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Abstract: Vehicle detection is one of the major tasks in the field of Computer vision and Intelligent video surveillance 

systems. In this paper, we present a novel approach to detect vehicles and classify them. The proposed system is based 

on the YOLOv3 object detection algorithm. The backbone network we used for Feature Extraction is pretrained 

DenseNet121. The YOLOv3 network is further tweaked on the detection layer by pacing an extra prediction scale to 

form the desired architecture of our research. We also incorporated Distance IoU loss and DIoU-NMS in the network 

which further boosts the accuracy of the network. This network has four scales of prediction layers, with the fusion of 

these layers, networks predictive function increases. The proposed network is tested by modifying various parameters 

to find the optimal results.  Our network is proven to be effective in the detection of vehicles during night time, long-

distance vehicles, and occluded vehicles. Our experiments on PASCAL VOC 2007, 2012 and COCO datasets achieves 

desired results in the improved network. We also created a dataset based on night-time vehicle images from Traffic 

CCTV footages to maximize detection accuracy during extreme weather conditions, especially at night. The Improved 

YOLOv3-Net model with input size 608 × 608 accomplishes high mAP of 82.8 % which is a promising result in 

detecting real time videos. 

Keywords: Vehicle Detection, Object Detection, Deep Neural Network, Convolutional Neural Networks, YOLOv3, 

DenseNet, Distance IoU 

 

1 INTRODUCTION 

Vehicle detection has great significance in designing an autonomous vehicle driving framework and in the Traffic 

management system. Vehicle detection and recognition are always focused on locating vehicles in the frames but for 

major analysis further processing is important. At present, deep learning is at the highest level for detecting objects. 

Many researchers prove that by deep learning we can detect the object in real-time with the highest level of accuracy. 

 Machine learning networks are accurate in prediction in the same way as deep learning but machine learning requires 

structured data whereas deep learning depends on learning information from network layers. To detect objects these 

networks always rely on convolutional neural networks (CNNs), and deep CNNs (DCNNs). Some variants of CNN 

are ResNet101, VGG16, and R-CNN [1-3]. These networks achieved significant performance in Object detection 

Contests. R-CNN models are the first ones to present object detection in a deep neural network using a technique of 

selective search algorithm to propose the valiant region of interest proposals. Followed by this model Fast R-CNN, 

Faster R-CNN and R-FCN algorithms predict objects using these functions [4-6]. 

A deep Multi-scale CNN (MS-CNN) is an enhanced form of CNN which has two sub-networks [7], a detection 

network followed by region proposal network, like R-CNN framework to find desired bounding boxes in the image 

and then classifier is used on these detected bounding boxes. One of the best optimizing techniques used in Computer 

vision is bounding box regression to predict better localization. Most of the tasks like multiple object detection, 

tracking of objects, object localization and instance segmentation depends especially on precise bounding box 

regression. For improving deep learning neural networks either its backbone for feature extraction is improved or a 

better technique to extract these features must be followed. 

To improve accuracy many networks replace regression loss functions which mainly depends on Intersection over 

Union (IoU). It is used to compare two boundary boxes, ground truth and predicted boxes of an image. IOU stores the 

properties of an object by comparing its height, width, and bounding box area into the region property and measures 

a standard area of focus. This feature makes IOU invariant to scale. Due to this valuable property, it is used to evaluate 

segmentation, object detection, and object tracking which depends on this metric. Huge datasets like MS-COCO [8] 

and ImageNet [9] try to define bounding boxes of ground truth in a better way. But in some cases, it is not visible 

clearly. Hence making bounding box labels and calculating regression functions are hard which makes the neural 

network vulnerable to predict objects precisely. 
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Object detection is an important task that includes two other processes, object classification and tracking. Some object 

detectors like Cascade RCNN, Faster RCNN, and Mask R-CNN depends on the regression function to locate the 

objects by bounding boxes [5, 10, 11]. Then by optimization, duplicate bounding boxes are ignored and the objects 

are detected based on the highest scores. These networks are slow in predictions due to their complex pipelines. 

Usually, object detection networks highly depend on its Feature extraction modules. The feature extraction modules 

are often termed as backbone networks due to their essential process in object detection. ResNet architecture is used 

as a base in Faster RCNN which is evolved from R-CNN. 

