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Abstract:This paper presents a two-state retrial queueing model with feedback having two non-identical paallel servers.
Primary and secondary customers follow Poisson process. The service times of both the servers are exponentially distributed
with different service rates. Explicit transient probabilities are obtained for exact number of arrivals and departures from the
system when both, one or none are busy. Some performance measures are also obtained. Numerical and graphical solutions are
obtained.

1. Introduction

Apart from standard queueing models there exists a new class of queueing models known as retrial queueing
models. In many real life systems like in telecommunication systems and in computer networks, the customers
who do not get immediate service on arrival to a system retry for service after a random amount of time. As there
is no waiting space for the arriving customers so they join the virtual queue called orbit or pool and retry from
there as retrial customers or secondary calls. The primary customers and secondary customers both follow Poisson
process. [3], [11] and [1] did initial work on retrial queues.

Orbit
retrials blocked customers
primary customers _—— SEMVEr ——  4enarting customers
g v — —eeew truCture Ul @ ket QUeUel.., _, ...

Sometimes due to dissatisfaction, the customers the seek service again in order to get a satisfied service which
results in feedback concept. For example: when a message faces a failed transmission in multiple access
telecommunication systems, it can be sent again.

[2] published "A discrete-time retrial queueing system with starting failures, Bernoulli feedback and general
retrial times'. [6] analyzed "A single server feedback retrial queue with collisions'. [9] studied "Transient and
numerical solution of a feedback queueing system with correlated departures'.

In some systems various servers possess different service rates depending on the requirements and other
reasons, these servers are called heterogeneous or non-identical servers. Real time examples of heterogeneous
servers can be seen in banks, telecommunication centers. Here the same type of job is rendered by different servers
with different service rates. [8] analyzed “Busy Period Analysis of a Markovian Feedback Queueing Model with
servers having unequal service rate' where busy period of the system was obtained using generating function
technique. [4] studied markovian system with two heterogeneous servers and constant retrial rate under a threshold

policy.

The concept of two-state was introduced by [7] in “Some new results for the M/M/1 queue' in which the solution
for exactly "i' number of arrivals, “j' number of departures were obtained over a time interval t. [10] published
“Performance Analysis of a Two-State Queueing Model with Retrials' where the transient state probabilities were
obtained.

The section wise description of the paper is as follows:
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The model is described mathematically in section 2 where the difference-differential equations of the system
are given. The transient state probabilities are obtained in section 3. In section 4 some important performance
measures are derived. The numerical and graphical results are obtained in section 5. Busy period distribution of
the system and its numerical and graphical representation is given in section 6 and 7 respectively. Finally, the paper
is concluded in section 8.

2. Model Description

The detailed description of the present model is given as follows:
e  The Arrival Process: The arrival of primary customers follow Poisson process with parameter A.
e Anarriving customer joins the first server with probability a,and second with a,.

e  The Retrial Process: On arrival of a customer if any of the servers is free, it is served immediately.
Otherwise, the customer joins the orbit and calls repeatedly until any of the servers is free. The retrial customers
also follow Poisson process with parameter 6.

e  The Service Process: Service times follow exponential distribution with parameters u, for first server and
u, for second server.

e  The Feedback Rule: If a customer after getting service feels unsatisfied it may join the orbit with
probability y else leaves the system with probability 1-y.

The arrival of primary and secondary calls, departures and service times are statistically independent.
Laplace Transformation of £(s) of f(t) is given by:

F(s)=["e st f(t)dt; Re(s)>0

The Laplace inverse of
Q tmk—l agt 0 .
&p) = k= 1ka —x (dp) ( (p)) (p—a, )™ Vp=a a +a,fori#k

P(p) 1=1 (my,-1)1(1-1)! P(®)
where,
PO =@-a)™ @ —a)™ co.(p — ay)™
Q(p) is a polynomial of degree <m; + m, + mg + -+ -+ +m, —1

