
Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 2507- 2521

 Research Article

2507

A modern approach to building a data science framework delivery pipeline using

DevOps practices

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

1Assistant Professor, Department of BCA, Koneru Lakshmaiah Education Foundation, Guntur, AP, India
2Researcher, CS&E Department, Integral University, Lucknow, UP, India
3Professor, ECE Department, CMR Engineering College, Hyderabad, Telangana, India
4Assistant Professor, School of Computer Applications, BBD University, Lucknow, UP, India
Corresponding Author: Shashi Kant Gupta

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 10 May 2021

Abstract:
For data science, the potential for commercialization is significant. Recent work indicates that the philosophy of

DevOps is a perfect way of addressing the challenges of software development. And both data science and

software engineering from a product perspective need to provide customers with digital services. The feasibility

of using DevOps in data science must therefore be studied. This article outlines a method for creating a framework

for the use of DevOps methods within a data science program. I used four pipeline practices: version control,

platform server, containerization and continuous integration and delivery. DevOps is, however, not a theory

specifically designed for data science. This means that the DevOps methods which are currently available cannot

solve all the problems of production data science. I have used DevOps' practice to address such a problem with a

data science practice. I've learned and engaged in the process of transfer learning. This paper describes a

parameter-based method to move parameters from one dataset to another. I have examined the impact of model

transmission learning on a new dataset. The result demonstrates the adaptation of the learning process to modify

the model without re-training from scratch when the dataset changes but is identical to the old one. This is a safe

idea to freeze the convolutive layer if the current model is to reach the same degree of efficiency as the previous

one. When the new model will achieve higher than the original model, the loading of weights is better choice. In

conclude, the current methods of DevOps do not need to be restricted if we use DevOps in data science.

Keywords: Data science, DevOps, Convolutional neural network, Transfer learning

1. Introduction

In recent years, the research field of data science has become so popular that no one can ignore it[1].

Data science is so hot for many reasons. First of all, the rapid development of the Internet and

digitization have caused the world to generate massive amounts of data all the time. Such a scale of data

creates huge business needs for data science. Moreover, the rapid development of machine learning in

recent years has provided powerful nutrients for data science. However, with the development of data

science, some problems exposed that had not been noticed by re- searchers before [2]. The data science

projects are more difficult to be applied to production than traditional software engineering projects.

The solution to similar problems in software engineering is DevOps. DevOps[22] integrates

development and operation to work on a closed-loop pipeline. It is more difficult to maintain a data

science model system in production compared with software systems.

In the field of software engineering, teams responsible for different tasks collaborate to develop and

maintain the product. The division brings a prob- lem: the natural goals of each team are different: the

developer team pursues the timely response to customer requirements, develops new functions, but the

priority task of the operation team is to ensure the stability of the system. Which build a "wall" between

different teams. The methodology of DevOps is to break this "wall", integrates development and

operation team, and makes them share the same goal that responding to customer needs in time while

maintaining the quality of the products. This is the goal of data science too. Which means DevOps can

be a solution to deal with the the problems of data science in production.

However, the currently available practices are not sufficient to handle all the problems of data science

in production [23] Because there is much difference between software engineering and data science.

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2508

Besides the set of DevOps practices, we need involving more practices to deal with the unique problems

of data science in production. Transfer learning is a promising data science practice which has been

proved[3] that is very useful to leverage a pre-trained model to fit new data.

2. Background

A. Data Science

Data science is a basic theory about extracting information and knowledge from data [4]. Data science

uses statistics, data analysis, machine learning and related methods to understand and analyze actual

phenomena through data [5]. As Figure 1 shows that data science covers a very wide range of research,

including data mining, data analysis, and data science. Each branch contains a large number of

directional algorithms and theories.

Figure 1 the scope of the data science

In this era, there are many shreds of evidence that can prove that data science has a promising future.