Datasets also play a vital role in making the network to be highly efficient. If we feed a large number of images from 

a dataset into a neural network its learning capability increases. Labeling, making annotations, and calculating 

bounding boxes for the training set of a dataset is a cost-effective and time-consuming process.  When training with 

CPU, computation time takes much longer as it could even take months for computing large datasets. Due to the 

capabilities such as GPU and TPU, the training process of deep neural networks takes minimum time when compared 

with CPU computing.  

For real-world applications of autonomous driving, the detections must be very accurate at the same time it needs to 

be quick but existing networks are so much helpful for this task. This shows that the previous techniques are not up 

to the mark in accuracy and speed of detection which limits the Self-driving vehicles to come into existence. Object 

detection algorithms are mainly focused on enhancing autonomous vehicle development. So, the detection of objects 

should be accurate and fast.  

 

2 RELATED WORKS 

In recent years there are numerous researches are performed to maximize the accuracy of Object detection. It is much 

handy in designing vehicle detection frameworks. The networks and algorithms which are notable for vehicle detection 

are listed here.  

Object detection algorithms process the image to locate and classify them, then it draws bounding boxes with labels 

depending on the confidence score. The two main approaches of object detections are based on region proposals and 

then based on regression and classification. The methods which belong to the proposal of regions are R-CNN [3], Fast 

R-CNN [4], Faster R-CNN [5], FPN [12], SPP-net [13], and Mask R-CNN [11]. The second method which belongs 

to regression and classification based networks are YOLO [14], YOLOv2 [15], DSSD [17], SSD [18], YOLOv3[16]. 

These two variants of the object detection network, one stage detection network, and two-stage detection networks 

improve object detection accuracy and speeds year by year. R-CNN Framework and SPP-Net [13] generates the 

Region Proposal for feature map and it needs a one-time computer computing. Region proposal is used by Faster R-

CNN [5] instead of selective search as an alternative, this improves the End-to-End accuracy and speed. R-FCN [6] 

reduces computer computing time with a score map of sensitive positioning. These networks are two-stage detection 

networks that are accurate but extremely slow in detection. In place of region proposal technique YOLO and SSD 

performs regression of bounding boxes and classification of objects [14, 17]. They consist of a detection model 

followed by a feature extraction network. YOLO is the trendsetter in detecting objects very fast when compared with 

other networks. It detects objects in a single evaluation using class probabilities and predicting bounding boxes, the 

entire network architecture is simple that they are made up of many convolutional networks. YOLO detects objects 

faster because it does all the works at the same time, its prediction is based on the problem solving of regression 

instead of classification. YOLO adopts one feed-forward CNN to detect object location in the frame and also records 

information about the class, hence the process is faster.  

As an alternative to the region proposal approach in two-stage detectors, YOLO predicts objects by distinguishing all 

frames into grids [14]. The output bounding box coordinates are calculated from the YOLO output layer feature maps; 

class scores and the objectless score, therefore YOLO identifies more objects in one speculation. Hence, the 

observation speed is very faster than the standard techniques. Although the method is effective by figuring out each 

grid unit in the image makes more localization errors, and then the accuracy is very low in object detection, and hence 

it is inappropriate for Artificial intelligent driving applications. To resolve those issues, YOLOv2 has been projected 

[15]. YOLOv2 progresses the accuracy in recognizing objects than YOLO utilizing convolutional layer batch 

normalization and draw a boundary box, fine-grained attributes, and multi-scale training but the accuracy in 

identifying objects is low for occluded objects.  

The notable study related to recent improvements in the Object detection networks includes YOLOv3[16], 

RetinaNet[18], EfficientNet[19] and CornerNet[20]. 

YOLOv3 is upgraded from YOLOv2 with some modifications. The anchor boxes are defined by a clustering 

algorithm, then using these bounding boxes are predicted [16]. It implements logistic regression instead of softmax 

for detecting objects using the objectness score of bounding boxes. The notable feature of YOLOv3 is it uses multiple 
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scales of prediction layers. It acquired a good accuracy score on the COCO dataset with a higher frame rate in 

detection. 