The Laplace inverse of
a b,c ( ) — 1 is
n1 nang (s+a)"1 (s+b)"2 (s+c)™3

abc () _ Z Z e—at tng -l ( 1)m+1 ( )(nglm()_l(nl +g1))(1—[g2 o(nz +g2))

"1nz n3 —DI(m—1)! (b —a)m2tm-1 (c — g)m+l-m

o ~bt gnp-l m+1 I-m-1
e 7t t"27 (—1) ( )(H (ny +g1))(l'[g2 Az +85))
++;mZ=1 o =D o= D) (a = byt (= pyviom

S zl: —et gmt (—ymHt ( )(nglr:o Y(n, +g1))(l'[g2_o(n3 +85))
] (ny = D!'(m = 1)! (@ —c)nstm=1 (b — ¢)m2tl-m

If [71{f(s)} = F(t)and L~ {g(s)} = G(t), then

LHf(s) g(s)} = J, F)G(t—u)du = F * G,
F = G is called the convolution of F and G.

+ o+

2.1. The Two-Dimensional State Model

2.1.1. Definitions

P; j o (t)= Probability that there are exactly i number of arrivals, j number of departures by time t and servers
are free.

P; j 1, (t) = Probability that there are exactly i number of arrivals, j number of departures
by time t from the system and k' (k = 1 or 2) server is busy.

P; j »(t)= Probability that there are exactly i number of arrivals, j number of departures from the system by
time t and both the servers are busy.

P; ;(t)= Probability that there are exactly i number of arrivals, j number of departures from the system by time
t.
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P;j(t) = Py jo(t) + Pyj11(t) + Pyja12(8) + P (0),Vij;i=)
Pj1(t) = Pyj11(t) + Pyjq2(t)
Pio(® =0,i<jiP () =0k =10r2),i <j+1;P;,(t)=0,i<j+2
Initially
Po,o,o(o) =1;
P;;0(0) =0,Vi,j (i # 0&f # O(simultaneously)); P;;,,(0) = 0(k = 107 2),V i,j; P;;,(0) = 0,Vi,j

2.2. The Difference-Differential equations governing the system:

d .
Epi,j,o(t) =—A+0A—-)OP o) + u (1 =y)P;j_111(8) + 1Y Py j11(8) + (1 —

YIPij_11,2(6) + p2y Py ja2(0); i=j=0 (1)
d
Epi,j,l,l(t) =—A+u+U—j—1O)Pj11(t) + a1 Py jo(t) + (i —j)Oa,P;jo(t) + u(1 —y)P;j_q12(t)
+ 12y Py (8); i>j>0 )

d . .
;Pi,j,m(t) =—A+u+ @ —j—1)0)P;j1,() + AayPi_y o (t) + (i — j)OayP; o (t) +
(X =y)IP;j_q() + v P2 (2); i>jz=0 3)

%Pi,j,z(t) ==+ + )P, ) + G —j— DO{Pj11(O) + Pijra(O} + A{Pioyjr1(®) + Pioy 120}
+ A1 =68 5)Pioqj2(t); i22,i>j>0 (4)
where
5 _={1; i—2=j
) =2 7 |0; otherwise
Using Laplace Transform f(s) of f(t) given by
f(s) = j e St f(t)dt; Re(s) >0
and using initial condition in equations (1)0 to (4), we have
(s + D P 0(s) = Py 0(0)
(s+ A+ (= NOP;jo(s) = u (1 = Y)Pj_1,11(8) + 1y Py j11(s) + izj>0 (5)
pa(1 - V)Pi,j—l,l,z (s) + szpi,j,l,z (s)
(+A+pu +@0—j— 1)9)Pi,j,1,1(5)
= Aa; Py o(s) + (i —)Oas Py jo(s) + (1 —y)Pyj_q,(s)
+ oy Pyj2(5); i>j=0 (6)
S+A+u,+(0—j— 1)9)Pi,j,1,2(5)
= AayP;_10(s) + (i —)OayP;jo(s) + uy (1 = y)P;j_1,(s)
+ U1y Pyj2(s); i>j=0 (7N
(s+A+u + #Z)Pi,j,z(s)
=@{—-j- 1)9{13i,j,1,1(5) + pi,j,l,z(s)} + A {Pi—l,j,l,l(s) + I’_)i—l,j,l,z (S)}
+ (1= 68i_5,)Pi_1j2(s); i=2i>j=0 (8)

