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Abstract 

In this research, a simulation model of a non-linear model for unmanned neural vehicles is developed using 

Airsim (simulator via an open-source platform for drones and ground vehicles ). The non-linear model of the 

vehicle is approximated as a linear model with a balance point in the first stage. With this model, a conventional 

controller is designed to have longitudinal and transverse sections, and this controller is added to the non-linear 

model. Then, a neural network is  introduced to the traditional controller to perform the error compensation 

process after the approximation of the non-linear model with a linear model. The calculated results from the 

neural network that depended upon the  error process are added to the results that obtained from the non-Linear 

model and the linear model to the conventional microcontroller. Results show that the adaptive controller could 

achieve stability for the system for a wide range of aviation envelope. Thus, the use of an adaptive controller 

that consists  of  a traditional controller and a neurological compensator can compensate for  various disorders 

that may occur in vehicles, such as changes in altitude, direction and pressure disturbance . 

Keywords: Adaptive control, drone, neuronal compensator, directional rudder, deeper rudder  

Introduction 

1.Many studies focused on the external stimuli that the plane is subject to during flight. For instance, 

[2] focused in determining the main equations required to build a simulation environment for the 

plane that is as near as possible to reality. In [4], authors suggested an approach to designing an 

adaptive controller for a drone that relies on neural networks with an algorithm that works in real 

time. The network weights are adjusted according to the system’s state transformation errors by 

minimising a specified cost function according to Lyapunov’s second theory. Consequently, the need 

for advance data for training the network was eliminated. Here, the control signal that the neural 

network provides is combined with the external control signal from a traditional controller to 

compensate- for the disturbances plane Model 15 are subject to. 

In [5], a new way of designing a four-fan adaptive console that relies on neural networks is proposed. 

The main idea is to use two neural networks on branching instead of one in the closed-loop to 

determine the non-linear changes in the dynamism of the hovercraft (which is a vehicle floating in air 

with an airbag below its body).  

The weights of the two networks are modified using a tab function using Lyapunov theory. [7] 

combined a floating system and a neural network to design a hybrid system for controlling a drone in 

an environment that is not clear-cut[1-5] . 

Traditional and hybrid controls are adopted to show the advantages of using the proposed controller. 

Comparison indicates that unlike the traditional controller, the hybrid controller could adapt to the 

turbulence and change the mechanism of work.  

In this research, we built a pilot. Adaptive neural control is used in the longitudinal and transverse 

sections of the plane. The controller must be able to stabilise the plane in the longitudinal and 

transverse sections with the height change within a specific area of  envelope aviation [6-10].  

We rely on this research on the accumulated information about control theories on and on some 

references and websites. Several tools were used for research, such as Matlab for simulating the 

theories. Then, the same special programs were used to model the physical components of the plane, 

and from Design and Selection of Controllers using the Simulink to L in Matlab.  

 

1.1 Mechanism of the drone work  

This aircraft is categorised as a small drone and mainly designed to act as a surveillance device in 

remote weather conditions and dangerous areas. In terms of control, the plane is fully automatic and 
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easy to program to complete the required tasks. The aircraft weighs approximately 14–15 kg and can 

fly to an altitude range of 700–750 m and carry loads in the weight range of 2–6 kg, corresponding to 

a flight time of 10.30 h.[22-26]  

Figure (1) shows that the fuselage represents the deflection angles and the steering rudders control the 

relay and front wing Ailerons to centre the coup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) side view of the drone 

 

 

 

 

 

 

1.2 Motion equations  

In [9], mathematical equations for the plane motion in air are presented. (𝑥 𝑦 𝑧 ) + 𝑚𝑔𝑜(−𝑠𝑖𝑛 (𝜃)  

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (∅)  𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃) 𝑐𝑜𝑠 (∅) ) = 𝑀(�̇� + 𝑞𝑤 − 𝑟𝑢 �̇� + 𝑟𝑢 − 𝑝𝑤 �̇� + 𝑝𝑣 − 𝑞𝑢 ) 

𝐿 = 𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 

𝑀 = 𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟 

𝑁 = 𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑞𝑝 

The equations above reveal that the variables of the plane’s body condition in terms of angles, speed, 

forces and torque are as follows:  

1) The angle represents height ∅, the angle of delinquency ∅, the angle of direction 𝛹, the angle of 

attack 𝑥, slide angle 𝛽 and track angle 𝑌.  

