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Abstract 

Public cloud infrastructure is widely used by enterprises to store and process big data. Cloud and its distributed computing 

phenomena not only provides scalable, available and affordable solution for storage and compute services but also raises 

security concerns. Many security solutions that came into existence encrypt data and allow accessing plaintext for data analytics 

in the confines of secure hardware. However, the fact remains that the large volumes of data is processed in distributed 

environment involving hundreds of commodity machines. There exist numerous communications between machines in 

MapReduce computing model. In the process, compromised MapReduce machines or functions are vulnerable to query based 

inference attacks on big data that lead to leakage of sensitive information. The main focus of this paper is to overcome the 

problem aforementioned. Towards this end, a methodology is proposed with an underlying algorithm for defeating query based 

inference attacks on big data in Hadoop. The proposed algorithm is known as Multi-Model Defence Against Query Based 

Inference Attacks (MMD-QBIA). A realistic attack model is considered for validating the effectiveness of the proposed 

methodology. Then an integrated framework for security and privacy to big data is evaluated. Cloudera Distribution Hadoop 

(CDH) is the environment used for empirical study. The experimental results revealed that the proposed solution prevents 

different kinds of query based inference attacks on big data besides security to big data in Hadoop MapReduce framework.  

 

Keywords – Big data, Hadoop, query based inference attack, big data leakage prevention  

 

1. INTRODUCTIOIN  

With the emergence of cloud computing and big data eco-system, there is every possibility to have innovative 

approaches to deal with massive amounts of data without losing value possessed in the data [14]. MapReduce is 

the programming phenomenon that supports parallel processing in presence of thousands of commodity computers 

in cloud computing or distributed environments. The MapReduce frameworks like Hadoop plays vital role in data 

analytics in distributed computing environments (DCE). And it has proved to be efficient to deal with big data in 

numerous application domains [4]. With big data, there are security problems. Different attacks may occur when 

data is at rest or in transit. Big data analytics has many security and privacy challenges [19].Our prior works [31] 

and [32] provided security enhancements. For instance, in [31] a light weight security mechanism known as 

Lightweight Security Scheme (LSS) is defined. In [32], an algorithm named Flexible and Efficient Encryption 

(FEE) is defined to deal with structured data security and data dynamics on the encrypted data that has been 

outsourced. However, our work in [31] and [32] does not consider the scenario where big data needs to be protected 

from privacy attacks when data is subjected to analytics in distributed environment. In this paper, we considered 

this problem and solution is provided to prevent query based inference attacks on big data. Big data throws privacy 

challenges unless there is a fool proof mechanism that not only provides cryptographic solution to data security 

but also for preventing data leakage [12]. Many solutions came into existence to protect privacy of big data. Airavat 

is one of them where differential privacy (DP) based solution is provided. Privacy issues with MapReduce 

programming phenomenon are explored in [1]. The usage of DP is advocated in [2] and [7]. Irrespective of DP 

based solutions, the protection concept is illustrated in Figure 1.  

 
Figure 1:Modus operandi of differential privacy based protection 

 

As presented in Figure 1, the query is made by analyst or adversary to database. Then the privacy guard is 

implemented based on DP that will add noise to sensitive data and returns to adversary. Thus adversary is defeated 
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as he cannot infer the desired sensitive information from the results obtained. Privacy Integrated Queries (PINQ) 

is the solution provided in [30] which is integrated into platform specific programming language named C#. 

Airavat [25] is another privacy protection based solution from Roy et al. [25] where data providers are assured to 

have secure and privacy preserving data analytics. This solution was based on DP. DP is used for Location Based 

Service (LBS) in [21]. However, it does not serve complex situations. Hu et al. [18] used DP for protecting privacy 

of big data pertaining to telecommunications. They used privacy budget parameter to ensure that the trade-off 

between the privacy and data loss is minimized. Apple [34] used DP for its operating system in mobile phones. 

The DP transformation includes hashing, subsampling and adding noise. Our contributions are as follows.  

1. We proposed a methodology for preventing data leakage or privacy attacks, especially, query based 

inference attacks on big data which is being processed in MapReduce framework in distributed 

environment. 

2. We proposed multiple algorithm that combined provide a comprehensive solution to query based 

inference attacks on big data.  

3. We implemented the proposed algorithms in a variant of Hadoop known as Cloudera Distribution Hadoop 

(CDH).  

4. An integrated security framework is proposed and evaluated. It could improve security and privacy to big 

data.  

