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Abstract: In data analysis, items were mostly described by a set of characteristics called features,in which each feature contains 

only single value for each object. Even so, in existence, some features may include more than one value, such as a person with 

different job descriptions, activities, phone numbers, skills and different mailing addresses. Such features may be called as 

multi-valued features, and are mostly classified as null features while analyzing the data using machine learning and data 

mining techniques.  In this paper, a proximity function is described to find the proximity between two substances with multi-

valued features that are put into effect for Clustering. This distance measure approach allows iterative measurements of the 

similarities around objects as well as their characteristics. For facilitating the most suitable multi-valued factors, we put forward 

a model targeting at determining each factor’s relative prominence for diverse data extracting problems. The proposed model 

is an evolutionary strategy that uses Differential strategy for evolutions, which is using the degree of member ship as fitness 

function. The proposed clustering algorithm as multi valued attribute data cluster optimization based on the strategy of 

Differential evolution (MVA-DE). Therefore this becomes feasible using any mechanisms for cluster analysis to group similar 

data. The effectiveness of our model is evinced by performance analysis carried through experimental study. The outcomes of 

the experiments carried on proposed model were compared with other strategic clustering approaches like fuzzy c- means based 

Clustering of Multivalued Attribute Data (FCM-MVA) and K-Means with Tanimoto based multi-valued data clustering. The 

findings demonstrate that our test not only improves the performance the traditional measure of similarity but also outperforms 

other clustering algorithms on the multi-valued clustering framework. 

Keywords: Multivalued features, fuzzy c- means Clustering, k-means Clustering, Differential evolution, Tanimoto measure. 

 

1 Overview 

The clustering method is the most focal point of many researchers to contribute and conduct their novel research 

works, particularly on efficient feature selection. The execution procedure of this method differentiates by 

depending on the sampled sub-sets of features. Thus, the process of selecting appropriate features is significant, as 

these are engaged in holding essential information of given data. As depicted in [1], to gain the accuracy in 

operating and executing the certain data extracting algorithms clustering is significant 

 

The significance of clustering is majorly visualized in various data-sets with multiple dimensionalities. Because 

data mining techniques needs numerous computational efforts in order to handle various features. According to 

the existing data mining methods, the representation of any dataset is always in a table format and hence, the 

features maybe the categorical and arithmetical attributes. The conventional methods reflected weak performance 

parameter in realistic databases, as these sets mostly include attributes, which can predict several values at a time. 

For instance, this method is involved in the classification of different types of movies including “horror”, 

“romantic”, “documentary”, and “action”. Depending on the specific database domain, the category of attributes 

helps in conducting mining procedure. Categorical attributes which are capable to estimate multiple values are 

hardly impacted by minimizing the dimensionalities of various attributes. Several modern works focused on 

analyzing efficient membership values for multivalued but these values are not always suitable. Because, the 

optimal values which are analyzed may be in weak connection with the values of dissimilar attributes. Thus, the 

selection of an appropriate object towards an optimal cluster for such attributes holding several values is observed. 

 

Few scholars also concentrated on utilizing multi-value attributes for executing clustering with other 

procedures. As depicted in [2], the selection of attributes is explained using diversified attribute’s set with various 

domain ranges. Even though, these research works failed to explain the selection procedure when attributes capture 

multiple values at a time. Hence, Multi-Relational Data Mining (MRDM) is an open area for many researchers. It 

encourages authors to develop effective techniques so as to deal with various databases which include multiple 

tables, as depicted in [3]. The process of MRDM and its related techniques are deeply described and analyzed in 

[4], [5], [6], [7], [8], [9], [10] and [11] research works. 

In order to decrease the redundancy in the database’ key table [12], authors proposed the concept of novel table 

generation. The new research work focused on specific attribute category that generally denotes attributes which 

holds multiple values in a dataset and it signifies the perspective of MRDM. Although numerous selection methods 

are being introduced to determine the attributes with multiple-values, only a few works analyzed the significance 

of selecting those attributes. Further, a research work [13] introduced a solution, in which, k-feasible values related 

to specific attribute which is a category of multi-valued in k binary attributed are employed. This permits the 

approach to employ existing feature selection techniques. However, the major thing that limits this method is that 
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it involves in enlarging dimensionality of original information and is a big threat to this approach. Hence, with 

increased value of k, the performance of this procedure might be degraded. To overcome this challenge, this paper 

focused on describing a modern approach for the clustering the data that entails with multi valued attributes. In 

regard to this, article also depicts a member ship measure depending on the objects of dataset attributes and also 

used for cluster optimization. 

 

The upcoming sections of this literature include, Section-2 is all about outline of existing literature. Section-3 

focused on optimizing the proposed approach by utilizing a member ship. Section-4 comprises research outcomes 

and determination procedures of proposed approach. Finally, Section-5 concludes the novel research work and 

also suggest outlook for future research works in this domain. 