RetinaNet deals with the issue with single-step detection accuracy over two-step algorithms [18]. This issue is based 

on with relation of class in the foreground and background during the detector training phase. Retina networks achieve 

higher accuracy by mainly focusing its detector training with focal loss. Scaling of a neural network is an important 

and efficient task in achieving a maximum level of accuracy. In EfficientNet [19] a new advanced scaling mechanism 

is present to scale the depth, width, and resolution of the networks. 

CornerNet is a new advanced algorithm in object detection. It eliminates previous methods of anchor boxes technique 

for the detection of objects [20]. It proposes an approach of detecting objects as key points instead of matching anchors 

with bounding box over them. It also enhances the corner points localization by a new type of pooling called corner 

pooling. 

 

3 PROPOSED WORK 

 

3.1 YOLOv3 Improvement  

We choose YOLOv3 because of its quick and real-time predictions. YOLOv3 is fast but not so accurate in predictions. 

The YOLO algorithms are mainly designed for object detection process with simple network architectures. Redmon 

et al [14] proposed YOLO in 2015 which predicts objects quickly by processing the image in one flow, the network 

uses GoogleNet as the base. In the YOLOv2 custom baseline network called darknet19 is used. YOLOv3 gets a few 

upgrades such as darknet53 backbone and detection layer scales [15, 16]. The notable feature of YOLOv3 is, it makes 

three different scales of predictions. The feature maps consist of three detection kernel size of 1x1 with variable sizes 

and in various places. We mainly focus on improving the network by replacing its backbone structure, then adding 

Distance IOU loss function [21] and by optimizing YOLO detection layers by implementing an extra scale to propose 

more anchor boxes and predictions than the original YOLOv3 network structure. The entire proposed architecture 

diagram is illustrated in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Improved YOLOv3-Net Network Structure 

 

YOLOv3 determines the anchor boxes using the k-means clustering algorithm. It uses 9 Anchor boxes, one Anchors 

for every prediction scale layers. The anchors are arranged from larger dimensions to smaller ones. Thus, the foremost 

scale predicts the larger objects.  YOLOv3 struggles with much smaller objects thus it fails to locate vehicles from 

longer distances to overcome these issues we added an extra scale with three smaller dimensional anchors. 

 

3.2 DenseNet-121 as Backbone Network 

The robust vehicle detector must have a good baseline network, a neural network needs to extract better and more 

features. The commonly used backbone networks are ResNet50, ResNet101, GoogleNet , Vgg16, and Darknet53 [1, 

2, 16, 22]. These networks have the best benchmark performance in COCO, VOC, and ImageNet Datasets. As for the 

detection of vehicles we want to have a feature extractor to be deep at the same time it should not be complex. Hence, 

the proposed work is designed on DenseNet121[23] a pretrained convolutional neural network as a backbone. The 
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layers are interconnected by each layer in a multi layered perceptron model. It is pretrained on ImageNet Dataset [9], 

which contains weights of different features of Images in the dataset. It has a depth of 121 convolutional layers. The 

advantages of DenseNet incudes, they reduce the issues on the vanishing-gradient, strong distribution of features, 

reuse of features, and less number of parameters.  

Let's consider if an image x0 is passed into a neural network which has L layers with non-linear transformation Hl(.), 

then l is the index of the layer. ResNet the classic feed-forward network, adds a skip connection that bypasses the non-

linear transformation function its equation (1) is given below [1]. 

𝑥𝑙 = 𝐻𝑙(𝑥𝑙 − 1) + 𝑥𝑙−1      (1) 

In dense network to increase the information in the layer, it uses direct end to end connections. The lth gets the 

information of all the preceding layers 

 

𝑥𝑙 = 𝐻𝑙[(𝑥0, 𝑥1, … … . , 𝑥𝑙 − 1)]     (2) 

 

In Densenets the downsampling is done at Dense Blocks these blocks are divided by Transition layers, The Transition 

layer consists of  1×1 convolutional layer, an average pooling layer with batch normalization. The weights present in 

the transition layer also spread on the Dense layers. For ease of network utility, we converted all of the average pooling 

layer into 2×2 max pool layer. The model looks less complex by the arrangement of Batch normalization is done 

before each of the convolutional layers. The growth rate of the network is denoted by hyperparameter k which makes 

the DenseNet powerful enough to get state of the art results.  