3. Solution of the Problem
Solving equations (5) to (8) recursively, we get:

Pooo(s) = — ©)
_ 1- Ala 1- fa; \ _ 1-— Aa
Byio(s) = P ( Y) ( 1 2) + ua ( Y) ( 1 >P1,o,o(5) n o ( Y) < 2 2)
s+A+pu \(s+ 1) s+A+uy\s+1 s+A+pu \(s+2)
p2(1 =) <9a2 ) -
P. 10
+s+/1+/12 s+ A 100(5) 10
B yi(s) = — 20 (1)+ b 5 o 11
101118 TsHA+u s+ s+A+ 10018 an
Byyy(s) = — 22 (1)+ b9 5 () 12
101,218 CsHA+u\s+A)  s+A+p, 10048 12
_ my y - .
Pioo(s) = ml’i,om(s) +mpi,o,1,2(s);l >1 (13)

2151



Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 2149-2161

Research Article

B..o(s) = 1 [l (1 —y)  Aayu,(1—y) P i1 o(S)
w0 sH+A| s+A+pu S+ A4p, | MO
1 [6apu (1 —y) Oayu,(1—7y) Py 1o(s)
s+A| s+A+y sS+A+p, | M0
#1(1_]/)#2(1_]/)[ 1 1 ] = ,
P;_ ;=2 14
s+ SYATH stAtm) U 225 a5
= Aay = Oa; H(1—y) :
Py 11.(8) = mpi—u—m(s) + mﬂ;t—m(s) + mpi,i—z,z (s);i
> 2 (15)
= Aa, = fa, = m(l=y) ,
P 112(5) = mpi—u—m(s) + mpi,i—l,o(s) + mpi,i—z,z(s); i
=2 (16)
Pana®) = B o)+ N p (o)
)+ (=28 "M T T L+ - 2)8 0
pa(1—7v) = w2y = ,
P; + P; ;
staitmt (=20 02 T v el
>3 17)
Prana(s) = e Prsne@ + =% (5)
L2 e o+ (1 —2)0 T TS A, + (- 2)9 0
(1 —-y) - Hay = .
P, P. :
S+ A+, + (i —2)0 w02(8) + o + (i —2)0 i12(8);1
>3 (18)
- md-y) Hay - Ha(1-y)
P = " P LS S— -} = 7 p
12,0(5) StA+(i—-2)0 1111(8) + s+A+(—-2)0 i21,1(8) + S+A+(-2)0 11,1,2(S)
w2y = ,
— P ;>3 19
o S+/‘l+(l—2)9 1,2,1,2(5) l ( )
J 1 i—j-k
Pyja(s) = kzl (m) MNP jia(8) + Praija2(9)}; i 2 j+2,)
>1 (20)
where
1 k=1
k—1)6
, _®mD0 g0yt
N, = s+A+ Hq + Ho
(k—-1)6 o
—_—; k=i—j
S+A+pu +u,
_ B Aay 5 (-poay 5
Pijaa(s) = S+A+pg+(i-j-1)0 Pic1jo(s) + S+A+pg+(i-j-1)8 Pijo(s) +
U2y i—j p) i=j~k — _
S+/1+u1+2(i—f—1)9 [Zk=1 (5"'71*'#1"'#2) Me (P i1 () + Prak a2} +
H2(1-7) i—j yl i=j-k | -
S+A+u+(i—j-1)80 [Zk:o (s+/1+u1+u2) wk(s){Pj"'k'j'l'l'l(S) +
13j+k,j—1,1,2(5)}]; i=j+2j=22 (21)
where
( 1 k=1
(k—1)8