 

2 Review of Research Work 

 

Extracting data with multiple values is highly difficult than extracting single-valued data in terms of process 

overheads, redundancy, and implementation. Performance degradation of mining techniques is observed in multi-

valued mining, as it deals with extremely dense data. To overcome with such complication, research works in [14], 

[15], [16], [17], [18] and [19] are proposed discretization technique. With the decomposition of sequence of in-

finite attributes into a cluster of finite neighboring intervals, the discretization technique decreases the process 

complexity. Moreover, this technique is highly applicable for such mining algorithms, which completely depends 

on data volume. In addition, the technique also effectively determines the categorical attributes, as explained in 

[20] and [21]. The tentative results of this technique represent the benefits including fast process execution and 

enhanced accuracy rate of learning techniques, as explained in [22]. The work in [22] represents various 

approaches like Supervised and Unsupervised as explained in [23], [24], [25], [26], Static Approaches and 

Dynamic Approaches as explained in [27], Local or universal as explained in [26], Splitting and Merging, Direct and 

Incremental, In direct separation methods, the authors need to evaluate the quantity of k-intervals. Depending on 

those values, infinite attributes are then divided into k intervals at a time. Incremental approaches begin with easy 

separation procedure and later on continue to upgrade the process, even though few of attributes requires 

termination criteria to discontinue the discrete procedure.     

 

In [28], constant width and constant frequency discretization approaches are proposed, which entails 

unsupervised, universal, direct and static models. The below depicted approaches are few of the most significant 

techniques under Splitting and Merging categories, Few of the methods explained in [28], [29], [30], [31], [32] 

and [33] are considered as effective splitting approaches. A noteworthy point is that, with the consideration of 

empirical studies, CACC described in [32] is efficient than others in terms of performance. On merging methods 

front, these methods employ a testing procedure for analyzing a point at which specific intervals need to be merged. 

According to [34], researcher introduced most efficient merging approach. As like other traditional approaches, 

this algorithm also comprised specific limitations including computing complexity and it requires user 

participation to define several process parameters and to accomplish the merging procedure. 

 

Giannotti et al. [35] suggested a clustering technique for transnational data using k-means algorithm by using 

the Jaccard similarity measure to cluster the multi-valued attribute data but meets a weak convergence of the 

method. Fuyuan Cao. [36] suggested a clustering technique for set-valued data called SV-k-modes algorithm here 

the similarity measure for the two objects with multi-valued attributes is defined and a set-valued mode 

interpretation of cluster centers is suggested. Wenhao Shu. [37] Proposed a Similarity measure on the unlabeled 

objects. Subsequently, a features extraction method is designed and characterized by mutual information that is 

incorporated in a declining universe to speed up the screening process of characteristics. Guha et al. [38] offered 

a ROCK algorithm, which is of the type agglomerative hierarchical clustering method that is unscalable to large 

data. It is furthermore hard to acquire the interpretable cluster agents from hierarchical clustering results. F. 

Giannotti, C. Gozzi, [39] in this paper it is described a model of splitting and managing transactions, i.e., it is the 

representation of discrete data with variable size. Authors adapt the appropriate mathematical separation concept 

shown in the K- Means method to reflect proximity of transactions, and reshape the group centroid concept in a 

fine way. 

Celebi et al. [40] provided an analysis of clustering strategies for solving the numerical configuration issue. 

The best k-means clustering being implemented based on the analysis of the most common initialization process. 

Throughout this study, various massive amounts of data have been used to evaluate the clustering quality. 

However, the K-means grouping method   have other inconveniences, The k-means and the fuzzy Cmeans (FCM) 

cluster methods by Ghosh and Dubey [41] especially in comparison are premised on their effectiveness in selecting 

the right data analysis method. This clustering algorithm significantly considered the data in the form of the 

positions around different input data objects. FCM has been an unsupervised grouping method applied and used 
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in agricultural, astronomical, biological, environmental, medical imaging, classification and clustering areas, in 

particular. 

  

2.1 Classification of Information through Attributes with Multiple Values 

 

In data mining, classification of information is one of the challenging functions and has its primary focus on 

approximate the object class depending on related class attributes.For evaluating similarity measure between 

different objects, a distance factor is employed. Among all, Euclidean distance [42] is an efficient distance 

parameter used in this kind of classification algorithm. It deals with numerical attributes. For categorical attributes, 

distance is computed by assuming variance as One (1) for divergent values and Zero (0) for exact values. If a 

classification involves several class attributes for the representation of attributes which comprises multiple values 

then a specific distance parameter should be employed. This metric can able to compare various objects set of a 

class. Hence, this contribution includes various measures to evaluate the distances amid instances sets. In 

particular, the works in [43], [44] and [3] are employed for analyzing distance between multi-valued attributes. 

