

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021),646 - 662

Research Article

646

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce

Framework

Sirisha N1, K.V.D. Kiran2

1,2Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.
1Department of Computer Science and Engineering,

MLR Institute of Technology, Dundigal, Hyderabad, India

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10

May 2021

Abstract

Public cloud infrastructure is widely used by enterprises to store and process big data. Cloud and its distributed computing

phenomena not only provides scalable, available and affordable solution for storage and compute services but also raises

security concerns. Many security solutions that came into existence encrypt data and allow accessing plaintext for data analytics

in the confines of secure hardware. However, the fact remains that the large volumes of data is processed in distributed

environment involving hundreds of commodity machines. There exist numerous communications between machines in

MapReduce computing model. In the process, compromised MapReduce machines or functions are vulnerable to query based

inference attacks on big data that lead to leakage of sensitive information. The main focus of this paper is to overcome the

problem aforementioned. Towards this end, a methodology is proposed with an underlying algorithm for defeating query based

inference attacks on big data in Hadoop. The proposed algorithm is known as Multi-Model Defence Against Query Based

Inference Attacks (MMD-QBIA). A realistic attack model is considered for validating the effectiveness of the proposed

methodology. Then an integrated framework for security and privacy to big data is evaluated. Cloudera Distribution Hadoop

(CDH) is the environment used for empirical study. The experimental results revealed that the proposed solution prevents

different kinds of query based inference attacks on big data besides security to big data in Hadoop MapReduce framework.

Keywords – Big data, Hadoop, query based inference attack, big data leakage prevention

1. INTRODUCTIOIN

With the emergence of cloud computing and big data eco-system, there is every possibility to have innovative

approaches to deal with massive amounts of data without losing value possessed in the data [14]. MapReduce is

the programming phenomenon that supports parallel processing in presence of thousands of commodity computers

in cloud computing or distributed environments. The MapReduce frameworks like Hadoop plays vital role in data

analytics in distributed computing environments (DCE). And it has proved to be efficient to deal with big data in

numerous application domains [4]. With big data, there are security problems. Different attacks may occur when

data is at rest or in transit. Big data analytics has many security and privacy challenges [19].Our prior works [31]

and [32] provided security enhancements. For instance, in [31] a light weight security mechanism known as

Lightweight Security Scheme (LSS) is defined. In [32], an algorithm named Flexible and Efficient Encryption

(FEE) is defined to deal with structured data security and data dynamics on the encrypted data that has been

outsourced. However, our work in [31] and [32] does not consider the scenario where big data needs to be protected

from privacy attacks when data is subjected to analytics in distributed environment. In this paper, we considered

this problem and solution is provided to prevent query based inference attacks on big data. Big data throws privacy

challenges unless there is a fool proof mechanism that not only provides cryptographic solution to data security

but also for preventing data leakage [12]. Many solutions came into existence to protect privacy of big data. Airavat

is one of them where differential privacy (DP) based solution is provided. Privacy issues with MapReduce

programming phenomenon are explored in [1]. The usage of DP is advocated in [2] and [7]. Irrespective of DP

based solutions, the protection concept is illustrated in Figure 1.

Figure 1:Modus operandi of differential privacy based protection

As presented in Figure 1, the query is made by analyst or adversary to database. Then the privacy guard is

implemented based on DP that will add noise to sensitive data and returns to adversary. Thus adversary is defeated

Analyst /

Adversary

Privacy

Guard

Query

Noisy Response

Database

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

647

as he cannot infer the desired sensitive information from the results obtained. Privacy Integrated Queries (PINQ)

is the solution provided in [30] which is integrated into platform specific programming language named C#.

Airavat [25] is another privacy protection based solution from Roy et al. [25] where data providers are assured to

have secure and privacy preserving data analytics. This solution was based on DP. DP is used for Location Based

Service (LBS) in [21]. However, it does not serve complex situations. Hu et al. [18] used DP for protecting privacy

of big data pertaining to telecommunications. They used privacy budget parameter to ensure that the trade-off

between the privacy and data loss is minimized. Apple [34] used DP for its operating system in mobile phones.

The DP transformation includes hashing, subsampling and adding noise. Our contributions are as follows.

1. We proposed a methodology for preventing data leakage or privacy attacks, especially, query based

inference attacks on big data which is being processed in MapReduce framework in distributed

environment.

2. We proposed multiple algorithm that combined provide a comprehensive solution to query based

inference attacks on big data.

3. We implemented the proposed algorithms in a variant of Hadoop known as Cloudera Distribution Hadoop

(CDH).

4. An integrated security framework is proposed and evaluated. It could improve security and privacy to big

data.

The remainder of the paper is structured as follows. Section 2 reviews literature on different aspects of privacy of

big data and attack prevention methods. Section 3 presents the preliminaries to ascertain the proof of the concept

well. Section 4 presents the proposed solution to protect big data from specific privacy attacks. Section 5 presents

experimental results. Section 6 evaluates the proposed solution and compares it with the state of the art. Section 7

discussed about the threats to the validity of the proposed solution. Section 8 concludes the paper and gives

directions for future work.

2. RELATED WORK

This section reviews literature on the issues pertaining to privacy attacks on big data in distributed environments.

2.1 Privacy Issues in MapReduce Environments

MapReduce environments deal with big data. They need to identify and protect from malicious attacks pertaining

to privacy or query based inference attacks. Derbekoet al. [1] explored different kinds of attacks in MapReduce

programming paradigm. They include impersonation attack, Denial of Service (DoS), eavesdropping, replay

attack, repudiation and man in the middle attack. They found that privacy attacks may occur from adversarial

Cloud Service Provider (CSP), adversarial users, professional hackers. Therefore, they emphasized the need for

protecting data providers, protecting data from untrusted service providers. They suggest to define MapReduce

algorithms with privacy preserving support.

Ohrimenkoet al. [5] opined that in spite of encrypted communications in distributed computing environments,

there is probability of leakage of sensitive data while big data is subjected to analytics. They proposed a

methodology for secure implementation of MapReduce jobs by safeguarding intermediate traffic patterns. They

proposed a solution known as shuffle in the middle to prevent leakage in MapReduce. Considering encrypted

dataset D, their shuffle method results in D’ which is a permutation of D. They also employ padding method to

deal with intermediate traffic wit careful analysis. Bhathal and Singh [10] explored vulnerabilities of Hadoop

pertaining to security policies, configuration, web interface, software and technology heterogeneity. They found

that the traditional security approaches will be inadequate to deal with runtime issues when big data is being

analysed.

2.2 Methods based on Differential Privacy to Protect Big Data

Differential privacy (DP) is the widely used technique that produces two identical datasets denoted as D and D’.