The final classification layer of fully connected and pooling layers are removed to connect the proposed detection 

layers for detection. There are much deeper network arrangements are also featured than 121 layer network such as 

DenseNet-169, DenseNet-201, and DenseNet-264 [23]. We don’t want to make our net so much deeper hence 121 

layer arrangement is perfect to make our vehicle detection. 

 

Table 1  DENSENET 121 

 Type Filters Size Output 

 Convolution 64 7 × 7 / 2 112 × 112 

 Pooling  3 × 3 max pool, stride 2 56 × 56 

6 × Dense Block (1) 
128 

32 

1 × 1 conv 

1 × 1 conv 56 × 56 

 Transition Layer (1) 128 
1 × 1 conv 

2 × 2 average pool 

56 × 56 

28 × 28 

12 × 

 
Dense Block (2) 

128 

32 

1 × 1 conv 

1 × 1 conv 28 × 28 

 Transition Layer (2) 256 
1 × 1 conv 

2 × 2 average pool 

28 × 28 

14 × 14 

24 × 

 
Dense Block (3) 

128 

32 

1 × 1 conv 

1 × 1 conv 14 × 14 
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 Transition Layer (3) 64 
1 × 1 conv 

2 × 2 average pool 

14 × 14 

7 × 7 

16 × 

 
Dense Block (4) 

128 

32 

1 × 1 conv 

1 × 1 conv 14 × 14 

 Classification Layer  

7 × 7 global Avg pool 

1000D fully connected 

softmax 

1×1 

For training the detector the weights from feature extractor are necessary. Apart from the baseline structure during 

training, we also used pretrained weights of DenseNet trained from the ImageNet dataset. The input image size of the 

extractor is 416 × 416 after the images are scaled to this size by the input layer of the network, these images are passed 

into the first layer of convolution with 7 × 7 sizes with stride 2 and filter 64. Then a max-pooling is applied with size 

3 × 3. After the image is passed into pooling its features are extracted by the following Dense Blocks and Transition 

layers. These extracted features are passed into the detection model of our network. The DenseNet-121 filter sizes, 

layers are listed in Table 1. This feature Extractor has strong gradient flow, computational and parameter performance 

advantage, and more diversified feature flow across the layers. 

 

4 ARCHITECTURE OVERVIEW 

The proposed Network structure consists of the Input layer, feature extraction network, and a detection network. The 

networks foremost step is to scale the dataset input image size as 416 × 416 then, these scaled images are fed into 

DenseNet-121 for Feature Extraction. As we already stated, we replaced YOLOv3 baseline network Darknet53 with 

DenseNet121 and its workflows, now we look into the modifications on the detection part of the network.  

 

4.1 Detection Network 

In the detection part, the extracted features of Densenet-121 and its pretrained weights are used to train the robust 

vehicle detector. The dataset images are transformed into feature maps of size 13 × 13 from the feature extractor then 

it is passed into detection layers of YOLO followed by few convolutions. We reduced the special dimensions from 14 

× 14 from final dense blocks into 13 × 13 to match the detection layers for efficient results. Four feature maps are 

formed from combining three feature maps of size 26 × 26,  52 × 52, and 104 × 104. Detection is performed on four 

scales with the upsampling of three feature maps transmitted from the parallel scales of the network. 

 

4.2 Prediction Layers 

The four prediction layers of the network present on 192, 203, 216, and 228th layers. The first detection is done by the 

93rd layer before that images are downsampled by the network forming a feature map of  13 x  13 x  75 for 1 x 1 

detection kernel with stride 32, if the image input is 416 x 416. This feature map is depth concatenated with the 20th 

layer feature map.  

Then for the second detection in the 205th layer, the images before that layers are upsampled few convolutional layers 

are added which delivers a feature map of 26 x  26 x  75 with stride 16. In this section, depth concatenation is made 

with the 58th layer. Similarly for the third and fourth detection scale with the stride of 8, 4 forming feature maps of 52 

x  52 x  75 and 104 x 104 x  75. For the third detection layer, layer 192 depth concatenation is preformed with the 

132nd layer. The total layers in our network are 228 with BFLOPS 58.336 of operations. 