However, as the outcomes of these three distances metrics are same, this manuscript analyzed the solutions using 

Tanimoto [44]. The Tanimoto distance between two sets including X to Y is referred as DT (X, Y) and is computed 

through implementing following formula- 

𝐷 =
|𝑋| + |𝑌| − 2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
 

A noteworthy point is that, as it depends on intersection range of X and Y sets, the distance metric can be used 

for distinct data sets. On infinite values front, xi and yj are similar, if variance  

𝐷 =
|𝑥𝑖|−|𝑦𝑗|

|𝑥𝑖|+|𝑦𝑗|
is less than pre-defined threshold value. 

 

3 Methods and Materials 

 

3.1. Proximity measure: 

 

The sequence of determination of the most appropriate values in a multi-valued feature context requires the 

function of member ship abstraction approaches that mine characteristics as per their participation size and not the 

number of times they occur. A deeper insight into the working of our method is outlined in the following sections. 

The approach to find similarity between multi-valued objects while accompanying clustering is dependent on 

multi-valued characteristic. In association to current metrics it consents much use of more than one point of 

comparison to find similarity for clustering. In this article the similarity between the objects is found as follows: 

 

Computation of similarity of two multi-valued feature values of the X and Y attributes is represented by 

DMA(X, Y) and determined by consideration of the distances from two sets of elements, that is, to take into 

account all possible X and Y pairs of attributes. This can be computed by summing an aggregate of all distances 

in pairs mentioned in the following mathematical model. 

 

DMA(X, Y)  =  

{
 
 

 
 

∑ ∑ 𝑑(𝑥𝑖  ,   𝑦𝑗)
𝑚
𝑗=1

𝑛
𝐼=1

|𝑋||𝑌|
 , 𝐼𝑓  𝑋 ≠    𝑌                         

                                                                           …… .… . . (1)       
        0                   𝐼𝑓    X = Y

 

 

WhereX = {𝑥1, 𝑥2, 𝑥3…… 𝑥𝑛}, n ≥ 1 andY = {𝑦1 , 𝑦2, 𝑦3…… 𝑦𝑚}, m ≥ 1 also 𝑑(𝑥𝑖  , 𝑦𝑗) is the distance that is 

described as below between any couple of values generated from X and Y. 

 

𝑑(𝑥𝑖  , 𝑦𝑗) = {

|𝑥𝑖 − 𝑦𝑗|,            𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑦𝑗  𝑎𝑟𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒𝑠

           0                   𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑦𝑗  𝑎𝑟𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑛𝑑 𝑥𝑖 = 𝑦𝑗
           1                    𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑦𝑗  𝑎𝑟𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑛𝑑 𝑥𝑖 ≠ 𝑦𝑗

…………… . (2) 

 

The𝑆𝐼𝑀(𝑅𝑖, 𝑅𝑘), Proximity between the two fixed unordered data vectors 𝑅𝑖  𝑎𝑛𝑑 𝑅𝑘that are represented by a 

set of 𝑑 number of features is foundby using the similarity between their individual dimensions. The dimension 

similarity can be calculated by usingDMA(X, Y). From the following equation the 𝑆𝐼𝑀(𝑅𝑖 , 𝑅𝑘) can be obtained: 

 𝑆𝐼𝑀(𝑅𝑖, 𝑅𝑘) =  
∑ DMA(𝑅𝑖

𝑗
,  𝑅𝑘

𝑗
)𝑑

𝑗=1

𝑑
   ……………… . . (3)                                                              
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3.2. Fuzzy C-Means (FCM) Algorithm: 

 

Let 𝑋 be the data set with  𝑁 objects in which each object is characterized by 𝑃 number of attributes, where 

𝑋 = {𝑋1, 𝑋2, , … , 𝑋𝑁} and each 𝑋𝑖 is represented by𝑋𝑖 = {𝐴𝑖1, 𝐴𝑖2, , … , 𝐴𝑖𝑃}, hence the dataset can be represented 

by a  𝑁 × 𝑃 matrix. Let the data set 𝑋 is partitioned into  𝐶 number of fuzzy clusters by a fuzzy clustering algorithm 

and also each fuzzy partition is represented by a matrix 𝑈 in which each element  𝑢𝑗𝑖 represents the degree of 

member ship of the object  𝑋𝑖 in the cluster 𝑗 whose values lie between 0 and 1. The Fuzzy C-Means (FCM) is 

depending on the minimization of the objective function given bellow which corresponds to 𝑈, a fuzzy partition 𝐶 

of the data set, the set of centroids𝑉. 