, — 2 . k=2toi—j—1
Nk < S+A+,U1+,U2

(k—1)6 o
S TE—— k=i—j
S+HA+u +u,
( 1 k=0
k6
, 1+——; k=1toi—j—1
Wy = S+/1+Ii1+,u2
k6 . P
S+HA+pm +u,’ -t
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o) Aa; 5 (i-)baz 5
P;i12(s) = —————P i)t —"""P; (s
i,1.2(5) S+A+pp+(i-j-1)6 * 1j0(8) + S+A+pp+(i—j-1)8 ij0(8) +

- 2 i-j-k , _ ~
U1y [ i-j (— ) nk(s){Pj+k,j,1‘1(S) + Pj+k,j,1,2(5)}] +

SHA+up+(i—j—1)0 | “K=1 \s+ A+ u1+u,
. i—j—k
u1(1-vy) i—j A =) ' 5
[ — a)k(s){Pj+k,j—1,1,1(s) +

SHA+pp+(i—j—1)0 | “K=0 \s+ A+ u1+u,
13,~+k,j_1,1,z(5)}]: i=j+2j=2 (22)
where
1 k=1
(k-1)6 o
, 1+ ——— k=2t0i-j—1
Mk = s+HA+p +u,
(k—1)6 o
S k=i—j
S+A+u +u,
1 k=0

ko

, 1+—; k=1toi—j—-1
Wy, =1 SH+HA+pu +puy

ko6 _ k=i
\ S+HA+p +u, -t
_ md—-y) 1Y = (L —y) =
p. . =" " p. - = P e 7 p
1,1,0(5) s+A+ (-6 ij 1,1,1(5) +s T A+ G—))0 1,],1,1(5) +S+/1+ (i-)o ij 1,1,2(5)
H2y = L
+—P;; ;i>j>2 (23
S+A+(l_])9 l,],l,Z(S) L ] ( )
Taking Laplace Inverse of equations (9) to (23) we get:
Pyoo(t) = e (24)
—pat
P1,1,0(t) = [Aal.ul(l - V)e_(M#l)t + Aau, (1 — V)e_(M‘uZ)t]te_M + [9‘11.“1(1 - V)e_lt {#_11 =< “ } +
_ _At i_e_HZt
Oazp,(1—y)e {#2 . }] * Py o,0(t) (25)
—-p1t
P1,0,1,1 (t) = Aale_)‘t {Hi - e } + gale—(ﬂ.+[t1)t * Pl,O,O(t) (26)
1 H1 it
Py o12(t) = daze™ {i =< } + Oaye”WHHt s py o (1) (27)
1% 2]
(28)

Pioo(t) = M1Ve_u+i9)tpi,o,1,1 ® + sze_a”g)tpi,o,m yi=1

w1l et afl e
Py (t)=[/1au(1—y)e‘ {—— }+/1au(1—y)e‘ {—— }]* i—1,i-1,0()
i,i,0 1M1 m U 212 1Ly 1L i-1,i—-1,0
[ afl et a1 e
+ [0a;u, (1 —y)e” {—— }+9au(1—y)e' {—— }]* i—10(t)
1 Hq e 2z 2% U2 bim1o
afl e a1l et
+u(1—-yu (1—1/)[6‘ {—— }+e‘ {—— }]
! 2 Uy Uy 12 25

i>2 (29)

* Pyip2(t);

Pii111(t) = Aaye~(AHHt Pi_qi—10() + Ba,e”(AHHt Piic10(t) +u(1— y)e~Arut 4

Piia(t);i>2 (30)
P11, @® = laze_(“uzn * Pi—1,i—1,0(t) + gaze_(MHZ)t * Pi,i—1,o(t) +u(1— V)e_(“lmt *

Piipp(t);i =2 (€29)
Pii1.(t) = Aaye” Wi F(i=2)00t Pi_q10(t) + (i — 1)0a e~ A+iat(i=2)00t Py 1,0(8)
+ U (1 — y)e~ At t(=2)60t Pio2(t) + ppye” i ti=2)0)t Pi12(t);i
>3 (32)
—(A+ux+(i-2)0)t * Pi—l,l,o(t) + (i _ 1)9aze—(/1+u2+(i—2)9)t * Pi,l,o(t)
+ (1 — y)e~ Pruzt(=2)60t Pio2(t) + pyye” At i=2)00t Pi12(t);i
(33)

