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Abstract: Ensemble Cluster is verifiedas a worthy alternative in front of theanalysis of the clustering problems. 

Constructinga cluster for ausing similar dataset and mergingit into a distinct clustering. The mixturing process is 

useful toextend theclustering quality.Another name of clustering Ensemble is   consensus clustering. 

ClusterEnsemble providing as a promising solutions for heterogeneous or for multisource data clustering. Spectral 

ensemble clustering results in used todropped thedifficulty of algorithm.Now weprovide various clusteringmethods 

applied in same dataset and producedifferent clusteringresults. The several methods feature alldiscussed, it helped in 

choosing the utmostsuitable one to solve a problem at handOn the preprocessed dataset, clustering isgenerated by 

using clustering’s namely; normalized k-means, to predict the level of student's performance  inplacement. 

Keywords: Consensus Clustering, k-means, performance. 

 

I.INTRODUCTION 

 

Cluster analysis is that the necessary technique in any field of analysis used foranalyzing variable knowledge. 

Herewe applying some of clustering algorithms such ask means, KCC++, GKCC and KCC to same dataset and we 

can get different results. For finding which result is correct one?  How we can estimate the best one?  

 

In clustering analysis there are two types of approach have been used for cluster result evaluations. 

1.1 Cluster Validity Indexes (CVI) 

1.2. Clustering Ensemble Algorithms. 

 

1.1 Cluster Validity Indexes (CVI) 

            The cluster validity indexes are used to calculate the quality of clustering results. 

 

1.2. Clustering Ensemble Algorithms. 

Combining the different clustering results and yield a single results as an another approach for improving the quality 

of the clustering algorithms results. 

Cluster ensemble method has two major steps. 

Step 1: Generation 

                    Step 2: consensus function 

 

Step 1:  Generation 

Various clustering algorithms are applied for same dataset and partition the data objects into different groups. Every 

group consists of same objects. 

. 

Step 2: Consensus function 

Generation step gives a group of partition results are combined of all partition results into single result 

called as consensus function.Cluster ensemble algorithm has the property robustness which means the mixture 

process must have improved performance than the single clustering algorithms. 

. 
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Fig 1.Process of Cluster Ensemble or Consensus Cluster 

 

 

In Generation Process different clustering algorithms can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.Types of Ensemble Generation Mechanisms. 

 

In the analysis of k-means suffers with initialization sensitivity. Consensus clustering aims to combine several 

existing basic partition into mergedone. Consensus clusteringProvide robust and high quality performance. Greedy 

optimization of k-means consensus clustering is used to resolve the sensitivity of the k-means initialization. 

Greedywith KCC combined to achieve quality clustering. Now GKCC and spectral together with the objective 

function and itsstandard deviations. 

 

II.Related studies 

 

2.1 Clustering consensus  

Cluster consensus function means combining the results of partition’s from various cluster algorithm into single 

clustering. The basic partitions can have different numbers of clusters. Clustering consensus is essentially a fusion 

issue,  

It can be split roughly into two categories:  

 

2.1.1 Utility Function 

2.1.2 Co-Association Matrix 

 

2.1.1 Utility Function 

                  The first category designs a utility function that measures the similarity between basic partitions and the 

final partition, and solves a combinatorial optimization problem by maximizing the utility function. 

 

2.1.2 Co-Association Matrix 

                  The second category employs a co-association matrix to calculate the number of times a pair of instances 

co-occurring in the same cluster, and then runs a graph partition method for the final consensus result. 
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Fig 3.Ensemble Generation Process using with different Algorithms 

 

III.Preliminary knowledge and problem Definition 

 

3.1 K-Means Clustering Consensus  

K-means is sensitive to initialization, on both complete and incomplete simple partitioning, 

Utility features that function for KCC. Experimental findings on different real- world data sets    

Show that KCC is highly efficient and in terms of clustering efficiency, comparable to state-of-the-   

art methods,in addition, KCC exhibits high robustness with significant missing values for    

incomplete  simple partitioning. Clustering of consensus (CC) is basically a problem of  

 Combinatorial optimization.  

 

It is possible to loosely divide the current literature into two categories: CC with implied  

objectives (CCIO) and CC with specific objectives: (CCEO). In CCIO, methods do not set global  

objective functions. Instead the representative approaches contains graph-based algorithms,  

co-association matrix-based methods, relabeling and voting methods, geneticalgorithm and some  

heuristics are specifically implemented to find suitable solutions. 