𝐽(𝑋; 𝑈, 𝑉 ) = ∑∑(µ𝑗𝑖)
𝑚𝑑2(𝑋𝑖 , 𝑉𝑗),      2 < 𝐶 < 𝑁 −− − − − −(4) 

𝑁

𝑖=1

𝐶

𝑗=1

 

Where V= {𝑉1, 𝑉2, , … , 𝑉𝐶}, 𝑉𝑗 𝜖 𝑅
𝑝 is a centroid of the cluster 𝑗 that is to be determined. The fuzzy ness of the 

clusters is determined by the fuzzy index which is 𝑚 𝜖 (0,∞). 𝑑2(𝑋𝑖 , 𝑉𝑗) is the distance between 𝑋𝑖  𝑎𝑛𝑑 𝑉𝑗 which 

is the inner product metric. The trivial solution problem is eliminated by satisfying the following conditions on 𝑈. 

∑ µ𝑗𝑖
𝐶
𝑗=1 = 1, ∀i  and   0 < ∑ µ𝑗𝑖 < 𝑁

𝑁
𝑖=1 , ∀j 

Depending on the above construction the Fuzzy clustering can be done through an iterative optimization of the 

equation (4). 

 

Fuzzy C-Means (FCM) Algorithm: 

1. Choose 𝐶 and ɛ; 
2. Initialize centroids 𝑉𝑗,  𝑗 = 1……𝐶; 

3. Find the degree of member ship of each object in all clusters; 

µ𝑗𝑖 =
1/ (𝑑2(𝑋𝑖 , 𝑉𝑗))

1

𝑚−1

∑ 1/𝐶
𝑗=1 (𝑑2(𝑋𝑖 , 𝑉𝑗))

1

𝑚−1

……………… . (5) 

4. The new centroids 𝑉�̂� are computed by  

𝑉�̂� =
∑ (µ𝑗𝑖)

𝑚𝑁
𝑖=1 𝑋𝑖
∑ (µ𝑗𝑖)

𝑚𝑁
𝑖=1

…………………(6) 

Also the degree of member ship µ𝑗𝑖is updated to µ𝑗�̂� according to µ𝑗𝑖  

5. If𝑚𝑎𝑥𝑗𝑖|µ𝑗𝑖 − µ𝑗�̂�| < ɛ, stop otherwise, go to step 4, where ɛ ∈ (0, 1) which is a termination condition. 

The FCM algorithm allows each object belongs to each cluster depending on the member ship value that is 

computed by µ𝑗𝑖 . Finally, the algorithm assigns each object to a particular cluster according to the maximum 

member ship of all clusters. To make use of FCM algorithm for multi-valued data the following construction is 

made 

Let 𝑋 = {𝑋1, 𝑋2, , … , 𝑋𝑁}be a set of n multi-valued data. Let data Xj (1 ≤ j ≤ N) be defined by a set of 

attributes {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑃} in which the attribute 𝐴𝑙 is either a single-valued or multi-valued attribute. Each𝐴𝑙 

describes a domain of values denoted by 𝐷𝑀𝑁(𝐴𝑙) = {𝑎𝑙
1, 𝑎𝑙

2, …… . 𝑎𝑙
𝑛𝑙}, where 𝑛𝑙  is the number of distinct values 

of attribute 𝐴𝑙 for 1 ≤ 𝑙 ≤ P. If 𝐴𝑙 is a single valued attribute then each 𝑎𝑙
𝑖 (1 ≤ i ≤  𝑛𝑙) is considered as a set of single 

value and If 𝐴𝑙 is a multi-valued attribute then each 𝑎𝑙
𝑖 (1 ≤ i ≤  𝑛𝑙) is considered as a set of multiple values. A 

domain 𝐷𝑀𝑁(𝐴𝑙) is defined as a finite and unordered. Let 𝑋𝑗 be denoted by{𝑥𝑗,1, 𝑥𝑗,2, , … , 𝑥𝑗,𝑃}, thus Xj can be 

logically represented as a conjunction of pairs of attribute-values as given bellow 

[𝐴1 = 𝑥𝑗,1] ⋀[𝐴2 = 𝑥𝑗,2] ⋀………⋀ [𝐴𝑃 = 𝑥𝑗,𝑃] Where 𝑥𝑗,𝑙 𝜖𝐷𝑀𝑁(𝐴𝑙) for 1 ≤ 𝑙 ≤ P. 

The objective of the FCM algorithm for multi-valued data (FCM-MVA) is to cluster the data set X into C 

clusters by minimizing the function as given in the equation 𝐽𝑚(𝑈, 𝐶: 𝑋). 