The latter contains certain noise. However, DP ensures that D’ produces almost same result as done with D.

However, there is privacy protection with D’. Jain et al. [2] explored different aspects of DP in the context of its

application to big data. They studied the importance of privacy budget and sensitivity. There are many real world

applications of DP. Lee [7] described the usage of DP by US Census Bureau to safeguard confidentiality of patient

data. McSherry [30] developed a privacy preserving data analysis platform known as Privacy Integrated Queries

(PINQ). PINQ helps in interactive data analytics besides ensuring privacy of data. It is based on LINQ (Language

Integrated Query) of C# programming language.

Roy et al. [25] proposed a MapReduce based system for privacy and security of big data. The system is named as

Airavat. With Airavat, the data providers are assured to have secure and privacy preserving data analytics. Airavat

supports DP for preventing leakage of sensitive data. In fact, it integrates access control mechanism and MAC+

DP for better performance. However, Airavat is inadequate to protect privacy of big data when output keys are

generated by untrusted mappers. Andres et al. [32] employed DP for location based systems. They enhanced

Location Based Service (LBS) systems for privacy guarantees. DP adds random noise to sensitive data such as

location. They intended to improve it for complex applications.

Hu et al. [33] used DP for protecting privacy of big data pertaining to telecommunications. They used privacy

budget parameter to ensure that the trade-off between the privacy and data loss is minimized. They explored data

publication with DP to see that the sensitive information is not disclosed. Apple company implemented DP in iOS

10 in order to collect and store users’ data with privacy protection. However, Apple cannot extract any specific

user’s data as it violates privacy. As Facebook and Google are doing, Apple sends lot of users’ data for data

Sirisha N1, K.V.D. Kiran2

648

analytics. The data is transmitted, however, in transformed format with DP. The DP transformation includes

hashing, subsampling and adding noise [34].

2.3 Enhancing MapReduce Layer for Big Data Privacy

Privacy attacks on big data may occur when data is subjected to Map and Reduce methods. To overcome this

problem, Jain et al. [3] enhanced the MapReduce (MR) layer with an additional layer between MR layer and

Hadoop Distributed File System (HDFS). The input and output privacy is combined along with security. The

method employed here protects data from privacy attacks and reduces information loss. It also promotes scalability

as it uses lightweight encryption.

Adithamet al. [11] proposed different thread detection mechanisms that may arise from malicious insiders. Their

solution includes profiling process behaviour using library and system calls and memory access patterns. After

building process profiles, they are verified dynamically at runtime to know any discrepancies. Principal

Component Analysis (PCA) and Singular Value Decomposition (SVD) methods are employed to estimate

violations. In future, they intended to deal with big data privacy when the data is subjected to analytics. Gambset

al. [13] used a tool known as GEPETO for analysing big data privacy by interpretation of mobility traces in large

scale. They considered MapReduce environment for their empirical study where they sanitized data to prevent

privacy attacks. They intended to improve it by using spatial cloaking methods in future. Dinhet al. [15] proposed

a methodology for privacy preserving MapReduce computations. They incorporated secure shuffling, secure

grouping and execution integrity.

Stephen et al. [16] proposed a method with program analysis to find security threats in MapReduce code. Geyer et

al. [17] on the other hand proposed a security framework for processing big data in distributed environment. Pireset

al. [20] proposed a light weight security framework for MapReduce programming paradigm. Raiziet al. [22]

proposed a hybrid framework for secure data analytics. In the same fashion, Lu et al. [23] focused on opportunistic

computing framework with privacy and security in healthcare domain. Du et al. [24] proposed an attestation

mechanism for cloud service integrity as part of Software as a Service (SaaS). Xue and Hong [26] proposed a

framework for secure data sharing in presence of dynamic groups while Li et al. [27] proposed secure and privacy

preserving mechanism for sharing of health records. Yang et al. [28] used polynomial codes for security in

distributed environments. Dong et al. [29] proposed a distributed processing approach that is hierarchical in nature.

From the literature, it is observed that there has been considerable research to make MapReduce operations with

privacy consideration. However, with respect to differential privacy, the existing works showed different

approaches and there is need for an integrated multi-modal approach for preventing query based inference attacks.

3. PRELIMINARIES

Differential Privacy (DP) is the technique used to protect data from privacy attacks. It was originally developed

by Dwork, Nissim, McSherry and Smith and later on improved by others [8]. To be formal, let two databases

denoted as D1 and D2. These two are known as neighbouring databases when they have difference in at most a

single data entry. Accordingly, any algorithm denoted as M is considered to be ε-differentially private if D1 and

D2 output x for all pairs as in Eq. 1.

Pr[M(D1) = X] ≤ exp (ε)Pr [M(D2) = x] (1)

The output of the computation does not reveal the presence of any data item as input. As adversaries will not be

able to know whether a specific item is part of the dataset as it precludes deriving any sensitive information from

the data. Ideally, DP needs to be employed in such a way that when (after adding DP) data is given to third party

analyst, he/she will never be able to know identity of any entity. Such way of characterization of data is part of DP

based methods. DP is best used to prevent query based inference attacks. In other words, adversaries cannot know

the participation of an item (presence or absence of an item) in the dataset. Privacy Budget (ε) is the control

parameter for enforcing privacy on big data (as used in this paper). Considering two neighbouring datasets D1 and

D2 and an output function A, the privacy budget needs to be low such as a value that is almost equal to 1. It does

mean that the outcome probability of A on D1 and D2 is almost same. This is the ideal way of using privacy budget

when DP is employed. With higher DP more security is possible but it leads to less utility of data subjected to

analytics. Therefore, the privacy budget € is generally kept at 0.01, 0.1 etc. Eq. 2 shows the usage of privacy

budget.

Pr[A(D1 ∈ S] ≤ e(2) ∈ Pr [A(D2) ∈ S] (2)

There is another important term pertaining to DP. It is known as sensitivity that tells the amount of noise added to

the output of MapReduce function in Hadoop (with respect to the work of this paper). The sensitivity is based on

the magnitude of change in outcome when a single row is added or removed. When a series of counting queries

denoted as Q made on D1 and D2 the sensitivity of Q is denoted as ∆Q and it is computed as in Eq. 3

∆Q = max ||Q(D1) − Q(D2)|| (3)

In order to achieve DP noise is added to dataset. There are two primary mechanisms of adding noise. They are

known as Exponential Mechanism (EM) and Laplace Mechanism (LM). The amount of noise added has its

influence on the global sensitivity and privacy budget. EM is a security controlled strategy to achieve DP. It is

used for output that is in categorical form. Quite intuitively, it can be understood that EM guarantees the DP

definition as the change in a row of database will not affect the outcome of the function. It is desired to handle

situations where best response is to be picked up. In a query – response system, let input database is denoted as D

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

649

and a potential response is denoted as rϵR for a score function denoted as u: D × R -> R. Let an algorithm named

A gives a response to query in order to satisfy e-differential privacy as in Eq. 4.