The detection kernel is defined by 1 x 1 x (Bboxes  x (5+Classes)). The number of bounding boxes a cell in the feature 

map can predict is denoted as Bboxes. Bounding box attribute is 4 and 1 Objectness score is 5. In YOLOv3 network 

according to Pascal VOC dataset Bboxes=3, Classes=20 , so the kernel size is 1 x 1 x  75. This feature map is calculated 

on VOC dataset with 20 classes on it. For detecting vehicles, we don’t need other classes except for bus, car from the 

VOC dataset. 

 

4.3 Anchor Boxes: 

The accuracy of detecting vehicles depends on the prediction grid of the Anchor boxes by the scaling layers. The 

Anchor boxes are predefined metrics. YOLOv3 defined its Anchor boxes by k-means clustering for COCO and VOC 



1Sri Jamiya S, 2Esther Rani P 

2667 

datasets. Clustering anchors are better than handpicked set of anchors. The k-means clustering can be termed as in 

equation (3) [16], 

𝐸 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛
𝑖=1

𝑘
𝑗=1      (3) 

Here, the image is x, the average vector of Ci is denoted as µi and the cluster center is termed as k. The Anchor boxes 

are calculated by setting various values for k. we ran the clusters only to choose an extra three anchors for the network. 

We used the same set of Anchor boxes for the 3 prediction layer as it is. We choose another 3 anchors for the 4th 

prediction layer with smaller dimensions for long-range vehicles. The four prediction scale with 3 anchors each are  

(5 × 11), (5 × 23), (13 × 18), (10 × 13),(16 × 30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 × 90), (156 × 198) 

and (373 × 326). YOLOv3 predicts 10,647 bounding boxes per image, In Improved YOLOv3 network, with an extra 

scale we can predict 43,095 bounding boxes with an image input size of 416 x 416. Thus the network predicts bounding 

boxes 4 times increase in number than YOLOv3. This will increase the probability of predicting smaller vehicles. 

 

4.4 Loss Function 

The most important step in vehicle detection is Bounding box regression. Though Ln-norm loss is mostly used for 

bounding box regression which is not related to use with Intersection over Union (IoU). Some works related to 

improving IoU metrics are IoU loss [24], generalized IoU (GIoU) [25], and Distance-IoU (DIoU) [21]. In our work, 

we choose to implement DIoU as it's proven to be effective than others. In the target box and predicted box, the 

normalized distance is implemented which is quick in the training period. It deals with some of the geometric factors 

too using Complete IoU (CIoU) loss is implemention [21]. The Distance-IoU is based on bounding box center point 

coordinates. It is based on Ln-norm and IoU loss with few modifications in it as defined in equation (4). 

ʆ DIoU = 1 − IoU + 
ρ2(b,bgt)

c2      (4) 

 

The equation for DIoU is shown above, b is the predicted bounding box center point and bgt  is the ground truth center 

point, the penalty term is used to minimize the distance between these two. The diagonal length of a small box covering 

these two boxes is denoted as denominator c. 

It is invariant to scale and also must solve a few other issues wit overlap area, central point distance, and aspect ratio. 

These terms are addressed by the CIoU loss function its equation is given in equation (5)  below [21], 

ʆ CIoU = 1 − IoU + 
ρ2(b,bgt)

c2 + αv     (5) 

 

 

4.5 Datasets 

We used PASCAL VOC 2007, 2012 and COCO dataset [8, 26]. Pascal VOC contains 20 different classes, a total of 

9963 images. For vehicle detection, we need only car and bus classes from this dataset. At first, we trained with all 20 

classes to record the mAP score of the Improved YOLOv3-Net, our main approach is to detect only vehicles. From 

the COCO dataset, we picked three classes car, bus, and truck then calculated its Average precisions. We also manually 

created 4500 labeled frames of vehicle images taken from traffic CCTV footage in day and night conditions. These 

videos are collected from different online sources of live CCTV traffic camera videos which contains images of car, 

bus, and Truck. GRAM Road-Traffic Monitoring (GRAM-RTM) dataset [35] images are used to evaluate the detection 

capability of the Improved network. 