𝐽𝑚(𝑈, 𝐶: 𝑋) =∑∑(µ𝑖𝑗)
𝑚𝑑𝑖𝑗

2

𝑁

𝑖=1

𝐶

𝑗−1

 ………………… . (7)                                                

Subject to               0 ≤ µ𝑖𝑗 ≤  1 ;       1 ≤ 𝑗 ≤  𝐶;          1 ≤ 𝑖 ≤  𝑁 

∑µ𝑖𝑗

𝐶

𝑗=1

= 1 ,   𝑖 = 1… . . 𝑁                                                                 

0 <∑µ𝑖𝑗

𝑁

𝑖=1

< 𝑁,   𝑗 = 1… . . 𝐶                                                        
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Where µ𝑖𝑗   is the membership degree of data Xj to the ith cluster which is given bellow in the equation (8), and 

is additionally an element of a 𝐶 × 𝑁pattern matrix 𝑈 = [µ𝑖𝑗].  

µ𝑖𝑗(𝑡) =  
1

∑ (
 𝑆𝐼𝑀(𝑉𝑖,𝑋𝑗) 

𝑆𝐼𝑀(𝑉𝑧,𝑋𝑗) 
)

2

𝑚−1𝐶
𝑧=1

……………… (8) 

 

𝑉 = {𝑉1, 𝑉2, , … , 𝑉𝐶}Consists of the centroids of the fuzzy clusters. Centroid Vi is represented as 

{𝑉𝑖1, 𝑉𝑖2, , … , 𝑉𝑖𝑃} the parameter m controls the fuzziness of membership of each datum.To cluster multi-valued 

data, the fuzzy k-means algorithm extends to cluster multi-valued data based on the fuzzy c-means-type procedure. 

First, the method for measuring the distance between a cluster centroid and a datum is proposed, along with the 

method for updating the cluster centroid at each iteration. The distance measure 𝑆𝐼𝑀(𝑉𝑖 , 𝑋𝑗)between a centroid Vi 

and a multi-valued data point Xj is defined as described above in similarity measure which is Eq(3).The cluster 

centroids are updated when the cluster centroid 𝑉𝑖 = {𝑉𝑖1, 𝑉𝑖2, , … , 𝑉𝑖𝑃} is given, each 𝑉𝑖𝑙𝜖𝑉𝑖 for1 ≤ 𝑙 ≤  𝑃, based 

on the type of the attribute. If the attribute 𝐴𝑙 is numerical then 𝑉𝑖𝑙  is updated as given bellow. 

𝑉𝑖𝑙
𝑡 =

∑ (µ𝑖𝑗
(𝑡−1))𝑚 𝑥𝑖

𝑛
𝑖=1

∑ (µ𝑖𝑗
(𝑡−1))𝑚 𝑛

𝑖=1

,        j=1… k ………………… (9) 

For the categorical attribute 𝐴𝑙 the centroid value 𝑉𝑖𝑙  is updated as given bellow. 

𝑉𝑖𝑙
𝑡 = 𝑎𝑙

(𝑠)𝜖 𝐷𝑀𝑁(𝐴𝑙)  ……………… . (10) 

𝑤ℎ𝑒𝑟𝑒     ∑ (µ𝑖𝑗)
𝑚

𝑥𝑗𝑙=𝑎𝑙
(𝑠)

 ≥  ∑ (µ𝑖𝑗)
𝑚

𝑥𝑗𝑙=𝑎𝑙
(𝑡)

 , 1 ≤ 𝑡 ≤  𝑛𝑙 

To make use of Fuzzy C-Means Algorithm for multi-valued attributes which is FCM-MVA we replace the 

equations 5 by 8 for getting member ship of the objects and equation6 by 9 or 11 to get the updated centroids of 

the clusters. 

 

3.3. Differential Evolution: 

 

The differential evolution (DE) method [44] is one that has been documented to be vigorous to optimization 

techniques among the other evolutionary procedures relating to the process of optimization. The DE meaning is 

identical to Genetic algorithm [45] roughly, but In view of the new genetic variants (new population) it varies with 

GA. Parent and child chromosomes are often evaluated in terms of fitness, if the child's chromosomes seem to be 

the most fit, then survive and the parents will be disqualified, if the parent's chromosomes are most fit then 

children's chromosomes do not survive. Only the parent chromosome is replaced by the most fit child chromosome. 

That means finally either parents or the fittest among all children whichever is more fit is survived. The various 

fitness mechanisms and crossover methods adopted by DE illustrate incontemporary literature [46][47][48][49] 

between the different approaches of different evolution strategies. The research that is investigated regarding DE 

is discussed in the survey [50]. 

 

Creation of Initial Clusters: 

 

The application of FCM-MVA clustering as discussed earlier enables a record to fit into one or perhaps more 

clusters, where the member ship of the record to the corresponding cluster would be greater than the member ship 

threshold which is usually greater than or equal to 0.3, In this regard one cluster center may be the other cluster's 

record.  