 

2. Forward linear velocity 𝑢, lateral linear velocity V, vertical linear Velocity w, the p angular 

velocity around axis x, the qangular velocity around axis y and the rangular velocity around axis z 

[26-29]. 

3. The thrust force in forwarding direction x, the thrust force in the lateral direction, the thrust force in 

vertical direction z, the L torque around axis x, the  M torque around axis y and the N torque around 

axis z.  

We study the aircraft system with specific work points for the design of the conventional controller. 

Therefore, we must approximate non-linear equations with these work points and have a process of 

approximating linear mathematical equations for the plane’s movement which has a specific work 

point. We divide the equations into two parts. The first part concerns the movement of the 

longitudinal section, and the other part concerns the movement of the plane in the cross-section.  

 

1.3 Motion equations with two syllables (longitudinal and transverse)  

We form the following motion equations with two syllables, i.e. longitudinal and transverse: 
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where 𝑋𝑢, 𝑋𝑤 , 𝑌𝑣 , 𝑍𝑤 , 𝐿𝑝,𝑀𝑔, 𝐼𝑟, … , 𝑒𝑡𝑐.  are the derivatives of forces and moments attributed to a 

change in one of the variables. It is a fixed ground gravity (g), and it is the mass of the plane m. 𝑈𝑜 

and 𝑊𝑜 are the plane’s front and vertical speeds, respectively, at the work points concerning the cross-

section. The plane moves in the cross-section due to the change in the angles of the directional flank 

and the Pavilion, thereby changing the velocities of the lateral plane and the three angle changes. 

Linear motion equations are also formed in the cross-section, where 

𝐼𝑥, 𝑌𝑣 , 𝑁𝑟 , 𝑁𝑝, 𝐿𝑠, 𝑁𝑣 , 𝐼𝑧, … , 𝑒𝑡𝑐. are the derivatives of forces and moments in relation to a change in a 

variable. g is the fixed ground gravity, m is the mass of the plane, and 𝑈𝑜 and 𝑊𝑜 are the plane’s front 

and vertical speeds at the work points. 

 

2. Design of traditional laws of control   

The traditional control laws of conventional PID controls are designed in both longitudinal and 

transverse sections. Initially, the parameter values were determined for matrices A, ctrl B and observe 

c (where D = o casual system). The Aerorasim software which has a work point (altitude 250 m, 

speed 35 m/s) was also used. Figure(2) shows a box diagram for simulating the conventional 

controller in the longitudinal section.  
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Figure (2) is a box diagram drawing of a simulation of the diving altitude controller and the 

traditional elevation angle 

 

In the longitudinal section, the diving angle parameters Kd = 1 - 5, ki = 2.5, and kp = 8.5 were set to 

obtain a response time of 1 s. After less than 25% passes after the successful installation of the 

conventional diving angle controller, the elevation ring was closed so that the outer ring was the angle 

of the diving ring. We only needed a relative controller here. Kp = 3 to control the height of the plane 

after adjusting the angle of diving. Then, a PID type controller was installed to control the speed ring 

(i.e. kd = 3, ki = 0.5 and kp = 1.8) so that the plane achieved the maximum possible speed within 2 s. 

Relative to the cross-section, the conventional (PI) controller is designed to control the closed loop at 

the angle of misdemeanour so that KP = 0.8, ki = 0.05 and the proportional control unit design is only 

pk = 0.1 to control the closed circuit at an angle of direction.  

2.1 The results of traditional controller application in the cross and longitudinal section 

Figure (3) shows the response of the closed loop at the height (one hopl) of 300 m, where the plane 

should travel from the height of loom to 400 m.  

Figure (4) shows the closed-loop response to the diving angle during this transition, while Figure (5) 

shows the closed-loop response at the plane speed of 30 m/s during this transition. 

Figure (6) shows the response of the closed-loop at an angle of direction of 20°. In contrast, Figure (7) 

illustrates the behaviour of the closed-loop at the angle of delinquency during the change in direction 

angle. 
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2.2 Test the performance of conventional controller at differentiation points 

In this stage, the performance of the conventional controllers in the longitudinal and transverse 

sections is tested to measure the largest field in which the plane remains stable with the presence of 

these controls without the need for adaptation. Result shows that the traditional cross-section 

controller remained able to stabilise the plane up to a height of 2000 m, while the traditional controller 

in the longitudinal section lost its ability to control the plane when the height changes from the rank of 

300 m. These issues are due to the large change in plane parameters in the longitudinal section with 

the changes in behaviour, such as pressure and the gravitational force of the Earth. 