 

Table 2  Experimental Platform Configuration 

 

Computing Machine Configuration 

Operating System Ubuntu 18.04.3 LTS 

GPU NVIDIA T4 Tensor Core GPU 

RAM 16 

GPU acceleration library CUDA10.0, CUDNN7.4 
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5 TRAINING AND TESTING OF NETWORK 

We have trained the network on numerous methods. First, we trained the 418 × 418  network on the PASCAL VOC 

dataset with 20 classes, After evaluating its results we removed all other classes from Pascal VOC except car and bus 

and started training along with CCTV dataset. Then we trained the detector with vehicle class of COCO dataset and 

CCTV video frames we have collected. The CCTV dataset video frames are manually labeled. These frames 

significantly improve our detection accuracy in dark areas as we included night time vehicle images. We also 

implemented an input image size of 608 × 608 model of the network, which is more effective than 418 × 418 model, 

mainly due to pixel differences and the features associated with it. Our Experimental platform configuration is listed 

in Table 2. The entire experimental process is explained in the following sections.  

 

5.1 Data augmentation: 

Data Augmentation is used to train networks with a maximum amount of data without increasing the dataset. In our 

work we used flipping, cropping, and blur images. We also implemented data transform function to transform datasets 

into network readable format. 

 

5.2 Optimization:  

In our network, a widely used optimization algorithm SGD stochastic gradient descent algorithm is present to optimize 

the vehicle detection network. The parameters for the convolutional and pooling layers are carefully initiated. The 

learning rate of our model is 0.001 for 40k iterations in training each model. We used a batch size of 32 in 416 × 416 

image input network and mini-batch of value 16. We placed a weight decay of 0.0005 and a momentum of 0.9. This 

configuration is set for the first method in the training process. Different approaches and training options also carried 

out to find the best detection accuracy. 

 

TABLE 3 Comparison of various Network models on PASCAL VOC 2007. This table is taken from YOLO9000 

paper [15]. 

 

Pascal VOC 2007 mAP 

Fast R-CNN [4] 70.0 

Faster R-CNN VGG-16 [5] 73.2 

Faster R-CNN ResNet [1] 76.4 

YOLO [14] 63.4 

SSD300 [17] 74.3 

SSD500 [17] 76.8 

YOLOv2 [15] 76.8 

Improved YOLOv3-Net (ours) 77.4 

 

In Table 3, we have calculated the mAP of all the 20 classes in the PASCAL VOC dataset for Improved YOLOv3-

Net. The training took approximately 1 hour for 1000 iterations. We have made 40k to 45k iterations. Improved 

YOLOv3-Net performs better when compared with one stage and two stage detectors. We get 77.4 % mAP on Pascal 

VOC,  nearly 2% mAP rise than YOLOv2 and also outperform other detectors which are shown in Fig 2. Although 

we get better results this training with all classes is not an ideal choice for vehicle detection problems. We don’t want 

classes like bird, dog, persons, and other unwanted classes for vehicle detection. There is no need for a vehicle detector 

to learn about these things. So we tried different approaches of training network with few vehicles classes car and bus 

from the Pascal VOC COCO and CCTV dataset with few parameter tweaks.  
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Fig 2  Graph showing the comparison between the proposed network with different networks 

To get the best results for object detection, datasets plays a crucial role. Designing a network and make it up running 

is easy. The hard thing is collecting data to train the built network. Numerous public datasets are available but it is not 

designed to address our needs to detect vehicles. To detect vehicles precisely, we required more data so we created 

our own set of data to boost accuracy. We trained our network on PASCAL VOC with CCTV video frames, then 

COCO data with CCTV video frames, and combining both datasets with CCTV footage frames. We trained our 

network with a limited number of classes includes car bus and truck. In table 4, Improved YOLOv3-Net is compared 

with different datasets and with two input sizes models 416 × 416 and 608 × 608 are used. When input image size 

increases the performance of the network increases, due to pixel size and more features from the images are transferred 

across the layers. 

