Study Of Hermite-Fejer Type Interpolation Polynomial

Mousa Makey Khrajan ${ }^{1}$

${ }^{1}$ Department of Mathematics and Computer Applications College of Science, University of AL_Muthanna, Iraq ${ }^{1}$ mmkrady@gmail.com mmkrady@mu.edu.iq

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract

Given $\boldsymbol{f} \in \boldsymbol{C}[\mathbf{- 1}, \mathbf{1}]$ and \mathbf{n} points (node) in $[\mathbf{- 1}, \mathbf{1}]$, the Hermite-Fejer type (HFT) interpolation polynomial is the polynomial of degree at most $(2 n-1)$ that agree with \boldsymbol{f} and has zero derivative at each of the nodes. The aim of this paper is to investigate HFT interpolation polynomial of \mathbf{n} such that \mathbf{n} is an even number of Chebyshev of the first kind. Mathematics Subject classification: 2010 primary 41A05, Secondary 41A10

Keywords: Lagrange interpolation, polynomial interpolation, Berman's phenomenon.

1. Introduction

Suppose that an function $\boldsymbol{f}(\boldsymbol{x})$ are continuous in $[-\mathbf{1}, \mathbf{1}]$ denoted by \mathbf{C};
$f \in C[-1,1]$, and let

$$
X=\left\{k_{k, n}\right\}_{k=0}^{n=1}, k=0,1,2, \ldots, n=1,2,3, \ldots \ldots(1)
$$

be an infinite triangular matrix of nodes such that, for all \mathbf{n}

$$
\begin{equation*}
-1 \leq x_{n-1, n}<\cdots<x_{1, n}<x_{0, n} \leq 1 \tag{2}
\end{equation*}
$$

The well known Lagrange interpolation polynomial of \boldsymbol{f} is the polynomial $\boldsymbol{L}_{\boldsymbol{n}}(\boldsymbol{X}, \boldsymbol{f})(\boldsymbol{x})=\boldsymbol{L}_{\boldsymbol{n}}(\boldsymbol{X}, \boldsymbol{f}, \boldsymbol{x})$ of degree at most ($\mathbf{n} \mathbf{- 1}$) which satisfies

$$
L_{n}\left(X, f, x_{k, n}\right)=f\left(x_{k, n}\right) ; k=0,1, \ldots, n-1
$$

we further denote by $\boldsymbol{H}_{\boldsymbol{n}}(\boldsymbol{f}, \boldsymbol{X} \cdot \boldsymbol{x})$, the polynomial of degree $\mathbf{2 n} \mathbf{- 1}$ that is uniquely determined by the following conditions

$$
\begin{gathered}
H_{n}\left(f, X, x_{k n}\right)=f\left(x_{k n}\right) ; H_{n}^{\prime}\left(f, X, x_{k n}\right)=0, \\
k=0,1,2, \ldots,(n-1) \text { and } x_{k, n} \equiv x_{k}
\end{gathered}
$$

The process $\left\{\boldsymbol{H}_{\boldsymbol{n}}\left(\boldsymbol{f}, \boldsymbol{X}, \boldsymbol{x}_{\boldsymbol{k}}\right)\right\}_{n=0}^{\infty}$ is called a Hermite-Fejer Type interpolation polynomial (HFT).
Faber showed that [1] for any X there exists $\boldsymbol{f} \in \boldsymbol{C}[-\mathbf{1}, \mathbf{1}]$ so that $\boldsymbol{L}_{\boldsymbol{n}}(\boldsymbol{X}, \boldsymbol{f}, \boldsymbol{x})$ does not converge uniformly to \boldsymbol{f} on $[-\mathbf{1}, \mathbf{1}]$ as $\rightarrow \infty$.