A(D, u) = {r ∶| Pr[r ∈ R] ∞ exp (εu(D, r)/2∆u)} (4)

The score function determines the yield of exponential mechanism. The privacy budget will have its influence on

the possible outcome. For higher level of security, it is essential to keep the value of privacy budget as low as

possible. LM on the other hand computes given function and perturbs coordinates with noise that is acquired from

distribution of LM. The level of noise is controlled based on the privacy budget parameter. LM is useful for

producing numerical outputs. An algorithm denoted A when applied to D with global sensitivity denoted as ∆f and

the function denoted as f: D ->R∧d, Eq. 5 shows how the noise is added.

A(D) = f(D) + noice (5)

If the noise added complies with Laplace distribution, e-differential privacy is satisfied. Thus it is denoted as

noise~Lap(∆f/ε) where the zero is considered for location parameter while the scale parameter is denoted as ∆f/ε.

The probability density function, when scale parameter is b and location parameter is zero, is computed as. (X) =

exp (- |X|/B)/2B

σ(x) = √D(x), D(x) = 2b2, and b = ∆ f ε⁄ (6)

D(x) = 2(∆f/ε)2 = 2∆f 2/ε2 (7)

σ(x) = √D(x) = √2∆f 2/ε2 = √2∆f/ε (8)

In Eq. 6, standard deviation is denote as σ(X)and variance is denoted as D(X). Finally, the results are obtained as

in Eq. 7 and Eq. 8. DP also exhibits two important properties. They are known as sequential composition (SC) and

parallel composition (PC). The former refers to the sequence of computations that provide DP at each computation

and DP at sequence level as well while the latter involves in many disjoint computations in parallel.

4. PROPOSED FRAMEWORK

Technological innovations changed the way an application stores and processes data.With cloud computing

infrastructure, Internet-based computing has emerged to be an ideal approach. The traditional means of storage

and retrieval are no longer preferred for cost and other reasons while handling large volumes of data. Before

indulging into the proposed framework here is the problem statement or motivating scenario.

4.1 Problem Statement

A MapReduce paradigm consists of two units of computation known as map and reduce. Each unit takes key-value

pairs as input and produces desired output in the form of key-value pairs after processing. Both input and output

are stored in Hadoop Distributed File System (HDFS). It is assumed that input given to any MapReduce computing

is encrypted and adversaries can only get encrypted data if they succeed in launching attacks. However, when data

is being processed, it is done in plain text. Therefore, it is essential to protect such data from privacy attacks. Figure

2 shows the map reduce computations for WordCount benchmark.

Figure 2:Shows execution of WordCount benchmark with MapReduce computations

For big data analytics, a programmer typically implements Map and Reduce tasks. In many real world data

analytics applications, data of an organization is used for gaining business intelligence (BI). In the process, the

main problem considered in this paper is privacy attacks launched by adversaries. To be specific the attacks are

query based inference attacks where adversary wanted to infer knowledge by knowing the presence of specific

Sirisha N1, K.V.D. Kiran2

650

customer in the dataset. That is the reason it is known as query based inference attack. Considering the MapReduce

source code in Listing 1, there is evidence of such attack from adversary.

Listing 1: Application specific MapReduce source code (malicious)

As observed in Line 14 through Line 16, attacker is trying to find the presence of a customer named “Suzuki”. If

the customer is found in the data being processed, then the adversary is setting the word “Sazaki” at Line 15 and

set a value 1000000 as output. This is in map() function. In the reduce() function, from Line 33 through Line 35,

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

651

the adversary is manipulating sum value to gain very specific value as output. If that value is found in output,

adversary confirms that there is presence of customer “Suzuki” in the big data. This kind of attack is known as

query based inference attack. This is the main privacy leakage problem addressed in this paper.

4.2 Methodology

The objective of this methodology is to protect sensitive data even in presence of potentially untrusted mapper and

reducer codes.It is based on cloud computing technology and distribued programming framework. Hadoop is the

MapReduce framework used for empirical study which facilitates new paradigm in programming with map and

reduce functions. The source code of map() and reduce() functions may have code which is malicious in nature.

Often it is injected by adversaries to launch privacy attacks. Therefore, it is essential to ensure non-disclosure of

sensitive information. The solution provided in this paper is based on DP. Cloudera Distribution Hadoop (CDH)

has MapReduce framework. This framework is generally scalable, available and fault tolerant. It supports various

real world use cases associated with big data analytics. Figure 3 shows the architectural overview of the proposed

methodology.

Figure 3: Architectural overview of the proposed methodology

The computation system has different components such as MapReduce framework, cloud storage, JVM and

compute cloud. MapReduce supports input from HDFS and sending output to HDFS. MapReduce runs in a cluster

of commodity computers. Privacy of big data is achieved using DP based algorithm. In presence of malicious

mapper or reducer, the proposed algorithm ensures that the privacy of big data is not lost. DP, as explained in

Section 3, has capabilities to prevent certain kinds of privacy attacks such as query based inference attacks. Here

is the procedure used to prevent privacy attacks. Let us consider D as original dataset while D’ is derived from D

by using DP technique. There will be no much difference between these two datasets. Hence they are known as

neighbouring datasets. An algorithm A achieves DP with output denoted as O as in Eq. 9.

Pr[A(D)=O] <=exp(𝜺). Pr[A(D’) =O] (9)

The degree with which privacy is protected is represented as 𝜺. As the proposed methodology deals with large

volumes of data, it is likely that there is sensitive data. The data may be of any domain like healthcare, banking,

social networks and so on. There are many algorithms to provide privacy but may result in information loss due to

data transformation for ensuring privacy. Thus, there is trade-off between privacy level and deterioration of utility

of data. If such trade-off is not handled, it leads to utility problem of big data. This fact is understood with the

reconstruction function found in [33] which is shown in Eq. 10.

Fxi(a)=
∫ f

a
−∞ y (w1−z)fx(z)dz

∫ f
∞

−∞ y (w1−z)fx(z)dz
 (10)

When there are many randomsamples with cumulative distribution function (CDF) is denoted as Fy and samples

are as x1+y1, x2+y2..., xn+yn and Fx. As in Eq. 10, there is posterior distribution. In the same fashion, for x1+y1,

x2+y2, ..., xn+ynestimation is as in Eq. 11.