 

TABLE 4  Comparison of Proposed Network with YOLOv3 and YOLOv2 trained on Pascal VOC and CCTV 

frames dataset 

 

NETWORK 

MODEL 

BACKBONE 

NETWORK 
DATASET 

AP 

(car) 

AP 

(bus) 

AP 

(Truck) 
mAP 

YOLOv2-416 Darknet19 
Pascal VOC + CCTV 

frames 

78.9 

 
67.3 72.3 72.8 

YOLOv3-416 Darknet53 
Pascal VOC + CCTV 

frames 
69.4 78.6 77.3 75.1 

Improved 

YOLOv3-Net-

416 (ours) 

DenseNet-121 
Pascal VOC + CCTV 

frames 
79.6 74.3 82.4 78.7 

Improved 

YOLOv3-Net-

608 

(ours) 

DenseNet-121 
Pascal VOC + CCTV 

frames 
86.2 79.8 77.5 81.1 

 

In the first approach of vehicle detection training, Pascal VOC 2007, 2012, and CCTV video frames are used to train 

the detector. The classes included are bus, car, and truck. There are about 30k to 35k training iterations that were 

observed. The batch size of this training process is 64, the subdivision batch is set as 16, and the learning rate as 0.001. 

The IoU threshold of 0.50 is applied in the dataset to find out the True positive and False positive. Two different sizes 

of network models are observed Improved YOLOv3-Net-416 and Improved YOLOv3-Net-608. The best mAP of 

70
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78.1% for YOLOv3-Net-416 and 81.1% for YOLOv3-Net-608 was achieved by the modified network which is listed 

in Table 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 Comparison Graph of Improved YOLOv3-Net Average Precisions for Car, Bus and Truck Classes in PASCAL 

VOC and CCTV video frames Dataset 

 

 

 

Fig 4  Comparison Graph of Improved YOLOv3-Net  mAP with YOLOv2 and YOLOv3 in PASCAL VOC and CCTV 

video frames Dataset 

In order to compare the effectiveness of our model, we used YOLOv2  and YOLOv3 networks both achieves less 

accuracy than our modified model which is listed in Table 4. The YOLOv2 model has a backbone of Darknet19 and 
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YOLOv3 has Darknet53 in our modified model Densenet-121 is used which is useful in extracting more features than 

Darknet architecture. Comparison graphs for Average and mean Average Precision for Proposed network with 

YOLOv2 and YOLOv3 is shown in Fig 3 and Fig 4. 

TABLE 5  Comparison of Proposed Network with YOLOv3 and YOLOv2 trained on COCO and CCTV frames 

dataset 

NETWORK 

MODEL 

BACKBONE 

NETWORK 
DATASET 

AP 

(car) 

AP 

(bus) 

AP 

(Truck) 
mAP 

YOLOv2-416 Darknet19 COCO + CCTV frames 68.8 61.4 50.7 60.3 

YOLOv3-416 Darknet53 COCO + CCTV frames 72.3 59.7 66.2 66 

Improved 

YOLOv3-Net-416 

(ours) 

DenseNet-121 COCO + CCTV frames 76.6 65.4 72.8 71.6 

Improved 

YOLOv3-Net-608 

(ours) 

DenseNet-121 COCO + CCTV frames 78.2 73.4 68.7 73.4 

 

In the second approach, we performed the training process with the COCO dataset and CCTV video frames with the 

same three different vehicle classes car, bus, and Truck. The batch size for training the network is 80, the mini batch 

is 32, and the learning rate as 0.001. we set the weight decay of 0.0005 and tried some downsampling earlier than the 

Pascal VOC training process. The training process includes 40k to 50k iterations. The mAP results are quite low when 

compared with the Pascal VOC dataset due to some loss in the training process. We also used DIoU function to 

increase accuracy to some extent. The mAP of 73.4% is achieved by Improved YOLOv3-Net-608, along with all other 

compared networks mAP are listed in Table 5 and its corresponding graphs are plotted in Fig 5 and Fig 6. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 5 Comparison Graph of Improved YOLOv3-Net Average Precisions for Car, Bus and Truck Classes in COCO 

and CCTV video frames Dataset 
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Fig 6 Comparison Graph of Improved YOLOv3-Net mAP with YOLOv2 and YOLOv3 in COCO and CCTV video 

frames Dataset 

 

TABLE 6 Comparison of Proposed Network with YOLOv3 and YOLOv2 trained on COCO and CCTV frames 

dataset 

 

Network Backbone Dataset 
AP 

(car) 