With the digital movement progressing, the scale of available data has grown dramatically. On one side,

computer hardware is becoming more and more powerful, while on the other side, hardware costs are

steadily decreasing. Coupled with the popularity of the Internet and break- through in algorithm

research, we can conduct a more in-depth analysis of data than before [4]. 1. Conventional Neural

Networks

The models used in this project were generated depended on the convolutional neural network (CNN)

theory. In order to understand the principles of CNN, the reader first needs to understand some basic

concepts of Artificial neural networks (ANN). Because CNN theory is developed based on ANN. An

ANN is made up of a large number of neurons and is divided into many layers. Figure 2 shows the basic

structure of ANN. An ANN includes an input layer, some hidden layers, and an output layer. The input

neurons construct the first layer output whatever input they are fed. But the rest of the neurons work in

another way. The data flow of that kind of neurons is shown in Figure 3. This kind of neuron is also

called the linear threshold unit (LTU).

A modern approach to building a data science framework delivery pipeline using DevOps practices

2509

Figure 2: Artificial neural network model example

Inputs of an LTU are numbers, and each input connection is associated with a weight. Then a weighted

sum of its inputs can be computed and applies a function to that sum. Then the error can be calculated

by comparing the desired value with the output value. A simple machine learning model works like a

single LTU, and can only understand simple linear relationship exists in the dataset. The benefit of the

network structure used by ANN for deep learning is that the model can mine the complex relationships

that exist in the data set. However, ANN does not perform well when faced with computer vision

problems. For example, if we feed each pixel of an image as an input to ANN, these pixels flow through

each layer of the network and processed by each LTU with the approach described above. Finally, a

prediction is obtained at the output layer. The shape information of the picture is lost, and the picture

information changes from two-dimensional data to a one-dimensional pixel sequence.

Figure 3: Neuron j Signal Flow

2. Transfer Learning

Transfer learning (TL) is a research problem in machine learning (ML) that focuses on storing

knowledge gained while solving one problem and applying it to another similar task [5]. In other words,

the basic principle of transfer learning is to reuse the models. Learning time can be reduced by freezing

some layers in a network [6]. Yosinski and his team [3] experimented on the ability to transfer features

from a base dataset to a target dataset. Their experiments showed that: transferring the features gained

from a basic model to a new model can produce a boost to generalization performance. Today, transfer

learning methods are applying in many fields, most notably in data mining, machine learning and

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2510

applications of machine learning and data mining [7]. This project is focused on the application of

transfer learning on CNN.

B. DevOps

The DevOps philosophy emphasizes continuous collaboration between the developers and the

operations, as well as everyone in between, such as software testers to quickly respond to customer

requirements [26]. It looks very relevant to data science. Data scientists also facing a changing rapidly

market. In this case, data scientists have to dig out the volume of data as soon as possible. Which means

the software engineering and data science has a common problem to be resolved: How to complete work

faster while ensuring product quality. DevOps theory seems to be a very suitable choice for data

scientists because software engineers solve this problem well by applying this theory. By extending

DevOps theory, data scientists can also solve the problems they face in production. Some researchers

call this kind of extension of DevOps as DataOps [8]. DataOps is not a brand-new concept and has been

proposed for some years, but there is still no universally accepted definition. 1. Tool chain

DevOps practices rely heavily on tools of various kinds, including tools for container management,

continuous integration, orchestration, monitoring, deployment, and testing [9][10]:

• Coding: creation and analysis of code, tools for handling the source code and combining code.

• Design – resources for continuous integration, building status.

• Testing – continuous tools for monitoring that provide quick and prompt business risks feedback.

• Packaging – server, pre-deployment device staging.

• Releasing – management of transition, authorisation of releases, automation of releases.

• Setup – setup and management of the network, as tools for application infrastructure.

• Tracking – performance control software, end-user experience.

2. Limitations of DevOps

We can apply some best DevOps practices to data science. Software engineering and data science have

certain similarities when we thinking of the model as code. If the DevOps can benefit software

engineering to face the production environment, it can benefit data science as well. The DevOps theory

is originally design for software engineering. However, there is much difference between data science

and software engineering. We have to treat the data science model as a component of the system when

we talking the data science from a production perspective. Because the model cannot serve the custom

just by itself, it must work as a function of a system. The life cycle of developing a system contains a

data science model is showed in Figure 4. DevOps practices can cover the most part of the cycle but

cannot cover the inner cycle: the life cycle of data science. The general process of the data science

development model is data analysis, experiment, and modeling. In order to get a qualified model, this

process needs to be repeated many times. This process is very different from the software development

process. Which means we need more practices besides the practices of DevOps[25].