 

Methods in CCEO have specific global objective functions for the clustering ofconsensus.Among the older ones, Qu

adratic Shared Knowledge dependent objective functionand using Kmeans clustering to find the solution is the Medi

an Partition issue based  

on Mirkin distance.     

 

This smart idea might be copied back to Mirkin's work on the Utility Function category,  

EM algorithm non negative matrix factorization KCC utility functions that establish the general 

 KCC framework is other solutions for various objective functions. KCC is very stable, even with 

 very few highquality basic partitions or extremely incomplete basic partitions. 

 

3.2 Genetic k-means Clustering  

The genetic k-means algorithm (GKA), which crosses the genetic algorithm combinedalong with k-means 

algorithm, is a new clustering tool. This fusion approach provides to accomplish the robustness and highefficiency. 

The result of, GKA will still meetfaster thanany other genetic algorithms. 

 

3.4 Consensus Clustering of Greedy K-Means (GKCC)  

Greedy optimization of K-means-based Consensus Clustering (GKCC) in an expanded 

partition function space based on greedy center allocation. In a unified system, we strive to overcome 

the sensitivity of K-means  initialization  and  basic partition generation. A highly  efficient   version  

of  K-means, inspired by greedy K- means, initializes the K centers  with the previous K-1 centers 
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and   greedy searches the remaining one using greedy K-means for initialization of  K-means 

and generation of simple partitions. 

 

Greedy K-means, however, generates n partitions with a certain number of clusters, and for next- 

step optimization only one partition is chosen. When n is very high, the time complexity becomes 

costly.Therefore, as the basic partitions for later consensus fusion, the intermediate partitions created by greedy Kme

ans are further utilized. A 59- sampling method is used to speed up the speed in 

 order to stop brute- force global search to solve the high time complexity. 

 

For consensus fusion, it is possible to use these intermediate partitions The whole process  

is comparable to greedy K-means.  In each step, the centroids are used to  greedily scan  for one 

 additional   centre in the previous  phase, and  then  K- means are carried out to change the current  

centroids. 

 

Therefore in order to create subsequent basic partitions, the original data and basic partitions are merged as new data

. We therefore provide a new basic partition generation strategy that strongly Couples 

the subsequent fusion and creates anend ensemble clustering operation. GKCC incrementally adds fresh centers and 

overcomes the initialization sensitivity of Kmeans.. 

 

GKCC's advantages consist of three phases.  

1. For a stable and high-quality clustering, it blends greedy K-means and KCC.  

2. To create subsequent basic partitions, the original data and basic partitions make the consensus  

cluster a one-step operation.  

3. GKCC overcomes the sensitivity problem of initialization of K- means and delivers  

a robust output of high quality. 

. 

3.5Validity measurements 

The cluster performance of various cluster strategies calculated in terms of outside measurements, Rn and NMI. 

Normalized Mutual info (NMI) and normalized Rand index Rn, were wont to value the cluster performance. 

 

IV. Problem definition  

GKCC is projected to undo the sensitivity of K-means low-level formatting, high time complexity of greedy K-means. 

Ensemble clustering fuses various partitions into a single partition.Now   we used various clustering algorithm has 

applied for same dataset for finding ensemble clustering. We going to obtain different clustering results using from 

three clustering algorithm. Later we combine these results into single cluster by utility function of one of the ensemble 

algorithms. 

 

V.Experimental Results. 

 

5.1   Datasets   

 

 

Reg.No Stud.Name Dept.Name Aptitude.Mark English.Mark 

Programming. 