AP 

(bus) 

AP 

(Truck) 
mAP 

YOLOv2-416 Darknet19 
Pascal VOC+ COCO + 

CCTV frames 
72.5 78.2 75.7 75.4 

YOLOv3-416 Darknet53 
Pascal VOC+ COCO + 

CCTV frames 
78.3 75.8 79.4 77.8 

Improved 

YOLOv3-Net-416 

(ours) 

DenseNet-121 
Pascal VOC+ COCO + 

CCTV frames 
84.6 78.2 76.9 79.9 

Improved 

YOLOv3-Net-608 

(ours) 

DenseNet-121 
Pascal VOC + CCTV 

frames 
88.5 83.1 76.8 82.8 

 

In the final network model, we trained the networks with all the datasets which are mentioned above. By combining 

these datasets during training the network's learning capability increases due to the availability of large numbers of 

features. In training, we used 40k to 55k iterations with the same batch size and other parameters from the last training 

process. The training of 608 × 608 networks took approximately 2 hours for 1000 iterations, a total of about 40k to 

50k iteration weights were analyzed. It is trained on three different datasets with vehicle classes alone. We have to 

stop and use our backup weights for training again for several times to analyze the best weights for high accuracy. 

The network size is larger than the original YOLOv3, hence training time took a bit longer. From Table 6 we can find 

that Improved YOLOv3-Net mAP looks promising. It achieves mAP of 82.8% on a combination of all 3 datasets and 

in Fig 7 and Fig 8, illustrates its mAP graphs. The network predicts many bounding boxes for a single vehicle, to 

cancel out extra boxes from their objectness score we used thresholding of 0.2 to 0.5. Any boxes below this threshold 
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are ignored by the network. In Fig 9, the detection capability of Improved YOLOv3 on GRAM Road-Traffic 

Monitoring (GRAM-RTM) dataset is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7 Comparison Graph of Improved YOLOv3-Net Average Precisions for Car, Bus and Truck Classes in PASCAL 

VOC, COCO and CCTV video frames Dataset 

 

 
 

Fig 8 Comparison Graph of Improved YOLOv3-Net  mAP with YOLOv2 and YOLOv3 in PASCAL VOC, COCO 

and CCTV video frames Dataset 

 

5.3 Post processing by Non-maximum Suppression 

This step is used to solve the problem of predicting multiple bounding boxes for the detected vehicles. If a cell predicts 
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rectified using NMS method. We also adopted DIoU NMS algorithm [21] into our network with a threshold of 0.4 to 

0.5. It is proven to be effective and is easy to implement which further increases our vehicle detection function 

significantly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig 9 Improved YOLOv3 detection results in GRAM Road-Traffic Monitoring (GRAM-RTM) dataset 

5.4 Detection  Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10 Detection of vehicles in a CCTV video. Right – A small car is undetectable by the detector 

 

In Fig 10, A small vehicle in distance is correctly detected by the improved network as a car. These errors mostly 

depend on pixel ratio. If an object is not occupied by certain pixels it is not detected by the detector. Most of the error 

occurs due to the poor quality of the video feed. To minimize this kind of errors the network requires more optimizing 

techniques. 

 

6 Conclusion and Future works 

In this research work, a new Vehicle detection algorithm is proposed using deep neural network based on YOLOv3. 

The proposed method uses DenseNet-121 as a Feature Extraction network replacing darknet53. We also adopted loss 

function Distance IOU and NMS-DIOU into the network to increase accuracy. Our network predicts objects on four 

different scales. The network achieves a higher mAP of 82.8% on PASCAL VOC and COCO dataset with CCTV 

night frames of vehicles. The proposed network is highly efficient in detection of vehicles regardless of numerous 

conditions. 

From different datasets, we find that our detector is effective when training with CCTV video frames along with 

datasets of Pascal VOC and COCO. The detector is quick as it predicts a single image in less than 30ms. Even though 

this network achieves ideal results, it lacks in predicting few vehicles such as small and dark natured vehicle types. In 
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the future works, we want to make a dataset especially based on small size long-distance vehicle images to detect 

more long-range vehicles. In this network, the prediction of vehicles is very low when tested on extreme darkness. So, 

we want to mainly focus on these two issues. 
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