Figure 4: Life cycle of the system and the inner cycle of data science

3. Pipeline Development for System Design

To develop a delivery pipeline for a machine learning system applying DevOps approach, I applied four

practices of DevOps on a machine learning system, these practices are version control, model server,

containerization, and CI/CD.

A modern approach to building a data science framework delivery pipeline using DevOps practices

2511

A. Version Control

From a traditional software engineering perspective, version control refers to the managing of the source

code. However, from the field of data science perspective, the version of data is also needed to be

managing. For machine learning, an important branch of data science, version control of data is

especially important. Because there is a common problem in the field of machine learning: historical

models are often very difficult to reproduce. Even if the data scientist uses the same algorithms and

datasets, it is still difficult to obtain the same performance as the model. Even for the creators of the

model, it is very difficult to achieve the same performance. There are many reasons for this problem.

One meaningful reason is that data versions are not well managed. Data pre-processing is an essential

step in the pipeline of data science. To get an excellent model, data scientists often need to repeat data

pre-processing and model training. This means that every time the data is pre-processed, a new version

of the data is obtained. Data itself directly affects the performance of the model; it is necessary to control

the version of the data.

Meanwhile, it also means that we need to manage the correspondence between the version of the data

and the version of the source code. Another purpose of managing data version is to solve the problem

of cloud storage of data. Enterprise data is generally stored in local data warehouses or cloud storage

service platforms. If we directly use traditional version control tools to manage the data version, we can

only upload the data to the traditional source code hosting service platform. In other words, the data is

stored in both the enterprise’s own data warehouse and the source code hosting platform. In this way,

storage resources would be wasted. Based on the above analysis, the version control of this project

includes source code version control and data version control. At the same time, this project also

supports for cloud storage, code and data are hosted on different cloud storage platforms. The data

version control tool generates a metadata file of the dataset, which is managed by the traditional version

control tool together with the source code. When the source code version is switched, the corresponding

data is switched through the version of the metadata file.

B. Model Server

There are two modelling approaches in data science as shown in Figure 5. One is that the data scientist

who manually develops the model based on his or her relevant expertise, and then analyses the data

through the model. The analysis result is generally a report used to explain historical data, to provide

support for business decisions. The model itself is not a product that needs to be delivered to the

customer, the product is the result of the model-based analysis. The parameters of the model are all set

manually by the data scientist. The establishment of this kind of modelling approach requires both the

data scientist’s excellent programming skills and the data scientist’s in-depth experience in the field of

the data it analyses. Another modelling approach does not require data scientists to be so versatile. The

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2512

task of modelling is mainly done by the data itself. The data scientist only needs to build a basic model

according to the results of data analysis and related algorithms, and then let the model fit the data.

Through continuous learning of the data, the performance of the model finally reaches a reasonable

level. In this process, the parameters of the model are continuously optimized by the data according to

the algorithm. The model obtained in this way is generally used to predict the future.

Figure 5: Two modelling approaches

This work is based on the second modelling approach. Because the model obtained in the second

approach servers users in the production environment, and this project is focused on the operation of

the model in production. But models produced by data scientists cannot be used directly by users. To

use the model file directly, the users have to know how to program. We can’t force users to do anything.

In a production environment, data scientists as part of a team need to work with system developers.

Figure 6: The architecture of model server

Data scientists produce models, and system developers integrate the models into the company’s systems.

However, the language used by system developers may be different from the language used by data

A modern approach to building a data science framework delivery pipeline using DevOps practices

2513

scientists. It is not a feasible solution for data scientists to directly throw model files to system

developers. In this project, after I got the model, I packaged it into a model service and provided a

graphical interface so that anyone can use the model very conveniently. In conclusion, the model server

provides easy-to-use API for end-users or software developers. It is also useful for model A/B testing:

Swapping different models out depending on the inference. As Figure 6 shows that the model is loaded

in a server which allows API requests and infers the model predicts.