Mark Code.Mark 

150035 Sasidharan Sampath IT 8 2 7.7 -2 

150051 Harshada Prabhakar CSE 5.3 3.7 0 3.7 

150075 Arokya Rohit Symon ECE 5.1 3.7 7.3 0.7 

150093 Varun Viyas ECE -2 2.3 5 6 

150113 Sowndarya K CSE 3.7 2.7 4.7 6.7 

150201 Mahes Waran .N ECE 0.7 1 4.7 10.7 

150369 Peddireddy  Alekya ECE -2 1.3 0 -1.3 

150402 Aravind S EEE 3.7 1 3.7 1.3 

150403 A.Asiya Shafreen ECE 0.7 2 6 6.7 



M. Vasuki1, Dr.S. Revathy2 

3789 

150414 Girija  Yesvanthaiyah ECE 0.7 3.7 0 12 

150417 Mondi  Nagendra Yadav IT 8.7 3.7 7.7 6 

150432 Jaseema Yasmin CSE 0.3 2.3 7.7 12 

150436 Maria James Anto ECE 6 2.7 7.7 10.7 

150441 Shankar Ut ECE 5.3 7 0 14.7 

150444 Priyasarasu Asokar EEE 5.3 6 7.7 14.7 

150465 Vignesh M EEE 5.3 6 0 2.7 

150474 

Dangudubiyam Sri 

Praveen Sai EEE 5 6 4.7 15 

150476 Kaushik M G ECE 4 2 0 -2 

150481 Arun Coumar ECE 2.7 6 9 3.7 

150491 Govardhanan Muthaiyan EEE 4.3 1 7 0.7 

150513 Ramachandiran K EEE 1.3 8 5.7 6 

  

5.2 Experimental Result 

 

head(TCS_19) 

# A tibble: 6 x 4 

  App.M Eng.M Prog.M Code.M 

<dbl><dbl><dbl><dbl> 

1   7.7   5      3.3   12   

2   7     5      0.7    6   

3   1     3.7    6     12   

4  -2     4.7    4.7   10.7 

5   3.7   2      6     14.7 

6   0.7   2      6     14.7 

> nrow(TCS_19) 

[1] 199 

> n<-TCS_19 

> res<-kmeans(n,4) 

> res$size 

[1] 38 52 48 61 

> res$cluster 

  [1] 3 4 3 3 3 3 1 1 2 4 2 3 3 3 4 2 3 3 1 3 3 3 3 4 3 4 2 2 3 4 1 2 1 1 1 1 3 1 3 

 [40] 2 3 4 4 1 3 3 4 1 4 1 1 1 1 3 1 4 4 2 4 2 1 2 3 4 1 4 4 4 3 3 4 3 1 1 3 2 3 2 

 [79] 4 2 2 2 2 2 4 2 3 4 3 4 4 2 4 4 2 4 3 3 1 1 4 2 3 3 3 3 2 4 2 4 4 4 4 3 2 4 2 

[118] 4 4 4 4 2 1 4 1 1 1 1 4 1 2 2 2 2 4 2 4 3 4 4 2 3 2 4 1 1 1 4 3 3 4 3 2 2 2 4 

[157] 2 4 2 4 4 2 2 2 2 4 2 2 3 2 1 1 4 4 4 4 2 4 2 3 2 4 1 2 2 4 2 3 3 2 3 4 3 4 1 

[196] 4 1 1 1 

 

Within cluster sum of squares by cluster: 

[1] 15.15100 39.82097 23.87947 

(between_SS / total_SS = 88.4 %) 

 

> plot(TCS_19[c("App.M","Prog.M")],col=res$cluster) 
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4 clusters created. 

> table(TCS_19$App.M,res$cluster) 

 

 1  2  3  4 

  -2    0  8  7  5 

  -1.3  0  1  1  0 

  -1    0  1  0  2 

  0.3   0  2  1  1 

  0.7   0  7  9  5 

  1     0  3  2  0 

  1.3   0  0  4  1 

  2     0  1  0  1 

  2.3   0  1  0  1 

  2.7   0  2  4  5 

3.7   0  7  7  6 

  4     0  1  0  2 

  4.3   0  3  0  2 

  5     0  2  2  0 

  5.1   0  1  3  1 

  5.3   0  4  5  6 

  6     0  5  1  8 

  6.7   0  1  0  3 

  7     0  0  0  5 

  7.7   0  1  1  3 

  8     1  1  1  2 

  8.7   2  0  0  2 

10.7  6  0  0  0 

  11    1  0  0  0 

  12    8  0  0  0 

  14    5  0  0  0 

  14.7 12  0  0  0 

  15    3  0  0  0 

 

> z<-TCS_19[,-c(4)] 
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> m<-apply(z,2,mean) 

> s<-apply(z,2,sd) 

> z<-scale(z,m,s) 

> View(z) 

 

VI.CONCLUSION AND FUTURE ENHANCEMENT 

 

In this paper, K-means algorithm applied in placement dataset and partitioned into clusters which defines evaluation 

of level of performance in various placement soft skill such as Aptitude, English, Programming Logic and Coding 

skills of the cluster performance is calculated by R-Tool and normalized by mean/standard deviation formula. 

Outside measurements called Rn and NMI were calculated for placement dataset.vaious kcc++, genetic k-means, 

Greedy optimized k-means algorithm also applied for same dataset. Later the calculated cluster performance can be 

compared and find which algorithm provides quality cluster may be foretold in future work. 
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