To perform this test, the different status, control and monitoring matrices are calculated with several 

work points within the field [2000–300]. The application of traditional controls is divided into two 

systems in the longitudinal and transverse sections. Figure (8) shows the response of the closed ring 

with the diving angle for the work point corresponding to the height of 1000 m. Meanwhile, Figure 

(9) shows the response of the closed-loop system in the direction angle at this point of action. 

Pitch –to-elevator (PID) controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (8): The closed-loop system in the diving angle of responded with the change of the work 

point 

Figure (7) changes in the angle of delinquency 

during the change in the angle of direction 
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Figure (9): The closed-loop response system at an angle of direction with the change of the 

action point 

Figure (8) clearly shows that the closed-loop system in the longitudinal section can generally stabilise 

the plane. However, this stability is unacceptable in the regulation of flight because the plane vibrates 

a great distance. For a short period, it causes a defect in the fuselage at every transmission. This result 

dictates the use of a booster controller to reduce the impact of the conventional console that has 

different action points. An adaptive neuron controller was used to circumvent this problem. However, 

Figure (9) shows that the closed-loop system in the cross-section does not need a supported controller. 

3. Neuron adaptive controller design  

At this point, an adaptive controller is built using a neural network, and the neural network adds an 

enhanced control signal resulting from the correction PID (correction of the adaptive signal). The 

adaptive console compensates for the error caused by converting the non-linear model of a plane into 

a linear model. This result, in turn, allows the hew console (Adaptive+PID) by working on better, 

wider work points.  

Figure (10) shows a box diagram of the proposed adaptive control system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (10) Proposed adaptive control system 
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In the upper ring, the linear controllers are designed to stabilise the near-linear model which is 

supposed to contain the main work of the real system. The term “main working mechanism” refers to 

a well-known and -defined work mechanism. In contrast, an unknown of the unmodified working 

mechanism is represented in the other loop, including the consequences of system transformation and 

triggers the linear controller is designed as we saw earlier. The idea here is to take advantage of the 

controller that was designed in the easiest possible way to consider the complexities that may be 

added. Therefore, the total closed-loop has the closest linear model, determining the best performance 

that can be obtained with adaptation. [10] The measured error between the top and bottom loops is 

simply the error between the outputs of near-linear model Ym and real system Y. Thus, adaptive sign 

Vad is added. In the conventional control, signal VIc compensates for the effect of the unmodified 

work and forces the lower ring to behave similarly as the upper ring. In other words, the idea involves 

feeding the conventional console with an adjustment component that allows the total console to drive 

system outlet y to chase retrograde output Ym. 

3.1 Adaptive addition to feedback  

If adding an additional control signal (𝑉𝑎𝑑) to stabilise the error action and remove 

disturbances ∆(𝑋, 𝑋𝑚, 𝑢), the signal due to the adaptive, the part can be expressed as: 

𝑉𝑎𝑑 = 𝐷𝑟
  (𝑉𝑎𝑐 − 𝑉𝑎𝑑)… (1) 

where (𝑉𝑑𝑐) is the result of the linear controllers, input 𝑦  is designed to stabilise the mechanism of 

error action when ∆(𝑋, 𝑋𝑚, 𝑢) = 0, and 𝑉𝑎𝑑 is the result of a neural network whose weights are 

modified in a way that allows estimating the response of the error. 

The mechanism of error is expressed as follows. 

𝑦 (𝑟) = −𝑉𝑑𝑐 + 𝑉𝑎𝑑 − ∆  … (2) 

The steps in [11] allow grading 𝑉𝑎𝑑 and 𝑉𝑑𝑐 based only on the available measurements. 

Mouawad AL-Khatha has two different results . 