Table 1: The statistics of the datasets

Purpose Split Label

s

Exampl

es

Basic model

training
Train

Cat 4000

Dog 4000

Validation Cat 1000

Gog 1000

Transfer

learning

Train
Cat 4000

Gog 4000

Validation Cat 1000

Gog 1000

Total 20000

4. Implementation A.

Dataset

 The data used in this degree project consists of images of cats and dogs. Which I got from Kaggle

related to a very famous image classification problem: Cat vs. Gog. The images of the data set look like

Figure 7. As shown in Table1 that the dataset was split into two parts. One is used for training a basic

convolution neural network. Another one is used to experimenting the transfer learning.

Figure 7: Data examples

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2514

B. CNN

Table 2: Model summary

Layer Output Size Output

Channel

Kernel

Size

Parameters

Convolution 150×150 16 3 448

Max pool 75×75 16 – 0

Convolution 75×75 32 3 4640

Max pool 37×37 32 – 0

Convolution 37×37 64 3 18496

Max pool 18×18 64 – 0

Convolution 18×18 128 3 73856

Max pool 9×9 128 – 0

Flatten 1 10368 – 0

Fully connected 1 256 – 2,654,464

Fully connected 1 512 – 131,584

Fully connected 1 1 – 513

Total parameters: 2,884,001

To achieve the desired model to experiment transfer learning on it, I trained a convolutional neural

network as the model of the project. Compared to the design of the model itself, this project is more

concerned about the performance of transfer learning in model fine-tuning. Therefore, I did not choose

those famous but complex CNN-type models. Under the premise of ensuring model performance, I

adopted a network structure that is as simple as possible to reduce experimental interference. As shown

in Table 2, the model includes three convolution modules and a fully connected module. Each

convolution module contains a convolution layer and a pooling layer. The fully connected module

consists of a flattening layer and two fully connected layers. To reduce computation during back

propagation, all convolution layers and the first fully connected layer use the ReLU activation function.

By using the sigmoid activation function in the last fully connected layer, the model can output class

probabilities based on binary classification.

After getting a basic model I performed three experiments to answer the second question. In all these

three experiments I compared the training accuracy and validation Accuracy, and training loss and

validation loss. The dataset used in all experiments is the transfer learning dataset.

Experiment 1:

To evaluate transfer learning I again used the CNN architecture described in Section IV (A). After

applied rescaling, and resized the images of the transfer learning dataset into the required dimensions, I

trained the network on the pre-processed images. I retrained the model from scratch but using a

completely different dataset. According to it, the performance of the model on the training and test sets

reached an ideal level after 50 epochs.

A modern approach to building a data science framework delivery pipeline using DevOps practices

2515

 Table 3: The parameters of Experiment 1: Training from scratch

Parameters Quantity

Total

2,884,001

Trainable 2,884,001

Non-trainable 0

Experiment 2:

In this experiment, I first loaded the network weights that were trained in Section IV(B). Then I retrained

the model on the new dataset. During the training process, I didn’t freeze any layer, as same as the

approach taken in the experiment where Yosinski got the best results. According to it, the performance

of the model on the training and test sets reached an ideal level after 20 epochs.

Table 4: The parameters of Experiment 2: training with trained weights

Parameters Quantity

Total

2,872,001

Trainable 2,872,001

Non-trainable 0

Experiment 3:

As same as in the previous experiment, I first loaded the network weights that were trained in Section

IV(B). Then I retrained the model on the new dataset. However, different from the previous experiment,

all the weights of the convolution layer were frozen. During the training process, only the weights of

the fully connected module were retrained. According to it, the performance of the model on the training

and test sets reached an ideal level after 20 epochs.

Table 5: The parameters of Experiment 3: training with frozen convolution layers

Parameters Quantity

Total

2,884,001

Trainable 2,786,561

Non-trainable 97,440

I used multiple Python libraries in this project. The Keras [11] library and TensorFlow [12] library was

used for implementing the models and experiments on the transfer learning [13]. Matplotlib [14] was

used to plot the graph and display images in the training and validation data..

