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Abstract: Some a new properties of convergence uncertain sequence in measure are introduced , further more we have that 

properties of convergence uncertain sequence in distribution were satisfied by using the relation between convergence sequence 

in measure and in distribution Also, we verify Kolmogorov inequality and some theorem that related with it. Finely new relation 

between convergence in mean and convergence in distribution were investigated. 
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1. Introduction  

 

Liu [2]founded in 2007uncertainty theory and Liu [3] refined it in 2010, an uncertain measure is first idea of 

uncertainty theory defined as a set function 𝑈: ℱ ⟶ ℛsaisfies he following axioms: 

(1) (Normality Axiom ): 1)( =U .                                                      (1) 

(2) (Monotonicity Axiom ): If 21 AA  , then )()( 21 AUAU            (2) 

(3) (Self-duality Axiom ): 1)()( 11 =+ cAUAU  for any 1A ℱ             

(4) (Countable Subadditivity Axiom ):If }{ iA is countable sequence of events, then.
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(5) (Product Measure Axiom):The product measureU is uncertain measure over the product  - 

fieldℱ1 × ℱ2 × … × ℱ𝑛 satisfying )()(
1

1
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=

= for all iiA  ,and ni ,...,3,2,1= . 

Definition (1-2) [1] 

The triple ,( ℱ ),U  beuncertainty space such that  , ℱ,and U be a nonempty set, - field and uncertain 

measure respectively. 

Definition (1-3) [2] 

 We say that the measurable function  from an uncertainty space to the set of real numbers is uncertain 

variable. 

 

Definition (1-4) [3] 

We say that the uncertain variables n ,...,, 21 be independent if 

)(min))((
1

1

iii
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n

i

in UU =


=

 , for any Borel n ,...,, 21  of real numbers . 

Definition (1-5) [6] 

The expected value   of uncertain variable  defined by 
−

+

−=

0

0

)()()(  dd , 

provided that at least 
+

 d)(
0

or 
−

0

)(  d .The variance of   is defined by 

2))(()(  −= . 

Theorem (1-6) [5] 
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Suppose that the uncertain variable X . Then for any given numbers 0  and 0r , we have 

r

r

U





)(
)(


    (3). 

Definition  (1-7)[7] 

The uncertain sequence }{ n  be convergent in measure to uncertain variable   if 

0})()(|{lim =−
→

 yyyU n
n

, for every 0 . 

Definition  (1-8) [7] 

The uncertain sequence }{ n be convergent in mean to uncertain variable   if 

0})()(|{lim =−
→

yyy n
n

 . 

Definition  (1-9) [7] 

We say that the uncertain sequence }{ n  is convergent to uncertain variable in distribution   if 

)()(lim  =
→

n
n

 for all   at which )( is continuous, and n , kn ,...,2,1=  be an uncertainty  

distribution of uncertain variables knn ,...,2,1, = .  

 

2. Convergence of independent uncertain variables sequence sum 

 

Lemma (2-1) [5] 

Suppose that niX i ,...,2,1, = be uncertain variables and 0p . Then
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Theorem (2-2) [7] 

Suppose that }{ n , and be an uncertain sequence and uncertain variable respectively. if  →n (in 

measure)as →n .Then  →n as →n (in distribution). 

Theorem (2-3)  

Suppose that }{ n , and  be an uncertain sequence and uncertain variable respectively such that 

−


=

}{
1


n

nU      (5)   

Then  →n  as →n  in measure. 

Proof: 

Since })()(|{{})()(|{  −−


=
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mm yyyyyy  

From  (1), and (2) we have 
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Furthermore, 0}{lim})()(|{lim =−− 
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Corollary(2-4)  

Suppose that }{ n , and  be an uncertain sequence, uncertain variables respectively such that 

−


=
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1


n

nU       (6) 
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 Then  →n  as →n  in distribution. 

Proof:- 

From theorem (2-2) and from theorem (2-3) according to (5), we have  →n  as →n   in distribution 

Theorem (2-5)  

Suppose that }{ n , and  be an uncertain sequence, uncertain variables respectively such that 

}{

2

1

 −


=n

n is a finite. Then  →n  as →n  in measure. 

Proof: 

Since })()(|{{})()(|{  −−


=


nm

mn yyyyyy  

From  (2) that 

})()(|{{})()(|{  −−


=


nm

mn yyyUyyyU  

From theorem (1-6)  according to (3) and lemma (2-1) according to (4) 
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Corollary (2-6)  

Suppose that }{ n ,  be an uncertain sequence, and uncertain variables respectively such that Then
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.Then  →n  as →n in distribution. 

Proof:- 

From theorem (2-2) and from theorem  (2-4) according to (6), we have  →n  as →n  in distribution. 

Theorem (2-7) (Kolmogrov inequality) 

Suppose that nii ,...,2,1, =  be uncertain variables such that 
=

=
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 for any number 0 . 

 

Proof: 

From theorem (1-6) according to (3) and lemma (2-1) according to (4), we have 
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Theorem (2-8) 
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Suppose that }{ i  be an uncertain sequence. If 
=

n

i

iVar
1

)( is a finite. Then ))()((
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convergent  in measure. 

Proof: 
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Theorem (2-9) 

Suppose that }{ i  be an uncertain sequence. If 
=

n

i

iVar
1

)( is a finite. Then ))()((
1




=

−
i

ii   converges 

in distribution. 

Proof:- 

From theorem (2-2) and theorem (2-8) according to (8), we have ))()((
1




=

−
i

ii   convergent to uncertain 

variable    in distribution. 

Theorem  (2-10)  

Suppose that },{ n  bean  uncertain sequence, and uncertain variables respectively. If  →n  as 

→n in mean, then  →n  as →n  in distribution. 

Proof:  

Since  →n  as →n in mean means  →n  as →n  in measure, and from theorem (2-2), thus 

}{ n  is convergence uncertain sequence in distribution to uncertain variable  . 

Example (2-11)[4] 

If  →n  as →n in distribution, then n ↛ as →n  in mean 

For example, suppose that the uncertainty space and },{ 21 yy= with 5.0}{}{ 21 == yUyU    and 
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That is, n ↛ as →n  in mean. 
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3. Conclusion  

 

The rustles of this paper is to obtain new properties of  uncertain variable convergence in measure, also 

Kolmgorov inequality is verified. 
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