[𝑉𝑑𝑐(𝑠) 𝑦 𝑎𝑑(𝑠) ] =
1

𝐷𝑑𝑐

[𝑁𝑑𝑐  (𝑠) 𝑁𝑎𝑑  (𝑠) ]𝑦 … (3) 

 

where the first result (𝑉𝑑𝑐) is designed to stabilise the mechanism of error, and the second result (𝑦 𝑎𝑑) 

is an adaptive signal of a neural network that is equivalent to a linear merging of the error condition 

compensator and its input (𝑦 ). By substituting the error (2), we obtain the following conversion 

function form. 

𝑉𝑎𝑑 − ∆  𝑡𝑜  𝑦 𝑎𝑑 : 

𝑦 𝑎𝑑(𝑠)
𝑁𝑎𝑑(𝑠)

𝑆 𝐷𝑑𝑐(𝑠) + 𝑁𝑑𝑐(𝑠)
(𝑉𝑎𝑑 − ∆ ) = 𝐺(𝑠)(𝑉𝑎𝑑 − ∆  )                             … (4) 

The non-linear neuron network is used to approximate disturbances (∆). This approximation is fine if 

a set of displacement functions is selected over the approximation field. For example, [12] revealed 

that the continuous approximation of any degree of precision can be made using radial sequences. 

To be > 𝑜 , it can be approximated (∆) using a linear neural network with limited weights (W) and a 

set of displacement functions (∅(. )), such that 

∆= 𝑊𝑇∅(𝑛), |𝜀(𝑛)| < 𝜀 … (5) 

where 𝜀(𝑛) is the error in the approximation of the neural network, and 𝑛 is the radiation of the entry 

network. 

𝑛(𝑡) = [1 𝑋𝑚
𝑇 (𝑡)𝑢𝑑

𝑇𝑦𝑑
𝑇] 

𝑈𝑑
𝑇(𝑡) = [𝑢(𝑡)    𝑢(𝑡 − 𝑑)…   𝑢(𝑡 − (𝑛 − 𝑟 − 1)𝑑)]𝑇 

𝑦𝑑
𝑇(𝑡) = [𝑦(𝑡)      𝑦(𝑡 − 𝑑)…   𝑦(𝑡 − 𝑛 − 1)𝑑)]𝑇 

 

𝜂(𝑡) = [1𝑋𝑚
𝑇 (𝑡)𝑢𝑑

𝑇𝑦𝑑
𝑇] 
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𝑇(𝑠) 𝐷𝑑𝑐(𝑠)

𝑠𝑟𝐷𝑑𝑐(𝑠) + 𝑁𝑑𝑐(𝑠)
 

𝑁𝑎𝑑(𝑠)

𝐷𝑑𝑐(𝑠)
 

𝑁𝑎𝑑(𝑠)

𝐷𝑑𝑐(𝑠)
 

 

𝑇  (𝑠)(𝑉𝑎𝑑 − 1) 

 

𝑈𝑑
𝑇(𝑡) = [𝑢(𝑡)    𝑢(𝑡 − 𝑑)…𝑢(𝑡 − (𝜂 − 𝑟 − 1)𝑑)]𝑇 

𝑦𝑑
𝑇(𝑡) = [𝑦(𝑡)    𝑦(𝑡 − 𝑑)…𝑦(𝑡 − (𝜂 − 1)𝑑)]𝑇 

where 𝑋𝑚
𝑇 (𝑡) is the transmitted ray of the state variables of the system interventions. where 𝑑 > 0 is a 

positive time delay, and 𝑟 is the degree of the derivation of the system. The result of the adjustment 

part in Figure (1) is 

∆= �̂�𝑇∅(𝜂)… (6) 

where �̂� is an estimate of weights 𝑤 in Equation (s) which are adjusted in real time. To take 

measurements based on the measurements law, 

G(s) must be positive. G(s) must be made positive by selecting 𝑁𝑎𝑑(𝑠) correctly in case 𝑟 = 1.  

When 𝑟 > 1, a low filter ( 𝑇  (𝑠)) must be added so that G(s) T(s) becomes positive. 