5. Results

This chapter presents the results of each experiment. And the results are analyzed by

comparison.

A. Results of each experiment

 Table 6: The training accuracy and loss the trained after 30 epochs between the basic model and

 the model of Experiment 1

Models Epoch Training accuracy Training Loss

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2516

Training basic model 30 0.7928 0.4454

Training model form scratch 30 0.7967 0.4328

Figure 8: Training and validation accuracy and loss of Experiment 1: training from scratch

The specific data of each experiment are shown in Table 3, Table 4 and Table 5. The left figure in Figure

8 shows the comparison of the change process of training and validation accuracy in 50 epochs of the

experiment that retraining the model from scratch [15]. And the right one shows the comparison of the

change process of training and validation accuracy in 50 epochs. The results show that the model is free

from over fitting and under fitting. As the training process progresses, the model’s performance on the

training and validation sets remains the same. As the same as the result of the experiment that retraining

the model from scratch, the result of the other two experiments shows that neither over fitting nor under

fitting occurred [16]. But the result of the last two experiments only covers 20 epochs. Which is shown

in Figure 9 and Figure 10. we can find that the change curve of the model trained from scratch is very

similar to the change curve of the basic model. As shown in Table 6, after 30 epochs of training, the

accuracy and loss rates of the two models are almost the same[17]. This means that if we train a model

from scratch to fit new data, it will take almost the same time as the original model to make the new

model achieve the same accuracy and loss as the original model.

Figure 9: Training and validation accuracy and loss of Experiment 2: training with trained weights

A modern approach to building a data science framework delivery pipeline using DevOps practices

2517

As shown in Figure 9, which is very different from Figure 8, the change curve of the accuracy and loss

in Experiment 2 is relatively flat in the first 20 epochs. The performance of the model is slowly

improving. The model has a high performance after only one epoch training.

Figure 10: Training and validation accuracy and loss of Experiment 3: training with frozen

convolution layers

As shown in Figure 10, the model of Experiment 3 also has a very high performance after only one

epoch training. But in the following training process, the model’s performance improves very slowly.

 Figure 11: Comparison among training accuracy and loss

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2518

B. Comparison of test results

The main content of this section is the comparison of the results of three experiments. The training

accuracy and loss for the first 20 epochs of the three experiments are plotted in Figure 11. As shown in

Figure 11, the training results of Experiments 2 and 3 in the first 20 epochs are significantly better than

Experiment 1. The accuracy of the model of Experiment 1 starts slowly from a very low value, while

the models of Experiments 2 and 3 achieved a good performance After an epoch training. If the results

of Experiment 2 and Experiment 3 are compared, we can find that the accuracy of the model of

Experiment 3 remains basically the same and grows very slowly. However, in the model of Experiment

2, the accuracy rate has continued to increase, and the growth rate is significantly higher than that of

Experiment 3. This means that the method of fitting new data with the original model in experiments 2

and 3 is significantly better than training the model from scratch.

 The models of Experiments 2 and 3 achieved such high accuracy and such low loss after only one epoch

training. This phenomenon seems to indicate that the model perfectly transfers the knowledge obtained

by the model on the old data set. The data in Table 7 confirm this.

Table 7: Training accuracy and loss of basic model after epoch 30 and the models of Experiment 2 and

Experiment 3 after epoch 1

Models epoch Training

Accuracy

Loss Training

Training basic model 30 0.7928 0.4454

Loading trained weights 1 0.7837 0.4603

Freezing the convolution layers 1 0.7893 0.4438

Figure 12: The training accuracy and loss of the Experiment 1 from epoch 41 to epoch 50 and the

training accuracy and loss of the Experiment 2 and 3 from epoch 1 to epoch 20

A modern approach to building a data science framework delivery pipeline using DevOps practices