Fxi(a)=
1

n
∑ ḟxi

n
i=1 =

1

n

∫ f
a

−∞ y (w1−z)fx(z)dz

∫ f
∞

−∞ y (w1−z)fx(z)dz
 (11)

By differentiating the Fx density function is obtained as in Eq. 12.

Fxi(a)=
1

n
∑ ḟxi

n
i=1 =

y (w1−a)fx(a)

∫ f
∞
−∞ y (w1−z)fx(z)dz

 (12)

The reconstruction and randomization solutions may cause data leakage as they have some associated data.

Therefore, such solutions are not suitable for strong privacy for big data. The DP construct (∈, a)-differential

Sirisha N1, K.V.D. Kiran2

652

Privacy satisfies the computation function given in Eq. 9 by considering D and D’ as neighboring datasets. The

relation S⊆ Range(F)is found to be true. Eq. 13 is thus used to achieve this.

Pr[F(D)ϵS] ≤ exp(ϵ) × Pr[F(D)ϵṠ] (13)

As per this, it is not possible to have inference attacks or query based privacy attacks. Thus adversaries cannot find

the presence or absence of given entity in the data with any probability.

4.3 Algorithm Design

We defined an algorithm known as Multi-Model Defence Against Query Based Inference Attacks (MMD-QBIA)

which analyses reducer code and original dataset D. After execution of the algorithm, the neighbouring dataset D’

is resulted. The D’ is produced by reducer in MapReduce paradigm in order to defeat query based inference attacks.

It is achieved by adding noise to the reducer output. However, adding too much noise will lead to losing utility of

big data. Therefore, we devised a plan to determine the noise level by analysing reducer code (byte code pattern).

If the bytecode pattern is found genuine, NoiseAddition() function is invoked to add little noise. If pattern is not

found, StrongNoiseAddition() function is invoked as the attack is suspected. Table 1 shows notations used in the

algorithm.

NOTATION DESCRIPTION

D Original dataset (big data)

D’ Neighbouring dataset (transformed for privacy protection)

key, <v1, v2, … vn> Reducer input

max Max value in the range of values

min Min value in the range of values

R(x) Returns a random number from the range of values denoted as -|x| to |x|

random_value_list Contains a set of random values

single_value_list Contains a set of values from reducer that appear only once (as the adversary model

has its significance)

𝜺 Privacy parameter whose value is given by owner of big data (or a domain expert)

Table 1: Notations used in the MMD-QBIA algorithm

In order to add noise to aggregate values such as sum, count, average, max and min produced by reducer, different

procedures are defined as part of the algorithm. They include NoiseAdditionForSum (), NoiseAdditionForCount

(), NoiseAdditionForAvg (), NoiseAdditionForMax () and NoiseAdditionForMin (). All these procedures are

invoked as part of normal noise addition procedure named NoiseAddition (). If the expected bytecode pattern is

not found (suspected attack), the reducer output will be subjected to StrongNoiseAddition() that ensures complete

sanitization of all target values prior to returning final reducer output.

Algorithm: Multi-Model Defence Against Query Based Inference Attacks (MMD-QBIA)

Input:MapReduce code, Dataset D, 𝜺

Output:Protected Dataset D’

1. Start

2. Analyze reducer

3. IF pattern found Then

4. D’=Invoke NoiseAddition()

5. ELSE

6. D’=Invoke StrongNoiseAddition()

7. END IF

8. Return D’

9. End

Procedure NoiseAddition()

1. Start

2. Invoke NoiseAdditionForSum()

3. Invoke NoiseAdditionForCount()

4. Invoke NoiseAdditionForAverage()

5. Invoke NoiseAdditionForMax()

6. Invoke NoiseAdditionForMin()

7. End

Procedure NoiseAdditionForSum()

1. Start

2. Initialize min and max range

3. sum=Obtain original sum value

4. noise = (1+𝜺) * R(max)

5. return noise + sum

6. End

Procedure NoiseAdditionForCount()

1. Start

2. Initialize min and max range

3. count=Obtain original count value

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

653

4. noise = (1+𝜺) * R(1)

5. return noise + count

6. End

Procedure NoiseAdditionForAvg()

1. Start

2. Initialize min and max range

3. sum=Obtain original sum value

4. noise = ((1+𝜺) * R(max))/n

5. return noise + sum

6. End

Procedure NoiseAdditionForMax()

1. Start

2. Initialize min and max range

3. maxvalue=Obtain original maximum value

4. noise = (1+𝜺) * R(max)

5. return noise + Max(min)

6. End

Procedure NoiseAdditionForMin()

1. Start

2. Initialize min and max range

3. minvalue=Obtain original minimum value

4. noise = (1+𝜺) * R(max)

5. return noise + minvalue

6. End

Procedure StrongNoiseAddition()

1. Start

2. Take reducer input (key, <v1, v2, … vn>)

3. random_value_list = <v1, v2, … vn>

4. single_value_list = getSingeValueList()

5. For each value x in n

6. IF vi exists in single_value_list THEN

7. vi=getRandomValue(random_value_list)

8. END IF

9. End For

10. output=<v1, v2, … vn>

11. noise = (1+R(𝜺))

12. return noise + output

13. End

Algorithm 1:Multi-Model Defence Against Query Based Inference Attacks

As defined in Algorithm 1, the given data (big data) from reducer prior to returning output of reduce function is

taken as input. It is denoted as D and the algorithm transforms it into a neighboring dataset D’. Finally, instead of

returning D, the reducer returns D’ as output. Thus adversaries fail in succeeding query based inference attacks.

The main algorithm starts analyzing reducer byte code pattern. If the regular pattern is found, there is need for

noise addition but it is limited considering computational cost. Step 2 of the algorithm does this analysis. Step 3

through Step 7, one of the two procedures named NoiseAddition() and StrongNoiseAddition() is executed based

on the given condition that checks whether pattern is found.

NoiseAddition() procedure is desinged in such a way that it takes care of only aggregated values that are generally

produced by the reduce() function of MapReduce computing. As there are different aggregate values known as

sum, max, min, average and count, different procedures are defiend to deal with all these aggregates. The

procedures are named as NoiseAdditionForSum(), NoiseAdditionForMax(), NoiseAdditionForMin(),

NoiseAdditionForAvg() and NoiseAdditionForCount() respectively. Noise addition is made based on the privacy

parameter 𝜺 given by domain expert of data provider. Line 4 of all these procedures computes noise dynamically.

All these functions avoid adding much noise.