Therefore, 

𝑦 𝑎𝑑(𝑠) = 𝐺(𝑠) 𝑇(𝑠) [𝑇  (𝑠) (𝑉𝑎𝑑 − ∆]… (7) 

 

 

 

 

 

 

 

Neural network error 𝛹 = 𝑇  (𝑠) (𝑉𝑎𝑑 − 𝜂) can be rewritten as  

𝛹 = �̂�𝑇∅𝑓 +⊝ −𝜀𝑓 …(8) 

where 𝜀𝑓 and ∅𝑓 are the same 𝜀 and 𝛷 after being nominated by candidate 𝑇  (𝑠), and ⊝ is the 

missing term and expressed as the following relationship: 

𝜃(𝑠) = 𝑇  (𝑠)(�̂�𝑇𝛷) − �̂�𝑇∅𝑓 …(9) 

which can be terminated as follows:  

‖ ⊝ ‖ ≤∝ ‖�̃�‖𝑓    ,   ∝> 0… (10) 

where �̃� = �̂� − 𝑤 expresses the deviation of the estimated weights from the real weights. The 

conversation function from 𝛹 to 𝑒  is determined by the following equations:  

𝑍𝑒 = 𝐴𝑒𝑍𝑒 + 𝑏𝑐𝛹 𝑒 = 𝐶 
𝑇𝑍𝑒  } … (11) 

The conversion functions from 𝑒 𝑡𝑜 𝑦 𝑎𝑑 and 𝑉𝑑𝑐 are defined as follows: 𝑍𝑑𝑐 = 𝐴𝑑𝑐𝑍𝑑𝑐 +
𝑏𝑑𝑟𝑒  𝑦 𝑎𝑑 = 𝐶𝑎𝑑

𝑇 𝑍𝑑𝑐 + 𝑑𝑎𝑑𝑒  𝑉𝑑𝑐 = 𝐶𝑑𝑐
𝑇 𝑍𝑑𝑐 + 𝑑𝑑𝑐𝑒  }… (12) 

where matrix 𝐴𝑑𝑐 is a stable matrix. By combining Equations (11) and (12), we obtain the equations 

described for the total error compensate shown in Figure (11).  

𝑍 = 𝐴𝑐𝑍 + 𝑏𝑐 𝛹, 𝑍𝑎𝑅 

𝑦 𝑎𝑑 = 𝐶𝑐 
𝑇  𝑍 𝑉𝑑𝑐 = 𝐶𝑣

𝑇 𝑍 𝑒 = 𝐶𝑒 
𝑇  𝑍 } … (13) 

where 𝐴𝑐 = [𝐴𝑐  𝑜 𝑏𝑑𝑐𝐶 
𝑇  𝐴𝑑𝑐 ], 𝑏𝑐 = [𝑏𝑐  𝑜 ], 𝐶𝑐 

𝑇 = [𝑑𝑎𝑑𝐶 
𝑇 𝐶𝑎𝑑

𝑇  ] 

𝐶𝑣
𝑇 = [𝑑𝑑𝑐  𝐶 

𝑇 𝐶𝑑𝑐
𝑇  ], 𝐶𝑒 

𝑇 = [𝐶 
𝑇 𝑜 ] 

Given that the transformation continues from 𝛹 to 𝑦 𝑎𝑑 from type strictly positive real (SPR), two 

matrices, 𝑄 > 0 and 𝑝 > 0, exist so that the following Lyapunov’s equation is achieved:  

𝐴𝑐 
𝑇 𝑝 + 𝑝𝐴𝑐 + 𝑄 = 0 

𝑝𝑏𝑐 = 𝐶𝑐  

Filter 𝑇 (𝑠) is achieved as follows:  

𝑍𝑓 = 𝐴𝑓𝑍𝑓 + 𝑏𝑓∅, 𝑍𝑓 ∈ 𝑅𝑛𝑓 

∅𝑓 = 𝐶𝑓
𝑇𝑍𝑓 

𝑦 𝑎𝑑 

𝑉𝑑𝑐 

𝑒  
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The filter from SPR is designed to be stable. Therefore, two matrices, 𝑄𝑓 > 0 and 𝑃𝑓 > 0, exist so 

that the following Lyappunov's equation is achieved:  

𝐴𝑓
𝑇𝑝𝑓 + 𝑝𝑓𝐴𝑓 + 𝑄𝑓 = 0 

∅𝑟 is used in the process of modifying the neural network weights as follows:  

�̂� = −𝛤𝑤[𝑦 𝑎𝑑𝑄𝑓 + 𝜎�̂�] 

where  𝛤𝑤 > 𝑜 is the adjustment constant and determines the rate of the neural network’s learning 

speed (𝜎). This constant expresses the rate of weight change of the adjustment parameter. 