3.4. Optimization of Clusters using DE (MVA-DE) 

The initial clusters will be considered as a set of input chromosomes, and performs Differential Evolution on 

each set of chromosomes that results pair of new chromosomes (new clusters). Among these input and resultant 
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chromosomes, fittest pair of chromosomes can survive. The following subsection explores the fitness function 

used in Differential Evolution Process. 

 

3.4.1. Fitness Function 

 

Algorithm for cluster optimization using DE: 

 

Let the notation 𝑂𝐶𝑆is a set representing all possible clusters depicted, 

Let the notation N𝐶𝑆  is a set contains newly formed clusters after each evolution of the DE 

algorithm, 

𝑊ℎ𝑖𝑙𝑒(𝑂𝐶𝑆 ∩ 𝑁𝐶𝑆 ≠ 𝑂𝐶𝑆) Begin 

𝑁𝐶𝑆 = 𝑂𝐶𝑆 

For each new cluster {𝐶𝑖/𝐶𝑖 ∈ 𝑁𝐶𝑆}  begin 

For each new cluster {𝐶𝑗/𝐶𝑗 ∈ 𝑁𝐶𝑆, 𝑖 ≠ 𝑗} 

𝐶𝑂𝑅 = {𝑐𝑖𝑗/𝑐𝑖𝑗 ∈ 𝐶𝑖 ∩ 𝐶𝑗}  //Find all common transactions (crossovers) exists in 

clusters 𝐶𝑖 , 𝐶𝑖  as set 𝐶𝑂𝑅 

𝑁𝐶𝐽 = ∅  // an empty set taken to store the new chromosomes generated from 

crossover process 

Consider 𝑁𝐶𝐽 = {(𝐶𝑖, 𝐶𝑗)} // moving the parent chromosomes (clusters) to the set 

𝑁𝐶𝐽 
For each crossover {𝑐𝑖𝑗𝑘/𝑐𝑖𝑗𝑘 ∈ 𝐶𝑂𝑅} where 1 ≤ 𝑘 ≤ |𝐶𝑂𝑅| 

Begin 

𝑈𝐶𝑖 = {𝑐𝑖 ∈ 𝐶𝑖/𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖) < 𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖𝑗𝑘) }  //subset of 𝐶𝑖 in 

which the tuples are predecessor to 𝑐𝑖𝑗𝑘 

𝐷𝐶𝑖 = {𝑐𝑖 ∈ 𝐶𝑖/𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖) ≥ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖𝑗𝑘) } //subset of 𝐶𝑖  in 

which the tuples are successor to 𝑐𝑖𝑗𝑘 

𝑈𝐶𝑗 = {𝑐𝑖 ∈ 𝐶𝑗/𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑗) < 𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖𝑗𝑘) }  // subset of 𝐶𝑗 in 

which the tuples are predecessor to 𝑐𝑖𝑗𝑘 

𝐷𝐶𝑗 = {𝑐𝑖 ∈ 𝐶𝑗/𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑗) ≥ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑠ℎ𝑖𝑝(𝑐𝑖𝑗𝑘) } // subset of 𝐶𝑗 in 

which the tuples are predecessor to 𝑐𝑖𝑗𝑘 

   𝐶𝑖𝑗𝑘1 = 𝑈𝐶𝑖⋃𝐷𝐶𝑗 

   𝐶𝑖𝑗𝑘2 = 𝑈𝐶𝑗⋃𝐷𝐶𝑖         

𝑁𝐶𝐽 = {(𝐶𝑖𝑗𝑘1, 𝐶𝑖𝑗𝑘2)} // moving the pair of child chromosomes (clusters) to the 

set 𝑁𝐶𝐽 
End 

Find fitness of each entry which is in 𝑁𝐶𝐽 as described in sec 3.4.1  

Replace the pair of clusters (𝐶𝑖, 𝐶𝑗) in N𝐶𝑆 by the pair of clusters in 𝑁𝐶𝐽 which has 

maximum fitness.  

 End 

        End 

𝑖𝑓(𝑂𝐶𝑆 ∩ 𝑁𝐶𝑆 ≠ 𝑂𝐶𝑆) Begin 

𝑂𝐶𝑆 =∅ //Empty the set 𝑂𝐶𝑆
 

𝑂𝐶𝑆 = {𝐶𝑖/𝐶𝑖 ∈ 𝑁𝐶𝑆}
 

𝑁𝐶𝑆 = ∅ //Empty the set 𝑁𝐶𝑆 

        End 

End 
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Consider the given each pair of clusters and find the sum of the membership values of all objects in both of the 

clusters as depicted in section 3.2. In addition, find the pair of clusters with highest sum of the membership values 

as an optimal pair of clusters among all pairs of clusters given.  