Let the points $\left\{\boldsymbol{x}_{\boldsymbol{k} \boldsymbol{n}}\right\}$ are the roots of the \mathbf{n}-th Chebyshev nodes of the first kind

$$
\mathrm{T}=\left\{x_{k n}=\cos \left(\frac{2 k+1}{2 n}\right) \pi ; \mathrm{k}=0,1, \ldots,(\mathrm{n}-1) ; \mathrm{n}=1,2,3, \ldots\right\} \ldots \ldots \ldots . \text { (3) }
$$

Where Chebyshev polynomial defined as $\boldsymbol{T}_{\boldsymbol{n}}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }}(\boldsymbol{n} \operatorname{arc} \boldsymbol{\operatorname { c o s }} \boldsymbol{x}),|\boldsymbol{x}| \leq \mathbf{1}$
This result states that if the modulus of continuity $\boldsymbol{\omega}(\boldsymbol{\delta}, \boldsymbol{f})$ of \boldsymbol{f} is defined by
$\boldsymbol{\omega}(\boldsymbol{\delta})=\boldsymbol{\omega}(\boldsymbol{\delta}, \boldsymbol{f})=\boldsymbol{\operatorname { S u p }} \boldsymbol{| x - y | \leq \delta}\{|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})|\}$, this value $\boldsymbol{\omega}(\boldsymbol{\delta})$ is said to be
Modulus of continuity of the function $f(x)$, then $L_{n}(T, f)$ converges uniformly to f with $\omega\left(\frac{1}{n}, f\right) \log n \rightarrow$ $\mathbf{0}$ as $\boldsymbol{n} \rightarrow \infty$.

Ageneralization of Lagrange interpolation is provided by Hermite -Fejer interpolation process. Given a non- negative integer \boldsymbol{m} and nodes \mathbf{X} defined by [1,2], the HFT interpolation polynomial $\mathbf{H}_{\boldsymbol{m}, \boldsymbol{n}}(\boldsymbol{X}, \boldsymbol{f})(\boldsymbol{x})=$ $\mathbf{H}_{\boldsymbol{m}, \boldsymbol{n}}(\boldsymbol{X}, \boldsymbol{f}, \boldsymbol{x})$ of \boldsymbol{f} is the unique polynomial of degree at most $(\mathbf{m}+\mathbf{1})(\mathbf{n} \mathbf{- 1})$ which satisfies the $(\mathbf{m}+\mathbf{1})(\mathbf{n})$ conditions: $\mathrm{H}_{\mathrm{m}, \mathrm{n}}\left(X, f, x_{k n}\right)=f\left(x_{k n}\right) ; 0 \leq k \leq n-1$

$$
\mathbf{H}_{m, n}^{(r)}\left(X, f, x_{k, n}\right)=0 ; 1 \leq r \leq m, \quad 0 \leq k \leq n-1
$$

J. BYRNE and J.SMITH [8] focus on an aspect of HFT that has become known as Berman's phenomenon occurs if the Chebyshev nodes are augmented by the end point of $[-1,1]$, that is for the case of nodes

$$
\left.\begin{array}{rl}
x_{k, n+2} \equiv x_{k}=\cos \left(\frac{2 k+1}{2 n}\right) \pi, k=1,2, \ldots, \mathrm{n} \tag{4}\\
x_{0, n+2} \equiv x_{0}=1 ; x_{n+1, n+2} \equiv x_{n+1}=-1
\end{array}\right\}
$$

Obtained by adding the nodes $\mp \mathbf{1}$ to the node (3).D.L.Berman[1] it is show that process constructed for $f(x)=|x|$ diverges at $x=0$, while in [2] he showed that for $f(x)=x^{2}$, the process
$\mathbf{H}_{\mathbf{1}, \boldsymbol{n}}\left(\boldsymbol{T}_{\mp \mathbf{1}}, \mathbf{f}, \mathbf{0}\right)$ diverges every where in ($\mathbf{- 1}, \mathbf{1}$). An explanation for Berman's phenomenon was provided by Bojanic as follows