P12 (t) = Aaze
>3

Piso ) =u (- V)e_(“(i_z)e)t * Pi,1,1,1’(t) +u, (1 — V)e_(“(i_z)e)t * Py, ® + Hﬂ’e_(M(i_z)e)t
*Pipqa(t) + ppye” =200t Piyrp()i=3 (34)
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pi-i-2

(i—j—2)!

i—j-1

Py ja(t) = At e~ (tuatiz)t {Pj+1,j,1,1(t) + Pj+1,j,1,2(t)}

tl j—k-1
* Z A k(t —j—k- 1)le_('1+”1+”2)t*{Pi+k.j.1.1(t) + Priijaz (D}

i-j-k
7( o e~ @Atpa+u)t 4 {P].Jrk'j‘l‘l(t) + Pz )

+ (l ] —1be” Atptu)t o {Pi,j,1,1(t) + Pi,j,1,2(t)}ii =2j+2j
>1 (35)
Pjq11() = Aaye” P t(i=j-10)t Py o) + (i — j)0a e Ariat=j=00)t Pyjo(t) +
i—j—1,—( i—j—1)6 1 - i-j-2t"
[y AiTi~ 1= (it pa+ (== 1)0)¢ {m_ e~ Y Je 2 W} ${Pry1j1a(®) + Prypjr (O} +

Ay +(i—j-1)0)t §i—J—1 7i—j—k 1 —(uq+uz)t yi—j—k-1¢t
ppye At limi=00t 5 I yin {m—e (atu)t 37 I r,m} {Piokjua® +

_ i i—j—1 yj— i 1
PJ'+k,j,1,2(t)} + uxye At +(i=j =10 Zl —] ATk (k- 1)0 {W -

_ i—j-k-1t o
e~ (i)t 3 r,m} {Pirjin(® + PO} + (G —j =
Ot 4Gimi—De)e [ 1 e~ (H1tu2)t
1)0p,ye~Aiati=i-06) {m—m #{P ;1.0 +Pij1z(t)}+llz(1 -
i=jp=Qtpuy+G=j-DO)E [ 1 —(uy+ppde yi—i-1t y -
PIAT e (g — et S C b (B 10 (O 4 By a0} + 101
—A+p+(i—j-1)0)t Ni—J—1 5i—j—k 1 _ o—(uatpp)t si—i—k-1t" )
Ve ' Li=1 A {(#1+#2)i_j_k RSP X (#1+#2)L]kr} *{Prasj-112(0) +

_ L i1
Pj+k,j—1,1,2(t)} + pp (1 — y)e” Atmti=j-06) Yy AT ke {W -

— i—j—kt" .
e Y W} *{Proejo102(O) + Prasejo122(O} + 121 =1 =
(nq+u2)t
e 9 e s . .
])96 A+ua+(I=j-1)6)t {m W} * {Pi,j—l,l,l(t) + Pi,j—l,l,Z(t)}:l = ] + 2:] >
2 (36)
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P @® = Aaze_(Muer(i_j_l)e)t *Pi_1j0 ®+ad _]')eaze_(“#ﬁ(i_j_l)e)t * Pi,j,o(t)
1 & 1
by Ao At (00t ) = p-Gutua)t Z LA
! (U + px)t-1 ] i (uy +pp) 7t