2519

The models in Experiments 2 and 3 transferred the knowledge of the basic model training after 30

epochs. This means that in addition to compare the experimental results of the first 20 epochs of the

three experiments as shown in Figure 11. We should also compare the results of epoch 41 to epoch 50

of Experiment 1 with the first twenty epoch results of Experiments 2 and 3. This kind of comparison

shows in Figure 12. We can see that the accuracy of Experiment 1 and Experiment 2 increased with

basically the same trend, and the loss rate decreased with the same trend too[18]. However, the accuracy

and loss rate of Experiment 3 was relatively unchanged. We cannot conclude that freezing the

convolutional layer is unnecessary. Let us compare the data in Table 6 and Table 7. We can find that

freezing the convolutional layer means that we need to train fewer parameters[19]. The more complex

the network structure and the more convolutional layers, the more parameters that do not require

retraining [24]. C. Analysis

 The convolutional layer applies a specified number of convolution filters to the image. It is used

to detect the edges’ information and patterns of the images[20]. And fully connected layers are used to

combine the patterns and classify the image. A CNN model that performs very well means that it has

learned enough and accurate edge information and patterns for a certain class of pictures[21]. It’s no

necessary to make this desired model learn the knowledge it already gained when we won’t use this

model to fit a similar image dataset if these new images have the same edge information and patterns

as the previous ones. 6. Conclusion

Based on the first research direction, we need to think about the team culture of Data Science, the roles

involved in data science, and what barriers exist in each role. Furthermore, we must not only think about

the team culture of data science but also how to integrate the data science team with the software

engineering team. Because when applying data science in production, the data science team inevitably

collaborates with the system development and operation teams. When studying the roles within the

science team, the first difficulty we need to overcome is that the discipline of data science is too broad

and the roles’ responsibility of some branches overlap to others’ to some ex- tent. Some common roles

in data science are data engineers, data analysts, data scientists, and machine learning engineers. Among

them, data scientists are often the "superman" in the team. The skillset they need to master covers data

engineering, data analysis, machine learning, deep learning, environment configuration, and

programming, etc. Data scientists even have to handle some operational tasks, because the operation

team does not understand models as deep as the data scientist. Today, data science is rapidly evolving.

In the result that some branches of data science are converging, and new branches are constantly

emerging.

So in my opinion, reforming of internal cultural of data science is difficult, and it is difficult to find out

a solution that is effective and has long-term effects. Data science is still a very "young" field compared

to software engineering. Unlike the latter one, which has achieved business separation after years of

development, such as development, testing, and operation. The data science team does not achieve that.

And there is no that apparent "wall" be- tween the roles involved in data science. Therefore, I think that

at this stage, it is more valuable to integrate the external and internal culture of data science. In other

words, the cultural integration of the data science team and the soft- ware engineering team. Depends

on this idea we can think that the data science team contains only one kind of super role, the data

scientist, then the problem is how to integrate data science, development, and operation, but not how to

integrate the roles inside the data science team. I call it Data DevOps. Based on the previous analysis,

we can find that the familiar "wall” appears between data scientists and operations. Data scientists and

developers need to respond to business requirements quickly and develop new features to respond to

rapidly changing markets and data. Meanwhile, the operation team would be worried about this kind of

change would negatively affect the stability of the system running in production. Another new "wall"

appears be- tween data scientists and developers. System developers need to incorporate models

produced by data scientists into the system. Based on the consideration of business separation, we

assume that developers do not need to know data science deeply. When a data scientist throws the model

to a system developer, it is like the scenario that the developer throws the new features directly to the

operation team on another side of the "wall". Just as developers don’t understand data science, the

operations team doesn’t understand development.

Surabhi Saxena1, Shashi Kant Gupta2, Dr. S. Poongodi3, Prabhdeep Singh4

2520

References

[1] Wil Van Der Aalst. “Data science in action”. In: Process Mining. Springer, 2016, pp. 3–23. [2]

Sebastian Neubauer. Oracle Data Science Blog. Jan. 2019. URL: https:// blogs. oracle. com/

datascience/ why- is- it- so- hard-to-put-data-science-in-production.

[3] Jason Yosinski et al. “How transferable are features in deep neural net- works?” In: Advances in

neural information processing systems. 2014, pp. 3320–3328.

[4] Foster Provost and Tom Fawcett. “Data science and its relationship to big data and data-driven

decision making”. In: Big data 1.1 (2013), pp. 51–59.