Theorem: (Bojanic) [5].If $\mathbf{f} \in \boldsymbol{c}[-\mathbf{1}, \mathbf{1}]$ has left and right derivatives $\boldsymbol{f}_{\boldsymbol{L}}^{\prime}(\mathbf{1})$ and $\boldsymbol{f}_{\boldsymbol{R}}^{\prime}(-\mathbf{1})$ at 1 and -1 , respectively, then $\mathbf{H}_{\mathbf{1}, \boldsymbol{n}}\left(\boldsymbol{T}_{\mp \mathbf{1}}, \mathbf{f}\right)$ converges uniformly to \mathbf{f} on $\quad[-\mathbf{1}, \mathbf{1}]$ if and only if $\boldsymbol{f}_{L}^{\prime}(\mathbf{1})=\boldsymbol{f}_{\boldsymbol{R}}^{\prime}(-\mathbf{1})=\mathbf{0}$. Cook and Mils[6] in 1975, who showed that if $f(x)=\left(\mathbf{1}-\boldsymbol{x}^{\mathbf{2}}\right)^{\mathbf{3}}$ then $\mathbf{H}_{\mathbf{3}, \boldsymbol{n}}\left(\boldsymbol{T}_{\mp \mathbf{1}}, \mathbf{f}, \mathbf{0}\right)$ diverges. The result in [6] later extended by my paper [7] that showed $\mathbf{H}_{\mathbf{3}, \boldsymbol{n}}\left(\boldsymbol{T}_{\mp \mathbf{1}}, \mathbf{f}, \mathbf{x}\right)$ diverges at each point in $\quad(\mathbf{- 1 , 1})$. Byrne and Smith [8] investigate Berman's phenomenon in the set of $(\mathbf{0}, \mathbf{1}, \mathbf{2})$

HFI, where the interpolation polynomial agree with f and vanishing first and second derivatives at each node.G.Mastroianni and I.Notarangelo [9] study the uniform and L^{P} convergence of Hermite and Hermite-Fejer interpolation.

It is obvious that when \boldsymbol{n} is odd, the nodes $\boldsymbol{x}_{\boldsymbol{k}, \boldsymbol{n}} \equiv \boldsymbol{x}_{\boldsymbol{k}}^{\boldsymbol{n}}=\boldsymbol{\operatorname { c o s }}\left(\frac{2 \boldsymbol{2}+\boldsymbol{1}}{2 \boldsymbol{n}}\right) \boldsymbol{\pi}$ include the point $\boldsymbol{x}=\mathbf{0}$. Therefore it will be assume that \boldsymbol{n} is an even number (say $\boldsymbol{n}=\mathbf{2 m}$) and this the aim of paper.

Consider the matrix of nodes

$$
\begin{equation*}
x_{k}^{2 m}=\cos \left(\frac{2 k-1}{4 m}\right) \pi, \mathrm{k}=1,2, \ldots, 2 \mathrm{~m} \quad ; \mathrm{x}=0, \mathrm{~m}=1,2, \ldots \tag{5}
\end{equation*}
$$

and study Hermite - Fejer Type(HFT) interpolation polynomial constructed at these nodes of degree $\mathbf{4 m + 1}$ is a uniquely determined by the following conditions:

$$
\begin{aligned}
& H_{2 m}(f, X, 0)=f(0) ; \quad H_{2 m}^{\prime}(f, X, 0)=0 \\
& H_{2 m}(f,, 0)=f(0) ; \quad H_{2 m}^{\prime}(f,, 0)=0, k=1,2, \ldots 2 m
\end{aligned}
$$

Therefore $\boldsymbol{H}_{2 m}(\boldsymbol{f}, \boldsymbol{X}, \boldsymbol{x})$ can be written as:

$$
H_{2 m}(f, X, x)=\sum_{k=1}^{2 m} f\left(x_{k}\right) \frac{x^{2}}{x_{k}^{2}} \frac{T_{2 m}^{2}(x)\left(1-x_{k}^{2}\right)}{4 m^{2}\left(x-x_{k}\right)^{2}}\left[1-\frac{2-x_{k}^{2}}{x_{k}\left(1-x_{k}^{2}\right)}\left(x-x_{k}\right)\right]+f(0) T_{2 m}^{2}(x) .
$$

(6)

Theorem :The HFT interpolation polynomial $\left\{\boldsymbol{H}_{2 m}(\boldsymbol{f}, \boldsymbol{X}, \boldsymbol{x})\right\}$ constructed with the matrix (5) for:
(i) $f(x)=x^{2}$ is convergent at all points of $(\mathbf{- 1 , 1})$.
(ii) $f(x)=\boldsymbol{x}$ is divergent for all points $\mathbf{x} \neq \mathbf{0}$ in $(-1,1)$.