* {Pj+1,j,1,1 ® + Pj+1,j,1,2_(t_)}

i—j—-1
o . 1
+u ye—(l+u2+(1—]—1)9)t Z Al—]—k —_—
! — (uq + pp)t7 -k
i—j—k-1
—(p1+uz)t tr 1
—e iz ST {Prkjin(® + Prig 120}
) i—j-1 L
+ pyye Azt i=j-0) Z (k — 1)0Ai~Ik __
! ) (g + pp)imJket1
i-j—k
— e~ (utu2)t ﬂ L * {p t)+P (t)}
e 1 (o + )ik k1 k)12
r=0
—(p1t+uz)t
+uy@i—j— 1)99_(/1+”2+(i_j_1)6)t{ : - i } * {Pij 11() + Py 12(t)}
Rl R S o 17
i—j-1
+u (1= ),Mi—je—(/1+uz+(i—j—1)9)t —1 — (Rl Z i—l _
(g + pp) — 7! (uy o+ )T
* {Pj,]’—l,l,l @)+ P12 ®}
+u, (1
i-j—1 L
— —(A+pe+(—j-1)6)t i-j-k)___ -
Ye Z A Ty
— (g + pp)tIk
i—j—k-1
—(u1+p2dt t" 1
— e atH2 ALty | Pk jm1,11(®) + Praijor,12(0)}
+u, (1
i-j-1 .
— —(A+pe+(i—j-1)6)t i-j-k)_ -
Ve Z (k6)2 __
— (U + pp)iikett
i-j—k
—(u1+p2dt t" 1
—e TR ﬁ(lh + )T * {Pj+k,j—1,1,1(t) + Pj+k,j—1,1,2(t)}
r=0

Gttty (= DOE 1 e~ (uat+uz)t
+ i (1 = )i = Poe~ratici- { - }
! Myt py Myt

* {Pi,j—1,1,1(t) + Pi,j—1,1,2(t)}i i=2j+2,j=2 37)
Pijo@®) = py (1 —y)e~ MDD wp . () + uyye” BHEDDEL P, () + (1 — y)e” GHE=DOE
* i,j—l,l,z(t) + .Uzye_(M(i_j)e)t * Pi,j,1,2(t)i i[>
> 2 (38)
4. Some Important Performance Measures
1. The Laplace transform of P; (s) is given as:
L

— - At
P (s) = Zpi,j(s) = Groe (>0
j=0
and its Laplace Inverse is:
e—lt(/lt)i

P(t) = 7
which proves the basic assumption that primary arrivals follow Poisson process.
2. The probability that exactly j customers depart from the system by time t is given as:
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Pit) = Z Py ;(t)
i=j
3. Summing equations (9)-(23) over i and j we get:
[ee] L _ _ _ B 1
Z Z{Pi,j,o(s) + P j1a(S) + Prjag(s) + Pyja(s)} ==

S
i=0 j=0
and hence

oo i
Z Z{Pi,j,o(t) + P 1A+ Pji.(0)+ P, =1
i=0 j=0
which is the verification of our results.
4.  Define @, (t) = Probability that there are exactly n customers in the orbit when m(m=0,1,2) servers are
busy at time t.
When server is free, it is represented by probability Q,, ¢ (t)

Qno(®) = D Pin o)
j=0

The number of customers in the orbit, in this case are calculated with the following formula:
n = (number of arrivals — number of departures)
When one server is busy (m=1), it is represented by the probability Q,, , ().

Qn,m,k(t) = z Pj+n+m,j.m,k(t); k=12
j=0

The number of customers in the orbit in this case is calculated by the following formula:
n = (number of arrivals — number of departures — m)
When both the servers are busy (m=2), it is represented by the probability Q,, ,,,(t).

Qn,m(t) = z Pj+n+m,j,m(t)
=0

The number of customers in the orbit in this case is calculated by the following formula:
n = (number of arrivals — number of departures — m)
Using above definitions in (1) to (4) and let p, =p, 1, y=0 the equations we get are:

(A +1n0)Qno = Qni1+ Qni2 n=0 (39)
(A+n0 +1)Qn11 = 2a;Qno+ (n+1)0a1Qp110+ Qn2; =0 (40)
(A+1n0 +1)Qn12 = 2a;Qn0 + (n+ 1)0a;Qn410 + Qnz; n=0 (41)
A+2)Qn; = MQuai + Qa2+ 0+ DO{Quir11 + {Qnrra2} + A1 -

0n,0)Qn-1,2; n=0 (42)
Using Qn 11+ Qni2 = Qniandleta; = a, = %and adding equations (40) and (41) we get:
(A +n08)Quo = Qpn1; n=0 (43)
(A+n0+1)Qp1=2AQu0+ (n+1)0Qp410+2Qy 2 n=0 (44)
A+2)Qnz =2Qn1 + M+ 1)0Qn411 + A(1 — 6,0)Qp—125 n =0 (45)

which coincides with the results (1)-(3) of [5].

