𝐴) +  𝜇 (𝐵) = 0. 

For the other direction, suppose we has non-zero finitely additive measure. Clearly by definition 𝜇(∅) 

= 0. Let 𝐴, 𝐵 ∈  ℱ , by definition      𝜇 (A) = 𝜇 (B) =1 therefore (A ∪  𝐴𝑐) = 𝜇 (A) + 𝜇 (𝐴𝑐)= 𝜇 (M )   

             ⟹ 1 +  μ (A𝑐)  =  1                              

                                                           ⟹  μ (A𝑐)  =  0  

Similarly one can get 𝜇 (𝐵𝑐) =0. Now if A ∪ B ∈ ℱ then                   𝜇 (𝐴 ∪  𝐵)  =  𝜇 (𝐴)  +
 𝜇 (𝐵)  −   𝜇 ( 𝐴 ∩  𝐵 )   

⟹ 1  =  1 + 1 −    𝜇 (𝐴 ∩  𝐵 ) 

⟹ 𝜇 (𝐴 ∩  𝐵 )  =  1   

Finally, let A∈ ℱ  such that 𝐴 ⊆   𝐵 ⊆  ℳ , 𝐵 ∈  ℳ. Since A ⊆ 𝐵 𝑡ℎ𝑒𝑛   𝜇 (A) ≤  𝜇( 𝐵). But 

 𝜇 (A) = 1 and hence 𝜇 (B) = 1.  

 

Theorem 2-5: Let ℳ be a non-empty set. The ultra-filters on ℳ are in one-to-one corresponding with 

the Boolean algebra homomorphism mapping (p (ℳ), ∪, ∩ ) on to Bolean algebra ({0, 1}, ∨, ∧ ).    

Solution: Let  𝑓: (𝑝(ℳ),∪,∩)  →  ({0,1},∨,∧)  defined by:  

 𝑓(𝐴) = {
1               𝑖𝑓 𝐴 ∈  ℱ
0             𝑖𝑓 𝐴 ∉  ℱ  

  

Where 𝐴 ∈ 𝑝(ℳ) and ℱ is some ultra-filter on ℳ. We claim that 𝑓 is onto and Boolean 

homomorphism. If 𝐴 ∈  ℱ then 𝑓(𝐴)  =  1 and if 𝐴 ∉  ℱ then 𝑓(𝐴𝑐)  =  0 this implies f is onto. For f 

is Boolean homomorphism, take 𝐴, 𝐵 ∈  𝑝(ℳ) then: 

Case1: If 𝐴, 𝐵 ∈ 𝑈. Note  𝐴 ∈  ℱ ⊆  𝐴 ∪  𝐵 ⊆  𝑝(ℳ) then A∪ B ∈ ℱ and therefore 𝑓(𝐴 ∪ 𝐵)  =
 1   

                                        = 1 ∨ 1  

                                        =  𝑓(𝐴)  ∪  𝑓(𝐵) . 

Also since A, B ∈  ℱ then 𝐴 ∩ 𝐵 ∈  ℱ.  Hence 𝑓(𝐴 ∩ 𝐵)  = 1  

                                                                                              =1 ∧ 1  

                                                                                    =  𝑓(𝐴)  ∧  𝑓(𝐵) .  

Case2: If  𝐴, 𝐵 ∉  ℱ then 𝐴 ∩ 𝐵 ∉ ℱ otherwise it's a contradiction. 

Therefore 𝑓(𝐴 ∩ 𝐵)  =  0 

                         =  0 ∧ 0  

                                    =  𝑓(𝐴)  ∧  𝑓(𝐵) .  

Also A∪ B ∈ ℱ. Hence 𝑓(𝐴 ∪ 𝐵)  =  1   
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                                        = 1 ∨ 1  

                                        =  𝑓(𝐴)  ∪  𝑓(𝐵) . 

Case 3: If 𝐴 ∈ ℱ  𝑎𝑛𝑑 𝐵 ∉  ℱ then it will be similar to case 2. 

 Conversely, to show that ℱ is a filter. Let 𝐴 ∉  ℱ then 𝑓(𝐴 ∪ ∅)  =  𝑓(𝐴)  ∨  𝑓(∅)  =  𝑓(𝐴) . 
Since 𝑓(𝐴) = 0 then 𝑓(𝐴) ∨  𝑓(∅) = 0 i.e. it must be 𝑓(∅)  =  0. Let 𝐵 ∈ ℱ, since 𝑓 is homo then  

𝑓(𝐴 ∩ 𝐵) =  𝑓(𝐴)  ∩  𝑓(𝐵) = 1 ∧ 1 = 1. Hence 𝐴 ∩ 𝐵 ∈  ℱ. To obtain a filter we need also show if  

𝐴 ∈ ℱ s.t 𝐴 ⊆ 𝐵 ⊆ 𝑝(ℳ)  then B∈  ℱ. Note that because 𝑓 is homo then  𝑓(𝐴 ∩  𝐵)  =  𝑓(𝐴)  ∩
 𝑓(𝐵)  = 𝑓(𝐴)  

 Since 𝑓(𝐴) = 1 then  𝑓(𝐴)  ∩  𝑓(𝐵) =  1 ∧   1 =  1  one must obtain 𝑓(𝐵)  = 1, therefore 𝐵 ∈
ℱ. Finally for ultra-filter, note that 𝑓(𝐴 ∩ 𝐴𝑐) = 𝑓(𝐴) ∧  𝑓(𝐴𝑐) = 𝑓(∅) =  0. So 𝑓(𝐴𝑐)  =  0 . To show 

either 𝐴 ∈  ℱ or 𝐴𝑐 ∈  ℱ. Suppose 𝐴 ∈  𝑈 then (𝐴 ∪ 𝐴𝑐) =  𝑓(𝐴) ∨ 𝑓(𝐴𝑐) =  𝑓(ℳ). But 𝑓(ℳ) = 1 

and 𝑓(𝐴)  =  0. Therefore 𝑓(𝐴𝑐) = 0. 
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