2. Technical Preliminaries

We shall quite frequently make use the following results before proof theorem[7]
Lemma: (i) $\sum_{k=1}^{n} \frac{1}{\left(1-x_{k}^{2}\right)}=n^{2}$
(ii) $\sum_{k=1}^{n} \frac{1}{\left(1+x_{k}\right)}=\sum_{k=1}^{n} \frac{1}{\left(1-x_{k}\right)}=n^{2}$
(iii) $\sum_{k=1}^{n} \frac{1}{x_{k}^{2}}=n^{2}$
(iv) $\sum_{k=1}^{n} \frac{1}{\left(1+x_{k}\right)^{2}}=\sum_{k=1}^{n} \frac{1}{\left(1-x_{k}\right)^{2}}=\frac{2 n^{4}+n^{2}}{3}$
(v) $\sum_{k=1}^{n} \frac{1}{\left(1-x_{k}^{2}\right)^{2}}=\frac{n^{4}+2 n^{2}}{3}$
(vi) $\sum_{k=1}^{n} \frac{x_{k}^{2}}{\left(1-x_{k}^{2}\right)^{2}}=\frac{n^{4}-n^{2}}{3}$
(vii) $\sum_{k=1}^{n} \frac{1}{x_{k}^{4}}=\frac{n^{4}+2 n^{2}}{3}$.

3. Proof of theorem

For $f(x)=x^{2}$, the formula (6)becomes

$$
\begin{align*}
& H_{2 m}\left(z^{2}, X, x\right) \equiv H_{2 m}\left(z^{2}, x\right) \\
& =x^{2} \sum_{k=1}^{2 m} l_{k}^{2}(x)-x^{2} \sum_{k=1}^{2 m} \frac{\left(2-x_{k}^{2}\right)}{x_{k}\left(1-x_{k}^{2}\right)} l_{k}^{2}(x)\left(x-x_{k}\right) \tag{7}
\end{align*}
$$

Where $\boldsymbol{l}_{\boldsymbol{k}}(\boldsymbol{x})=\frac{\mathrm{T}_{n}(x)}{\mathrm{T}_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}$ and $\boldsymbol{T}_{n}(\boldsymbol{x})=\boldsymbol{T}(\boldsymbol{x})=\prod_{k=1}^{n}\left(\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{k}}\right)$ be Lagrange interpolation polynomial. According to Fejer's result, when $|\boldsymbol{x}| \leq 1$

$$
\begin{equation*}
\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathbf{I}_{\mathrm{k}}^{2}(x) \rightarrow 1 \text { as } \mathrm{m} \rightarrow \infty \tag{8}
\end{equation*}
$$

From (7) \& (8) it follows that the equation

$$
\begin{equation*}
\lim _{m \rightarrow \infty} H_{2 m}\left(z^{2}, x\right)=x^{2} \text { is equivalent to the equation: } \tag{9}
\end{equation*}
$$

$\lim _{\mathrm{m} \rightarrow \infty} \sum_{\mathrm{k}=1}^{\mathrm{m}} \frac{\left(2-\mathrm{x}_{\mathrm{k}}^{2}\right)}{\mathrm{x}_{\mathrm{k}}\left(1-\mathrm{x}_{\mathrm{k}}^{2}\right)}\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right) \mathrm{l}_{\mathrm{k}}^{2}(\mathrm{x})=\mathbf{0}, \quad|\mathrm{x}| \leq 1$
It can be proved that if $\mathbf{x}=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$, then

$$
\begin{equation*}
\sum_{k=1}^{2 m} \frac{1_{k}^{2}(x)}{x_{k}}=\frac{1}{x}\left[1-\frac{\sin 4 m \theta \cos \theta}{4 m \sin \theta}\right]+\frac{1+x^{2}}{x^{2}} \frac{T_{2 m}(x) T_{2 m}^{\prime}(x)}{4 m^{2}} \tag{10}
\end{equation*}
$$