5. Numerical Solution and Graphical Representation

The Numerical solutions are generated using MATLAB programming for the case p=0.6, #=0.5, y=0.4, r1=0.6,
r,=0.4, a;=0.5 and a,=0.5. Observing the below tables for various time instants it could be seen that the sum of
probabilities approaches to 1.

Table 1: Att=1
PO 0,0 PI,O,O Pl 1,0 P1,0,1,1 Pl 0,1,2 P2,1,1,2 P2,0,2 P3,0,2 SUm
0.548 0.023 0.042 0.125 0.137 0.011 0.06 0.012 0.965
8 8 2 7 6 7 3 7
Table 2: Att=5
| PO,O,O P1,0,0 | P1,1,0 P2,1,0 | PZ,Z,O | P3,2,0 P3,3,0 | P1,0,1,1 | P2,0,1,1 | P2,1,1,1 |
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0.04 0.01 0.06 0.02 0.03 0.01 0.0 0.0 0.01 0.03
98 93 22 41 88 63 14 29 08 53
P31 P3o1a Pizia Py Pioio Proa2 Priap P3i42 P31 Piiao
0.01 0.01 0.01 0.0 0.03 0.01 0.05 0.02 0.02 0.01
66 98 05 09 89 57 02 47 79 07
Pirip Pizio P, Psoio Py, Proz P30, P31, Piog Pria
0.01 0.00 0.00 0.01 0.01 0.04 0.0 0.04 0.02 0.04
53 88 86 36 06 54 4 66 48 15
Piso Pso, P, Pssn b5, Sum
0.0216 0.021 0.0415 0.0319 0.0098 0.9046
Table 3: Att=10
Poo,0 Piio Prao P50 P50 Piso Phao Psoo Psso Ps o
0.00 0.00 0.01 0.01 0.0 0.01 0.01 0.01 0.03 0.07
25 89 59 03 18 22 42 12 54 16
Psso Psoaa | Pazaa | Psaaan | Pasaa | Pssan | Psaaa | Poanz | Pagiz | Pagaz | Pasiz
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
719 113 087 122 23 448 447 095 164 13 176
P51, Psoio P51, Psaiao P31, Py Pz Pso, P,
0.01 0.03 0.06 0.06 0.01 0.01 0.01 0.011 0.04
06 59 95 91 26 73 99 5 91
Psss Pss, Sum
0.0874 0.0678 0.9243
Table 4: At t=20
Pooo | Proo Phao Ps 0.0 P53 Ps 40 Pss0 Pssqq Psaqa Psy12
0 0 0.018 0 0.0116 0.1071 0.6125 0.0143 0.065 0.0038
Py, Pss1, Psss Pss, Sum
0.0232 0.1131 0.0099 0.0252 0.9875
Table 5: Att=30
Pooo | Paao | Pago P53 Ps 40 Pss0 Pss1a Psaaa Pssio Psaq,
0 0 0 0.011 0.107 0.612 0.014 0.06 0.023 0.113
6 1 5 3 5 2 1
Prop Psss Pss, Sum
0 0.0099 0.0252 0.9819
Table 6: At t=40
Piag Ps50 Ps 4o Psso Ps314 Psaio P31, Pizs Sum
0 0 0.0055 0.9849 0 0.0062 0 0 0.9966

The probabilities against time are graphically represented in following figures:
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Figure 1

In Figure 1 the probabilities Py 4 o and P; ; o are plotted against time t (average service times) for the case p=0.6,
#=0.5, y=0.4, 21=0.6(a2=1-a1), ri=0.5(r.=1-r1). It is interpreted from the graph that the probability Py,, rapidly
decreases from initial value 1 for t=0 whereas probability P, ; , increases in starting from initial value O for t=0

and then decreases gradually.
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Figure 3
Figures 2 and 3 depict the probabilities P, 4, P31, and P, , for both the servers 1 and 2 against time t. From
both the figures it is clearly interpreted that probabilities start increasing from 0 at t=0 in the beginning and then
start decreasing. Also, the curve peaks are higher for lower number of arrivals. If we compare both the graphs the
probabilities are higher for first server than second because of the difference in ry and r».