 

Optimization of Clusters Upon completion of the initial cluster formation process, sort the records in 

descending order of their degree of member ship of each object in each of the lusters 

 

 

 

formed, then perform differential evolution to set back the clusters with maximal fitness, which is given in the 

following algorithm. 

 

 

Upon completion of the depicted algorithm, the set 𝑁𝐶𝑆 contains most optimal clusters projected from 

multivalued dataset. In order to acclaim the clusters with unique entries, allow records to be the part of only one 

cluster, such that the respective record should have maximal cluster level membership degree for the corresponding 

cluster. 

 

4. Simulation Study Phase and Efficiency Observations 

 

In this chapter, empirical studies on datasets, evaluation procedures and related solutions of proposed approach 

are depicted. In regard to assess the significance of the proposed clustering technique MVA-DE, the experiments 

also carried on K-means clustering that tends to cluster the given data, the distance measure that used in this regard 

is Tanimoto distance measure. The Tanimoto distance between two sets including X to Y is referred as D (X, Y) 

and is computed through implementing following formula- 

𝐷(𝑋, 𝑌) =
|𝑋| + |𝑌| − 2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
 

The proximity is assessed on the basis of difference in case of continuous values of xi and yj 

𝐷 =
|𝑥𝑖| − |𝑦𝑗|

|𝑥𝑖| + |𝑦𝑗|
 

To assess the significance of the proposed clustering technique MVA-DE, the experiments are also carried on 

FCM-MVA which is described above. The method has been implemented on a 4-GB RAM capacity and i5 

processor machine. For the measurement of the results on the resulting clusters, the scripts are described using 

Python programming language. 

 

4.1 The Dataset 

This section explores the projection and properties of the real and synthetic datasets used in experimental study. 

The real dataset that used in experiments is CORA [52], and the synthetic dataset is generated by hybridizing the 

projection and volume of the CORA dataset. 

 

4.1.1. Real Dataset 

 

Researchers’ focuses on CORA [52] database, as it includes 2,708 data records and plays a prominent role in 

research. Each data record is a scientific contribution from any of seven types including RL machine learning 

methods, CBR models, Probabilistic approaches, Rule-based Learning approaches, NNs, Genetic techniques and 

models based on theory. Each record comprises numerous entries to form a data-subset with 1,433 special words 

that are referred as attributes. The value set of any two attributes which can hold multiple values are called citing 

and cited manuscripts. 

Each document of CORA includes a sub-set of chosen 5,429 special instance identities as a cluster of Multi-

values for such attributes usually involve multiple values. Exactness and level of performance of novel approach 

is determined by utilizing various cluster determination parameters including cluster pureness and cluster HM and 

also contradictory concepts of both. So as to setup this, the suggested data files are selected based on topic 

perspectives, as knowledge bases. In addition, clustering of these files into corpuses is observed to assist the 

optimal determination of clusters according to the selected parameters.  

 

4.1.2. Synthetic Dataset 
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The dataset generated, by synthesizing the original CORA dataset by adding additional attributes labeled as 

keywords, and indexing. In addition, around 2000 additional records included to the original dataset. With the 

influence of the stated modifications to the CORA dataset, the total records become 4708, the simple attributes 

remain same with count of 1433, however, the multivalued attributes increased from 2 to 4. Metrics pureness, as 

well as inverted pureness and HM of cluster takes a prominent role in cluster determination procedure. The 

category frequency in every resulted cluster termed as purity of cluster [54]. Purity parameter can able to remove 

noise in the clusters, but it is unable to detect the similarities between the records.  For instance, in case, each 

record is considered as single cluster, then purity parameter assigns higher purity value for those clusters. Thus, 

inverted purity parameter is implemented and essential for analyzing those data clusters as similar categories. This 

inverted parameter is important in detecting the cluster, which holds highest recall value for each category. 

Determination of a cluster involving every input record gives the highest value to inverted purity due to the 

fact that, this parameter unable to nullify the combination of various records captured from different categories. A 

noteworthy point is that HM of document clusters also considered in addition to above two parameters. HM 

parameter is the inverse purity and combination of purity that estimated by comparing every category with the 

cluster having higher combined precision and recall [55], [56], [57] termed as F-Measure.  

 

4.2 Statistical and Empirical Study of Proposed Work 

 

The proposed solution ensures optimization of Clusters’ which are developed from dataset documents and 

multi-value features because F-Measure of those clusters is extremely high. Level of purity for each detected 

cluster will have superior accuracy rates. The below Table 1 depicts the statistical data related to the experimental 

analysis of proposed solution and the Table 2 represents the outcomes of clustering techniques applied on real 

dataset CORA. 