3.2 Results of the adaptive controller application 

We used to construct the adaptive controller of a neural network from type RBF, where we installed 

the network weights between the elements of the input beam and the invisible layer. The number of 

elements of the hidden layers. The number of the elements of the output layer (1), and the number of 

elements of the input beam (12). The output layer element is linear. Filter 𝑇  (𝑠) has the following 

shapes:  

𝑇  (𝑠) =
1

𝑠 + 1
 

Network weights speed coefficient 𝛤𝑤 = 20.  

Munificent unit 6 = 0.3. The mean, standard deviation of the diving function is √0.5. We used the line 

compensator described in the following figure, and the values were obtained through experiment.  

[𝑉𝑑𝑐 𝑌𝑎𝑑  ] =
1

𝑠 + 45.6
[18(5 + 1.88) 255 + 20 ]𝑒  

We selected this adaptive control model for plane model Aerosonde at the height of 200 m. It has a 

constant velocity of 30 M/S and a zero deviation angle. Thus, we obtained the following results. 

Figure (12) presents a comparison between the closed-loop responses of the diving angle to its square 

signal if the conventional controller is applied with and without neural network interference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 2522- 2538 

Research Article 

2533 
 

 

 

 

 

                               Pitch –yo – elevator PID controller (2000 m) 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure (12), the closed-loop of the diving angle responded to the square indication in the case 

of a conventional controller and an adaptive controller 2000 m. 

 

Figure (12) clearly shows that the neural network performed the error compensation process so that 

we obtained an acceptable. 
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Then, we tested this adaptive control model on plane model Aerosonde at a height 2000 m. It has a 

constant velocity of 30 m/s and a zero constant deviation angle. Thus, we obtained the following 

results. Figure (13) shows a comparison between the closed-loop responses of the diving angle to its 

square signal in the case of applying the conventional controller with and without the interference of a 

neural network. 

 

                               Pitch –yo – elevator PID controller (2000 m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (13) the closed-loop of the diving angle responds to the square signal in the case of a 

conventional controller 
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3-3 compare and test results 

As we mentioned in the study of the source [4] on an adaptation algorithm that depends on a neural 

network that depends on real time. The network weights are adjusted according to the errors of system 

state variables by means of a specified cost dependent minimization according to Lapunov's second 

theory, by combining the neural network with a conventional controller, it was able to largely isolate 

the disturbances to which the entire plane was subjected. 

Illustrated by the response displayed as shown in the figure (14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (14) The difference between adaptive and conventional controller response 

The neural network involved in the adaptation process plays a dampening role for the disturbances 

that the system is exposed to when it is controlled by the traditional controller alone. 

Do not use the neural network in [4] to reduce the error rate 32% than in the case of the conventional 

controller alone, as mentioned. 

Where as, the use of our neural network reduces the intensity of aliasing and vibration in the angle of 

the plane diving by a greater than 50% as shown in the figure [15]. 

 

 

 

 

 

Figure (15) Closed loop response to diving angle 
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The neural network also contributed to mitigating the overrun to substandard 24% and thus it can be 

said that the use of adaptive controller in our research achieved better performance combine [7] 

between a floating system and a neural network to design a hybrid system that was used to control the 

changes of the diving angle of a drone plane and then moved to control altitude with the presence of 

this controller in the inner ring. 

The response between them, as shown in the figure [16] showed the controller's ability to stabilize the 

elevation loop with slight overshoot and relatively large role vibrations. We in turn tested the 

elevation ring with the adoption of the angle of diving as an inner ring, and we obtained the result 

shown in the figure [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (16) 

 

 

We note that the response it has is better in terms of response time to a similar height difference 200m 

and from the override side, as well as from the standpoint a round the final position, thus it can be said 

that using the neural network in adapting to the added feed is better and easier than using the hybrid 

system.   
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Figure (17) 

The network can compensate for errors to obtain the desired response by exceeding 25% and a small 

static error.  

In summary, the proposed adaptive controller can help achieve the optimal control of the model of the 

flying plane; in addition, it enables the expansion of the field of work of the plane. The proposed 

adaptive control system has the following advantages:  

1- The basic control system structure is maintained.  

2- The system works in real time  

3- The system is technically simple to implement.  

4- The system can be used to update existing systems or design new adaptive control systems. 
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