When there is no pattern found (attack suspected), the algorithm invokes StrongNoiseAddition() procedure. This

procedure considers sanitization or anonymization of all single valued numbers (as the attack model has

significance to such values). Step 2 of this procedure takes reducer input in the form of key-value pair. In Step 4,

it finds all single valued numbers. It also considers a random value list used for privacy protection as in Step 3.

Step 5 through Step 9 is an iterative process for adding noise. Step 10 takes the output values and before returning

them by the reducer, they are subjected to noise addition. Step 11 computes noise and Step 12 returns noise added

outcome that comes back to Step 6 of the main algorithm. This outcome is nothing but D’ that represents

neighboring database that defeats query based infernce attacks launched by adversaries as per DP philosophy.

5. SECURITY INTEGRATED FRAMEWORK

Sirisha N1, K.V.D. Kiran2

654

Our prior works [31] and [32] provided security enhancements. In [31] a security mechanism known as

Lightweight Security Scheme (LSS) is defined. In [32], an algorithm named Flexible and Efficient Encryption

(FEE) is defined to deal with structured data security and data dynamics on the encrypted data that has been

outsourced. The work presented in Section 4 deals with prevention of query based inference attacks on big data in

Hadoop MapReduce framework.

MMD-QBIA

Flexible and Efficient

Encryption (FEE)

Key

Exchange

(LSS)

Encrypt and Upload Data

Cloud Infrastructure

HDFS

MY SQL

Data Provider

Users

Lightweight Cryptography Unstructured /

Semi-Structured

Data

Relational Data

(Structured

Data)

Figure 4: Integrated architecture for big data security, privacy and data dynamics

As shown in Figure 4, the key sharing scheme LSS is used to have secure exchange of keys between data provider

and users. A lightweight cryptographic method is used to outsource data and retrieve data from cloud. This method

ensures secure end to end communication between cloud server and data provider. When data is to be shared to

users, then the data provider and users need LSS for secure key exchange. With the security keys, the users can

perform two kinds of operations on cloud. First, they can make queries to obtain data from non-relational data.

Second, they can use SQL based queries for storage and retrieval of data from relational database. Besides, users

can perform data dynamics (changes on the outsourced relational data) directly. It is achieved with Flexible and

Efficient Encryption (FEE) scheme. The scheme takes care of security of data flown between the users and cloud

infrastructure. MMD-QBIA algorithm described in Section 4 is used to see that the queries made by users for data

from non-relational databases are securely processed. In fact, the algorithm is aimed at preventing query based

inference attacks. With the integration architecture shown in Figure 4, it has a comprehensive and holistic

phenomenon for realizing big data security and privacy when data is at rest, in transit and when being used for data

analytics.

6. EXPERIMENTAL RESULTS

Experiments are made with a cluster made up of 3 machines, one master node and two slave nodes. Intel Core i5

processor with 3.4 GHz is the configuration used for the machines. The configuration of Hadoop is changed to

have replication number set to 2 in conf/hadoop-site.xml. Two datasets are used for empirical study. The first

dataset is the real word dataset collected from [6]. The second dataset is synthesized one. Therefore, details of two

experiments are provided in this section. In the first experiment dataset from [6] is used while the second

experiment used the synthesized dataset.

6.1 Experiment 1

The big data [6] contains different attributes such as IP address, date, time and link. Here the sensitive attribute is

IP address and adversaries launch query based inference attacks to know the presence or absence of a specific IP

address in the big data being processed in Hadoop MapReduce. The program uses aggregate function sum. For

this reason, the MMD-QBIA algorithm invokes NoiseAddition() procedure that turn calls NoiseAdditionForSum()

procedure which returns the noisy (privacy protected) outcome to its caller and thus D’ is generated. The D’ is then

returned by the reducer as final output. The system gets two queries from user. The first query is genuine (not

malicious). The purpose of the program is to know how many times each link is repeated in the given log file.

Noise is added accordingly. With respect to second query, the attacker tries to fine the presence of an IP address

“192.168.133.33”. As noise is added, it is not possible for adversary to infer the privacy or presence of an IP

address.

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

655

IP

Actual Count

192.168.133.33

13654

192.168.133.34

8435

192.168.133.35

12447

192.168.133.36

13461

192.168.133.37

13363

192.168.133.38

8591

192.168.133.39

14876

192.168.133.40

13983

192.168.133.41

14765

Table 2:MapReduce outcome in absence of attacker

As presented in Table 2, 192.168.133.33is the IP address highlighted as it is used later by the adversary to know

its presence in the data. The table shows actual count of the IP address in the dataset. The results of MapReduce

came as expected by the mapper and reducer that are genuine. However, when mapper or reducer are compromised,

the intention is to have privacy attacks on big data. To safeguard the IP address from disclosure to attacker, the

patter of Reduce function is obtained using decompiler. The outcome is used in the algorithm to know whether

attack is made or not. The result in presence of attacker is shown in Table 3.

IP

Count in Presence of Attacker

192.168.133.33

13653

192.168.133.34

8434

192.168.133.35

12446

192.168.133.36

13460

192.168.133.37

13362

192.168.133.38

8590

192.168.133.39

14875

192.168.133.40

13982

192.168.133.41

14764

Table 3: Results of MapReduce in presence of attacker

As presented in Table 3, the IP address and corresponding noise added value for count is provided. The D is

converted to D’ with the proposed algorithm. For the IP address 192.168.133.33 which is the target of privacy

attack made by adversary, the result is slightly changed and the value is 13653. The computation process of the

algorithm for 1 highlighted IP is as follows.

𝜺 = 8.85x10−12

count (in presence of attacker) =count+ [(1+ 𝜺)+R]

=13654+[(1+8.85x10−12)-2.00000000001]

=13653

The above computation illustration shows proof of the concept. It is computed for the target IP address

192.168.133.33.

Sirisha N1, K.V.D. Kiran2

656

Figure 4:MapReduce outcome comparison (Stacked Line Graph)

As presented in Figure 4, it is observed that the IP address is shown in horizontal axis and the count (genuine and

in presence of attacker) is shown in vertical axis. As the different between D and D’ is very less, stacked line graph

is preferred. It shows the result of proposed DP algorithm.

Data Size (GB)

Time taken for execution (sec)

With MMD-QBIA WithoutMMD-QBIA

50 103 105

100 143 140

150 197 190

200 259 250

250 310 300

300 355 340

350 417 400

400 440 420

450 510 490

500 525 510

Table 4:MapReduce outcome with and without privacy protection

As presented in Table 4, the results pertaining to execution time of MapReduce based DP algorithm MMD-

QBIAmeant for protecting big data is observed.