 

Table 1: The real dataset Statistics 

Number of Documents in 

CORA [53] 

2,708 

Number of Simple 

features 

1,433 

Count of Complex 

Attributes (Multi-Valued) 

2 

The number of clusters 7 

 

Table 2: The outcomes of clustering techniques applied on real dataset CORA 

 

 MVA-

DE 

FCM-MVA 

Based 

clustering 

K-Means with Tanimoto 

based multi-valued data 

clustering 

The average of F-measure 0.91 0.89 0.81 

Average Cluster purity 0.93 0.91 0.85 

Average Clustering Accuracy 0.89 0.85 0.77 

 

The above results are shown in the following figure 1. 
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Figure 1: Clustering results on real data set Dataset 

 

In order to further demonstrate the importance of suggested approach, k-means clustering algorithm is 

implemented on every document along with multi-valued attributes that improve the performance of existing 

frequency models. The proposed approach also achieves optimal purity and F-Measure parameters. These resulted 

values of these parameters are effective than the values resulted through earlier methods. The below Figures depicts 

purity and F-Measure of dissimilar clusters. 

 

 
Figure 2: Resulted Purity Value for Dissimilar Clusters 

 
Figure 3: Resulted F-Measure (HM) for Different Clusters 
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The rate of accuracy visualized for all the approaches is represented in below Figure 4. It represents the reliable 

proportion value between derived and original true records of an evaluated cluster.   

 

 
Figure 4: Rate of Accuracy for Dissimilar-Clusters Resulted from all Methods 

 

The similar Assessment is carried on synthetic dataset, the statistics of the dataset are depicted in Table 3, and 

the performance metric values obtained from proposed and other clustering techniques, those applied on synthetic 

dataset are depicted in Table 4. 

 

Table 3: The synthetic dataset Statistics 

Number of Documents in CORA [53] 4,708 

Number of Simple features 1,433 

Count of Complex Attributes (Multi-Valued) 41 

The number of clusters 7 

 

Table 4: The outcomes of clustering techniques applied on synthetic dataset CORA 

 

 MVA-

DE 

FCM-

MVA 

Based 

clustering 

K-Means with 

Tanimoto based multi-

valued data clustering 

The average of F-measure 0.89 0.87 0.79 

Average Cluster purity 0.91 0.89 0.83 

Average Clustering Accuracy 0.85 0.82 0.75 

 

The above results are shown in the following figure 5. 

 

 
Figure 5: Clustering results on Synthetic Dataset 
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The results depicted for synthetic data evincing the phenomenal performance advantage of the proposed 

clustering technique MVA-DE. The resultant clusters purity, accuracy, and cluster harmonic mean observed for 

DEC-MVA are more than the respective order of k-means clustering with Tanimoto scale-based clustering and 

FCM-MVA. The cluster level assessment of these three-metrics depicted in Figure 6 (cluster purity), Figure 7 

(cluster harmonic means), and Figure 8 (cluster accuracy). It is clearly evincing that all of these cluster level metric 

values depicted for proposed MVA-DE are stable and outperformed the values depicted for same metrics in regard 

to other two clustering processes. 

 

 
Figure 6: Cluster purity observed for each cluster depicted from proposed and other two clustering models 

 

 
Figure 7: Cluster accuracy observed for each cluster depicted from proposed and other two clustering models 

 
Figure 8: Cluster harmonic mean observed for each cluster depicted from proposed and other two clustering 

models 
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5. Conclusion 

 

This contribution proposes a novel approach in order to cluster the data engaged with multivalued attributes. 

The depicted model is an evolutionary strategy that uses Differential Evolution technique to cluster the data with 

multivalued attributes. The depicted model is using the degree of membership as fitness measure. In contrast to 

the selecting methods through available approaches, this paper clusters the data by selecting member ship values 

based on potentiality of dataset transactions. The proposed solution uses the degree of member ship in mining. 

This concept allows programmers to form the clusters on the basis of its member ship. The proposed approach also 

follows the same procedure. Specific values of any tuple are determined through the member ship of that tuple 

with respect to the cluster in which it belongs. The respective outcomes of this model depict that the novel approach 

achieves high performance to select efficient values for multi-value features than existing approaches.      

To perform empirical study, a real dataset referred as CORA [52], and a synthetic dataset that generated by 

hybridizing the CORA dataset is employed. Various cluster performance metrics also used such as purity, f-

measure, and accuracy. Results observed from empirical study, encouraged the further research work in numerous 

ways like utilization of member ship in various approaches, ways to innovate additional effective models to select 

significant values for attributes which comprise multiple values. Finally, the deployment of heuristic scales is also 

feasible for selecting optimized clusters for these attributes.       
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