0.08 -
0.07 - p=0.6,n=0.5,y=0.4,r,=0.6,0,=0.5
1 0.06 -
8005 -
E == Ps,0,2
= 0.04 -
E +P5I1IZ
2 0.03 -
= Ps,2,2
A~ 0.02 -
*P51312
0.01 -
0 = e e : = = =
0 3 6 9 12 15 18 21 24 27 30 33 36 39
t(average service times)—

Figure 4

Figure 4 shows comparison between probabilities Ps ¢ 5, Ps 1 2. Ps 22 and Ps 5 , against t. Beginning with value
0 at t=0 the probabilities increases rapidly to their highest values and then decreases gradually. Also, the
probabilities are higher for larger number of departures when both the servers are busy.

6. Busy Period Distribution
Using some numerical results obtained through MATLAB programming, the busy period of the server as well

as system is discussed in this section.
The probability that the server is busy is given as:

P(Server is busy) = Z (Pi,j,l,l &)+ P j1() + P (t)) (46)
i>)20
The probability that the system is busy is given as:
P(System is busy) = Z (Puio(®) + Pijna(t) + Prjpa(t) + Pryn(®) (47)
i>j=0

7. Numerical and Graphical Representation of Busy Period

Following Bunday's work and using MATLAB programming the numerical results are found. Here the
probabilities for server busy as well as system busy are obtained which are presented in the table below for various
values of p keeping 7, y, I'1, I'2, a1 and a2 same in each case.

t Probability(System Busy) Probability(Server Busy)

p=0.3 p=0.6 p=0.9 p=0.3 p=0.6 p=0.9
0 0 0 0 0 0 0
1 0.2302 0.4074 0.5438 0.2133 0.3809 0.5126
2 0.3722 0.6061 0.7532 0.3299 0.5497 0.6954
3 0.4675 0.7174 0.8507 0.4036 0.6407 0.7779
4 0.5351 0.7859 0.9023 0.4546 0.6959 0.8178
5 0.5851 0.8306 0.9305 0.4921 0.7305 0.8322
6 0.6230 0.8602 0.9433 0.5207 0.7503 0.8273
7 0.6524 0.8783 0.9430 0.5426 0.7573 0.8065
8 0.6751 0.8858 0.9297 0.5592 0.7523 0.7731
9 0.6924 0.8826 0.9039 0.5709 0.7362 0.7300
10 0.7048 0.8686 0.8664 0.5781 0.7099 0.6802
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Figure 5

In Figure 5 the probabilities of server busy and system busy are plotted for the case p=0.6, #=0.5, y=0.4,
r1=0.5(r,=1-r1) and a;=0.6(a;=1-a:1). In the beginning both curves increase rapidly and then decreases. The
probability of System busy remains higher than probability of Server busy which is required.
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The effect of change of y on System busy and Server busy is studied in figure 6 and 7 keeping other parameters
as p=0.6, #=0.5, r1=0.6(r.=1-r1) and a;=0.5(a;=1- a1) against time t. The probabilities start increasing from 0 at
t=0 and then start decreasing gradually and these are higher for larger values of y.

8. Conclusion

We considered a system with feedback having two non-identical parallel servers in this paper which can be
implemented in modeling of computer and communication systems. The time dependent probabilities are obtained
when system is busy or free. The numerical and graphical results are presented which shows the influence of
change in arrival rate, retrial rate and feedback factor. The busy period distribution and its numerical and graphical
representation are also given.
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