13654

8435

12447 13461 13363

8591

14876 13983 14765

13653

8434

12446
13460 13362

8590

14875
13982

14764

0

5000

10000

15000

20000

25000

30000

35000

C
O

U
N

T

IP ADDRESS

RESULT COMPARISON

Actual Count Count with Noise Added

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

657

Figure 5: Execution time of MapReduce with and without MMD-QBIA

As presented in Figure 5, the workload of experiments is shown in horizontal axis and vertical axis shows the time

taken in seconds. As the results showed, the size of workload has its influence on the execution time. There is

linear increase in the execution time as workload size increases. It shows the performance difference when the

proposed DP algorithm MMD-QBIA is employed.

6.2 Experiment 2

In this experiment, the proposed algorithm is evaluated using synthetic dataset. The dataset contains family name

of a person, day of birth (0-30) and the score achieved in an entrance examination conducted by a university. The

purpose of the program is to compute average score of the data provided based on the family name of person. As

number of people with same family name existed in the data, the MapReduce computing finds the average score.

In the bytecode of the program, the average function is intentionally removed. This action forces the algorithm to

go with StrongNoiseAddition() procedure. Here the attacker knows the birth day of a person and tries to find the

family name of the person. Since day of birth has range of values from 0 to 30, the average is always less than 30.

Attacker finds birth day value and replaces it with a big number such as 1000000. Thus attacker expects the average

value greater than 30. In the experiment, however, the algorithm replaces the value 1000000 with a random number

between 0 and 30. This will defeat the attack and proves the efficacy of the algorithm. The rationale behind this is

that the actual value in the experiment is different from that of expected value by the adversary.

6.3 Results of Integrated Architecture

The integrated architecture with FEE and LSS algorithms is evaluated with Cloudera Distribution Hadoop (CDH).

The observations are recorded in terms of encryption decryption time, total upload time and total download time

for given workload size.

Data Size

(MB)

Execution Time for Encryption and Decryption (seconds)

Encryption

(AES)

Encryption

(FEE)

Decryption

(AES)

Decryption

(FEE)

Encryption

(LSS)

Decryption

(LSS)

10 1.0168 0.999 0.9956 0.8932 0.8989 0.7921

50 2.6237 2.4956 2.0879 2.0936 2.4956 1.9925

100 2.9948 2.7979 2.7583 2.2267 2.6968 2.1156

500 13.8648 13.0997 9.8845 9.2243 13.0896 9.1132

Table 5: Encryption and decryption time comparison

As presented in Table 5, the encryption and decryption time for AES, FEE and LSS are compared against different

workloads.

1
0

3

1
4

3

1
9

7

2
5

9

3
1

0

3
5

5

4
1

7 4
4

0

5
1

0 5
2

5

1
0

5 1
4

0

1
9

0

2
5

0

3
0

0

3
4

0

4
0

0 4
2

0

4
9

0 5
1

0

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

WORKLOAD (GB)

EXECUTION TIME COMPARISON

With MMD-QBIA Without MMD-QBIA

Sirisha N1, K.V.D. Kiran2

658

Figure 6: Performance comparison with encryption time and decryption time

As presented in Figure 6, the encryption and decryption performance is evaluated. The security schemes used in

the empirical study are provided in horizontal axis while the vertical axis shows the execution time for encryption

and decryption. The results revealed that the proposed methods such as FEE and LSS took relatively less time for

cryptographic operations. The rationale behind this is that, they are designed to be lightweight.

Data Size (MB)

Total Upload Time (seconds)

AES RSA FEE ECDH LSS

10 0.7973 1.8191 0.6678 0.6862 0.6568

50 2.9273 4.1609 2.371 2.8162 2.6689

100 4.6873 8.8621 3.5369 4.5762 4.4258

500 17.6373 32.1845 14.2967 17.5262 17.0856

Table 6: Total upload time taken by security schemes

As presented in Table 6, the total upload time for AES, RSA, FEE, ECDH and LSS are compared against different

workloads.

1
.0

1
6

8

0
.9

9
9

0
.9

9
5

6

0
.8

9
3

2

0
.8

9
8

9

0
.7

9
2

1

2
.6

2
3

7

2
.4

9
5

6

2
.0

8
7

9

2
.0

9
3

6

2
.4

9
5

6

1
.9

9
2

52
.9

9
4

8

2
.7

9
7

9

2
.7

5
8

3

2
.2

2
6

7

2
.6

9
6

8

2
.1

1
5

6

1
3

.8
6

4
8

1
3

.0
9

9
7

9
.8

8
4

5

9
.2

2
4

3

1
3

.0
8

9
6

9
.1

1
3

2

E N C R Y P T I O N
(A E S)

E N C R Y P T I O N
(F E E)

D E C R Y P T I O N
(A E S)

D E C R Y P T I O N
(F E E)

E N C R Y P T I O N
(L S S)

D E C R Y P T I O N
(L S S)

EN
C

R
YY

P
TI

O
N

 /
 D

EC
R

YP
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

SECURITY SCHEMES

PERFORMANCE COMPARISON

10 50 100 500

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

659

Figure 7: Total upload time comparison with the schemes in integrated architecture

As presented in Figure 7, the execution time for total upload time is evaluated. The security schemes used in the

empirical study are provided in horizontal axis while the vertical axis shows the execution time for total upload

time. The results revealed that the proposed methods such as FEE and LSS took relatively less time for uploading

data. However, there is linear increased in the time taken as the data grows in size.

Data Size (MB)

Total Download Time (seconds)

AES RSA FEE ECDH LSS

10 1.0169 1.8191 0.9229 0.9058 0.8098

50 2.5348 4.1609 2.1967 2.6237 2.0856

100 3.9048 8.8621 3.6374 2.8937 2.5265

500 13.8648 32.1845 12.5679 13.7537 12.4568

Table 7: Total download time taken by security schemes

As presented in Table 7, the total download time for AES, RSA, FEE, ECDH and LSS are compared against

different workloads.

0
.7

9
7

3

1
.8

1
9

1

0
.6

6
7

8

0
.6

8
6

2

0
.6

5
6

82
.9

2
7

3

4
.1

6
0

9

2
.3

7
1

2
.8

1
6

2

2
.6

6
8

94
.6

8
7

3

8
.8

6
2

1

3
.5

3
6

9

4
.5

7
6

2

4
.4

2
5

8

1
7

.6
3

7
3

3
2

.1
8

4
5

1
4

.2
9

6
7

1
7

.5
2

6
2

1
7

.0
8

5
6

A E S R S A F E E E C D H L S S

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

SECURITY SCHEMES

UPLOAD TIME COMPARISON

10 50 100 500

Sirisha N1, K.V.D. Kiran2

660

Figure 8: Total download time comparison with the schemes in integrated architecture

As presented in Figure 8, the execution time for total download time is evaluated. The security schemes used in

the empirical study are provided in horizontal axis while the vertical axis shows the execution time for total

download time. The results revealed that the proposed methods such as FEE and LSS took relatively less time for

downloading data. However, there is linear increased in the time taken as the data grows in size.