[5] AD Gordon. Julian Ereth. “DataOps-Towards a Definition.” In LWDA. 2018, pp. 104– 112.

[6] W Paul Vogt. Quantitative research methods for professionals. Pear- son/allyn and Bacon Boston,

2007.

[7] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s perspective. Addison-

Wesley Professional, 2015.

[8] Vasant Dhar. “Data science and prediction”. In: (2012).

[9] Anthony JG Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm: data-intensive

scientific discovery. Vol. 1. Microsoft research Redmond, WA, 2009.

[10]Thomas H Davenport and DJ Patil. “Data scientist”. In: Harvard business review 90.5 (2012), pp.

70–76.

[11]Saeed Aghabozorgi and Polong Lin. Data Scientist vs Data Engineer, What’s the difference? 2016.

URL: https://cognitiveclass. ai/blog/data-scientist-vs-data-engineer (visited on 08/10/2010).

[12]Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and time series”.

In: The handbook of brain theory and neural networks 3361.10 (1995), p. 1995.

[13]Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553 (2015),

p. 436.

[14]Jeremy West, Dan Ventura, and Sean Warnick. “Spring research presentation: A theoretical

foundation for inductive transfer”. In: Brigham Young University, College of Physical and

Mathematical Sciences 1 (2007), p. 32.

[15]Maarten C Kruithof et al. “Object recognition using deep convolutional neural networks with

complete transfer and partial frozen layers”. In: Optics and Photonics for Counterterrorism, Crime

Fighting, and Defence XII. Vol. 9995. International Society for Optics and Photonics. 2016,

99950K.

[16]Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions on

knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[17]Andrej Dyck, Ralf Penners, and Horst Lichter. “Towards definitions for release engineering and

DevOps”. In: 2015 IEEE/ACM 3rd International Workshop on Release Engineering. IEEE. 2015,

pp. 3–3.

[18]Liming Zhu, Len Bass, and George Champlin-Scharff. “DevOps and its practices”. In: IEEE

Software 33.3 (2016), pp. 32–34.

[19] R Seroter. “Exploring the ENTIRE DevOps Toolchain for (Cloud) Teams”. In: Cloud Automation

and Management (2014), p. 5.

[20] P.W.D. Charles. Project Title. https://github.com/charlespwd/ project-title. 2013.

[21] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

Software available from tensorflow.org. 2015. URL: http://tensorflow.org/.

[22] Angara, J., Gutta, S., Prasad, S. , “DevOps with continuous testing architecture and its metrics

model”, Advances in Intelligent Systems and Computing , 2018 709 pp271-281

doi://10.1007/978981-10-8633-5_28.

[23] Goyal, D., Goyal, R., Rekha, G., Malik, S., Tyagi, A.K. , “Emerging Trends and Challenges in

Data Science and Big Data Analytics”, International Conference on Emerging Trends in

Information Technology and Engineering, ic-ETITE ,2020. Doi://10.1109/ic-

ETITE47903.2020.316.

[24] Rajesh, P., Bharadwaj, Alam, M., Tahernezhadi, M , “A Data Science Approach to Football Team

Player Selection”, 2020 IEEE International Conference on Electro Information Technology,

July,pp175- 183.

https://github.com/charlespwd/
https://github.com/charlespwd/
http://tensorflow.org/
http://tensorflow.org/

A modern approach to building a data science framework delivery pipeline using DevOps practices

2521

Doi;// 10.1109/EIT48999.2020.9208331.

[25] Sowjanya, V., Divyambica, C.H., Gopinath, P., Vamsidhar, M., Babu, B.V, “Improved prediction

of diabetes based on glucose levels in blood using data science algorithms “, 2019 International

Journal of Engineering and Advanced Technology (IJEAT)) volume 8, issue 4, pp 877-881.

[26] Botcha, V.M., Koll, B.P, “Predicting breast cancer using modern data science methodology”,

International Journal of Innovative Technology and Exploring Engineering (IJITEE) , vol 8 issue

10, pp:4444-4446

Doi:\\ 10.35940/ijitee.J1077.0881019