From (8) \& (10) we can get (9).
To prove (ii), we indicate the proof according to (6), for $f(x)=x$, we have

$$
H_{2 m}(z, x)=x^{2} \sum_{k=1}^{2 m} \frac{1_{k}^{2}(x)}{x_{k}}-\frac{x^{2} T_{2 m}^{2}(x)}{2 m^{2}} \sum_{k=1}^{2 m} \frac{1}{x_{k}^{2}\left(x-x_{k}\right)}+x^{2} \frac{T_{2 m}^{2}(x)}{4 m^{2}} \sum_{k=1}^{2 m} \frac{1}{\left(x-x_{k}\right)}
$$

Since $\sum_{j=1}^{2 m} \frac{1}{x_{j}^{2}}=4 m^{2}$, we can deduce from this that
$\mathrm{H}_{2 m}(\mathrm{z}, x)=x\left[1-\frac{\sin 4 m \theta \cos \theta}{4 m \sin \theta}\right]\left(1+x^{2}\right) \frac{\cos 4 m \theta}{4 m \sin \theta}-2 x \mathrm{~T}_{2 m}^{2}(x)-\frac{\mathrm{T}_{2 \mathrm{~m}}(\mathrm{x}) \mathrm{T}_{2 \mathrm{~m}}^{\prime}(\mathrm{x})}{2 m^{2}}+x^{2}\left(\frac{\mathrm{~T}_{2 \mathrm{~m}}(\mathrm{x}) \mathrm{T}_{2 \mathrm{~m}}^{\prime}(\mathrm{x})}{4 m^{2}}\right)$
By the lemma in $[5] \&[7]$ for any $\boldsymbol{x} \in(-\mathbf{1}, \mathbf{1})$ there exists a sequence of $\left\{\mathbf{2} \boldsymbol{m}_{\boldsymbol{k}}\right\}_{\boldsymbol{k}=\mathbf{1}}^{\infty}$ such that $\lim _{k \rightarrow \infty} \mathrm{~T}_{2 m_{k}}^{2}(x)=1$. Therefore it follows from (11), that

$$
\lim _{k \rightarrow \infty} \mathbf{H}_{2 m_{k}}(z, x)=-x
$$

Therefore the sequence diverges at every points if $\boldsymbol{x} \neq \mathbf{0}$ in $(-\mathbf{1}, \mathbf{1})$.

4. Conclusion

To Construct HFT interpolation polynomial which converges for $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$ in $\mathbf{(\mathbf { - 1 } , \mathbf { 1 })}$, while diverges for $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$ for all $\boldsymbol{x} \neq \mathbf{0}$ in $(-\mathbf{1}, \mathbf{1})$ where \boldsymbol{n} is an even integer number at the node of degree $\mathbf{4 m + 1}$.

References

1. D.L.Berman, On the theory of interpolation, Dokl.Akad.Nauk SSSR,163(1965), PP.551-554 (in Russian).
2. D.L.Berman, An investigation of Hermite-Fejer interpolation process , Dokl.Akad.Nauk SSSR, 187(1969),PP.241-244.
3. D.L.Berman, An Hermite-Fejer interpolation process which divergeseverywhere , Izv ,Vyssh,Mate. no.1, pp.3-8, 1970.
4. D.L.Berman, Investigation of interpolation system of Chebyshev nodes, Dokl,AnSSSRR,Vol. 176, no.2,pp . 239-242,1967.
5. R.Bojanic , Necessary and sufficient conditions for the convergence of the extended HermiteFejer interpolation process , Acta Math.Acad.sci.Hungar.,36 (1980),pp.271-279.
6. W.L.Cook and T.M.Mills, On Berman's phenomenon in interpolation theory ,Austral.Math.Soc., 12 (1975),pp.457-465.
7. M.Makey, On an extended Hermite-Fejer interpolation process ,J.of Al-qadisyah for pure science, 13(2008)n0.2 ,pp.1-8 .
8. Graeme J. Byrne and Simon J. Smith,On Berman's phenomenon for ($0,1,2$)Hermite-Fejer interpolation, J.Numer.Anal.Approx.Theory, vol.48 (2019) no.1,pp.3-15.
9. G.Mastroianni And I.Notarangelo, Hermite and Hermite-Fejer interpolationat Pollaczek zeros. X Jean Conference on Approximation, ubeda, June 30 th - july 5 th,2019.