7. PERFORMANCE EVALUATION

There are certain assumptions made in the empirical study. First, attackers have no direct access to data in HDFS.

Second, users have access to code of map and reduce functions. Third, Map and Reduce functions in the

MapReduce framwork can gain access to storge media and network. Fourth, there is secure communication among

the nodes involved in the cluster. Fifth, any user of the system has normal network access previleges as end users.

The attack model is as follows. Attackers gain access to map() function and encodes sensitive data to a key.

Afterwards, the same key is sent to reduce() function. Reducer does not change key and finally it results in output.

The presence of the key in the final output indicates attack is successful. This model is known as query based

inference attack. When compared with the existing system named Airavat [25], the proposed system uses reducer

analysis to know whether thre is a pre-registered pattern and the proposed algoritm is employed to apply noise to

the data. Unlike Airavat, potentially malicious value is replaced by the value with noise to defeat privacy attack.

Ther threat from Unique critial value used by adverasary is removed with thhe proposed algorithm. The usability

of the proposed algorithm is found better than Airavat in case of prevention of query based inference attacks. The

integrated framework provides improved security and privacy to big data.

8. THREATS TO VALIDITY

The proposed solution to prevent privacy attacks on big data has targeted query based inference attacks. The

presence of a sensitive entity in the big data is interested by the attacker in this case. The proposed solution is based

on the pre-registered reduce concept that assumes that the reducer pattern is known beforehand. This is a threat to

validity of the proposed system if there is undetectable reducer pattern priori. Nevertheless, it the proposed

algorithm is able to detect query based inference attacks with pattern analysis and noise addition of multiple

modals. It is useful for preventing privacy attacks of that kind aforementioned. Another threat to validity of the

system is that, the empirical study is made with 3 nodes in the cluster. This may appear less as thousands of

commodity computers are involved in the real world cloud based distributed frameworks. However, it is to be

understood that experiments are made with 3 low configured systems for developing proof of concept prototype

that needs further enhancement to generalize the proposed solution to big data of different fields or domains.

9. CONCLUSIONS AND FUTURE WORK

In distributed programming frameworks, it is essential to protect data from untrusted or malicious code.

MapReduce programming model is widely used for handling big data. However, there are number of security

attacks on the big data. Our prior works [31] and [32] provided security enhancements to protect big data when it

is in rest and when it is on transit. They also considered both structured and unstructured data for security besides

supporting data dynamics on encrypted structured data. However, they do not cover the query based inference

attacks when big data is subjected to data analytics. The proposed algorithm Multi-Model Defence Against Query

Based Inference Attacks (MMD-QBIA) in this paper considers multiple models of preventing privacy attacks on

1
.0

1
6

9

1
.8

1
9

1

0
.9

2
2

9

0
.9

0
5

8

0
.8

0
9

8

2
.5

3
4

8

4
.1

6
0

9

2
.1

9
6

7

2
.6

2
3

7

2
.0

8
5

6

3
.9

0
4

8

8
.8

6
2

1

3
.6

3
7

4

2
.8

9
3

7

2
.5

2
6

5

1
3

.8
6

4
8

3
2

.1
8

4
5

1
2

.5
6

7
9

1
3

.7
5

3
7

1
2

.4
5

6
8

A E S R S A F E E E C D H L S S

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

SECURITY SCHEMES

DOWNLOAD TIME COMPARISON

10 50 100 500

Integrated Security and Privacy Framework for Big Data in Hadoop MapReduce Framework

661

big data. The algorithm has different strategies for different scenarios. For protecting aggregate values produced

by the reducer, it has provision for various procedures by adding appropriate noise. When there is inference attack

exhibited by the absence of pre-defined mapper pattern, it invokes StrongNoiseAddition() that ensure privacy so

as to prevent disclosure of sensitive data to adversaries. Cloudera Distribution Hadoop (CDH) is the environment

used for empirical study. One real time dataset and one synthetic dataset are used for the experiments. Proof of

concept prototype is made and the results revealed that the proposed system shows better usability over the existing

system named Airavat in providing privacy protection to big data.Then integrated security architecture is evaluated

with different schemes and found that the framework provides enhanced security and privacy to big data. In future,

we intend to perform experiments with more machines in Hadoop cluster. Another direction for future work is to

consider attacks other than query based inference attacks and improve our methodology to handle such attacks.

References

[1] Derbeko, P., Dolev, S., Gudes, E., & Sharma, S. (2016). Security and privacy aspects in MapReduce on clouds:

A survey. Computer Science Review, 20, 1–28.

[2] Jain, P., Gyanchandani, M., &Khare, N. (2018). Differential privacy: its technological prescriptive using big

data. Journal of Big Data, 5(1). P1-24.

[3] Jain, P., Gyanchandani, M., &Khare, N. (2019). Enhanced Secured Map Reduce layer for Big Data privacy

and security. Journal of Big Data, 6(1). P1-17.

[4] Khezr, S. N., &Navimipour, N. J. (2017). MapReduce and Its Applications, Challenges, and Architecture: A

Comprehensive Review and Directions for Future Research. Journal of Grid Computing, 15(3), 295–321.

[5] Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., & Sharma, D. (2015). Observing and

Preventing Leakage in MapReduce. Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security - CCS ’15. P1-12.

[6] EDGAR Log File Dataset. Retrieved from https://www.sec.gov/dera/data/edgar-log-file-data-set.html.

Accessed on 15 January 2020.

[7] Lee, Denny Guang-Yeu, "Protecting patient data confidentiality using differential privacy" (2008). Scholar

Archive. 392. http://digitalcommons.ohsu.edu/etd/392

[8] Dwork, C. (2006). Differential Privacy. In: Proceedings of the 33rd International Colloquium on Automata,

Languages and Programming (ICALP) (2), pp. 1–12.

[9] Greenberg (2016). Apple’s ‘differential privacy’ is about collecting your data—but not your data 2016.

Retrieved from https ://www.wired .com/2016/06/apple s-differenti al-priva cy-collecting -data/. Accessed 25 Jan

2020.

[10] Bhathal, G. S., & Singh, A. (2019). Big data: Hadoop framework vulnerabilities, security issues and attacks.

Array, p1-8.

[11] SantoshAditham, NagarajanRanganathanand Srinivas Katkoori. (2018). Call Trace and Memory Access

Pattern based Runtime Insider Threat Detection for Big Data Platforms, p1-13.

[12] SaraHsaini, SalmaAzzouzi and My El Hassan Charaf. (2018). A Secure Testing Based Approach for

Mapreduce Frameworks. IEEE, p1-5.

[13] Gambs, S., Killijian, M.-O., Moise, I., & del Prado Cortez, M. N. (2013). MapReducing GEPETO or Towards

Conducting a Privacy Analysis on Millions of Mobility Traces. 2013 IEEE International Symposium on Parallel

& Distributed Processing, Workshops and Phd Forum. P1-10.

[14] Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2016). Big Data and cloud computing: innovation opportunities

and challenges. International Journal of Digital Earth, 10(1), 13–53.

[15] Tien Tuan AnhDinh, PrateekSaxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang Zhang. (2015). M2R:

Enabling Stronger Privacy in MapReduce Computation. 24th USENIX Security Symposium, p1-17.

[16] James Stephen, J., Savvides, S., Seidel, R., &Eugster, P. (2014). Program analysis for secure big data

processing. Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering -

ASE ’14. P1-11.

[17] F. Resin Geyer, Gilles Fedak, Rafael Tim ́oteo de Sousa Jr.,João Paulo C. L. Costa,RubemPereira, Paul

Fergus, Anton Zaleski, Herman Vissia and Volker Markl. (2017). Security Framework for Distributed Data

Processing, p139-144.

[18] Hu X, Yuan M, Yao J, Deng Y, Chen L, Yang Q, Guan H, Zeng J. Differential privacy in telco big data

platform. ProcVLDB Endow. 2015;8(12):1692–703. https ://doi.org/10.14778 /28240 32.28240 67.

[19] Fan, J., Han, F., & Liu, H. (2014). Challenges of Big Data analysis. National Science Review, 1(2), 293–314.

[20] RafaelPires, Daniel Gavril, Pascal Felber, Emanuel Onica and Marcelo Pasin. (2017). A lightweight

MapReduce framework for secure processing with SGX. 2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, p1100-1107.

[21] Andrés ME, Bordenabe NE, Chatzikokolakis K, Palamidessi P. Geo-Indistinguishability: differential privacy

for locationbasedsystems. In: ACM. ISBN: 978-1-4503-2477. https ://doi.org/10.1145/25088 59.25167 35. 2014.

[22] M.SadeghRiazi, ChristianWeinert, OleksandrTkachenko, Ebrahim M. Songhori, Thomas Schneider and

FarinazKoushanfar. (2018). Chameleon: A Hybrid Secure Computation Framework for Machine Learning

Applications. ASIACCS, p707-721.

https://www.sec.gov/dera/data/edgar-log-file-data-set.html

Sirisha N1, K.V.D. Kiran2

662

[23] Rongxing Lu, Xiaodong Lin and Xuemin (Sherman) Shen. (2013). SPOC: A Secure and Privacy-Preserving

Opportunistic Computing Framework for Mobile-Healthcare Emergency. IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS,24, p614-624.

[24] Juan Du, Dean, D. J., Yongmin Tan, XiaohuiGu, & Ting Yu. (2014). Scalable Distributed Service Integrity

Attestation for Software-as-a-Service Clouds. IEEE Transactions on Parallel and Distributed Systems, 25(3), 730–

739.

[25] Roy I, Setty STV, Kilzer A, Shmatikov V, Witchel E. Airavat: security and privacy for MapReduce. In:

Proceedings of the7th USENIX symposium on networked systems design and implementation, NSDI 2010, San

Jose, April 28–30. p. 297–12. 2010.

[26] Xue, K., & Hong, P. (2014). A Dynamic Secure Group Sharing Framework in Public Cloud Computing. IEEE

Transactions on Cloud Computing, 2(4), 459–470.

[27] Li, M., Yu, S., Zheng, Y., Ren, K., & Lou, W. (2013). Scalable and Secure Sharing of Personal Health Records

in Cloud Computing Using Attribute-Based Encryption. IEEE Transactions on Parallel and Distributed Systems,

24(1), 131–143.

[28] Yang, H., & Lee, J. (2019). Secure Distributed Computing with Straggling Servers Using Polynomial Codes.

IEEE Transactions on Information Forensics and Security, 14(1), 141–150.

[29] Dong, L., Lin, Z., Liang, Y., He, L., Zhang, N., Chen, Q., … Izquierdo, E. (2016). A Hierarchical Distributed

Processing Framework for Big Image Data. IEEE Transactions on Big Data, 2(4), 297–309.

[30] McSherry F. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In:

Proceedings of communications of the ACM, vol. 53(9), 2010.

[31] N Sirisha 1,2, K V D Kiran 1,”An Efficient and Lightweight Security Scheme for Big Data”, International

Journal on Emerging Technologies 10(1): 01-03(2019)

[32] Sirisha N1,2 , K. V. D. Kiran2, “Flexible Scheme For Protecting Big Data And Enable Search And

Modifications Over Encrypted Data Directly”, Journal Of Mechanics Of Continua And Mathematical Sciences,

Vol.-15, No.-4, April (2020) pp 294-312.

[33] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In Proceedings of the ACM SIGMOD

Conference on Management of Data. Dallas,Texas. May 2000. pp.439-450

[34] Sirisha, N., & Kiran, K. V. D. (2018). Authorization of Data In Hadoop Using Apache Sentry. International

Journal of Engineering and Technology, 7(3), 234-236.

[35] Sirisha, N., Kiran, K. V. D., & Karthik, R. (2018).Hadoop security challenges and its solution using KNOX.

Indonesian Journal of Electrical Engineering and Computer Science,12(1), 107-116.

[36] Sirisha, N., & Kiran, K. V. D. (2017). Protection of encroachment on bigdata aspects International Journal of

Mechanical Engineering and Technology, 8(7), 550- 558.

[37] "A prediction scheme of mobility of cognitive femtocells LTE-A / LTE-UE under different speed

scenarios",International Journal of Engineering and Technology(UAE),Volume 7, Issue 2, 2018, Pages 64-

67,ISSN:2227524X

[38] "Prevention of Spoofing offensive in Wireless Sensor Networks",International Journal of Engineering and

Technology(UAE),Volume 7, 2018, Pages 770-773,ISSN:2227524X

[39] Jyoti B. Kulkarni, Dr. Manna Sheela Rani Chetty, “Depth Map Generation from Stereoscopic Images Using

Stereo Matching on GPGPU”, Journal of Advanced Research in Dynamical and Control Systems, Volume 9, ISSN

1943- 023X, Special Issue – 02 / 2017.