The remainder of the paper is structured as follows. Section 2 reviews literature on different aspects of privacy of 

big data and attack prevention methods. Section 3 presents the preliminaries to ascertain the proof of the concept 

well. Section 4 presents the proposed solution to protect big data from specific privacy attacks. Section 5 presents 

experimental results. Section 6 evaluates the proposed solution and compares it with the state of the art. Section 7 

discussed about the threats to the validity of the proposed solution. Section 8 concludes the paper and gives 

directions for future work.  

 

2. RELATED WORK 

This section reviews literature on the issues pertaining to privacy attacks on big data in distributed environments. 

2.1 Privacy Issues in MapReduce Environments  

MapReduce environments deal with big data. They need to identify and protect from malicious attacks pertaining 

to privacy or query based inference attacks. Derbekoet al. [1] explored different kinds of attacks in MapReduce 

programming paradigm. They include impersonation attack, Denial of Service (DoS), eavesdropping, replay 

attack, repudiation and man in the middle attack. They found that privacy attacks may occur from adversarial 

Cloud Service Provider (CSP), adversarial users, professional hackers. Therefore, they emphasized the need for 

protecting data providers, protecting data from untrusted service providers. They suggest to define MapReduce 

algorithms with privacy preserving support.  

Ohrimenkoet al. [5] opined that in spite of encrypted communications in distributed computing environments, 

there is probability of leakage of sensitive data while big data is subjected to analytics. They proposed a 

methodology for secure implementation of MapReduce jobs by safeguarding intermediate traffic patterns. They 

proposed a solution known as shuffle in the middle to prevent leakage in MapReduce. Considering encrypted 

dataset D, their shuffle method results in D’ which is a permutation of D. They also employ padding method to 

deal with intermediate traffic wit careful analysis. Bhathal and Singh [10] explored vulnerabilities of Hadoop 

pertaining to security policies, configuration, web interface, software and technology heterogeneity. They found 

that the traditional security approaches will be inadequate to deal with runtime issues when big data is being 

analysed.  

2.2 Methods based on Differential Privacy to Protect Big Data 

Differential privacy (DP) is the widely used technique that produces two identical datasets denoted as D and D’. 

The latter contains certain noise. However, DP ensures that D’ produces almost same result as done with D. 

However, there is privacy protection with D’. Jain et al. [2] explored different aspects of DP in the context of its 

application to big data. They studied the importance of privacy budget and sensitivity. There are many real world 

applications of DP. Lee [7] described the usage of DP by US Census Bureau to safeguard confidentiality of patient 

data. McSherry [30] developed a privacy preserving data analysis platform known as Privacy Integrated Queries 

(PINQ). PINQ helps in interactive data analytics besides ensuring privacy of data. It is based on LINQ (Language 

Integrated Query) of C# programming language.  

Roy et al. [25] proposed a MapReduce based system for privacy and security of big data. The system is named as 

Airavat. With Airavat, the data providers are assured to have secure and privacy preserving data analytics. Airavat 

supports DP for preventing leakage of sensitive data. In fact, it integrates access control mechanism and MAC+ 

DP for better performance. However, Airavat is inadequate to protect privacy of big data when output keys are 

generated by untrusted mappers. Andres et al. [32] employed DP for location based systems. They enhanced 

Location Based Service (LBS) systems for privacy guarantees. DP adds random noise to sensitive data such as 

location. They intended to improve it for complex applications. 

Hu et al. [33] used DP for protecting privacy of big data pertaining to telecommunications. They used privacy 

budget parameter to ensure that the trade-off between the privacy and data loss is minimized. They explored data 

publication with DP to see that the sensitive information is not disclosed. Apple company implemented DP in iOS 

10 in order to collect and store users’ data with privacy protection. However, Apple cannot extract any specific 

user’s data as it violates privacy. As Facebook and Google are doing, Apple sends lot of users’ data for data 
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analytics. The data is transmitted, however, in transformed format with DP. The DP transformation includes 

hashing, subsampling and adding noise [34].  

 

2.3 Enhancing MapReduce Layer for Big Data Privacy 

Privacy attacks on big data may occur when data is subjected to Map and Reduce methods. To overcome this 

problem, Jain et al. [3] enhanced the MapReduce (MR) layer with an additional layer between MR layer and 

Hadoop Distributed File System (HDFS). The input and output privacy is combined along with security. The 

method employed here protects data from privacy attacks and reduces information loss.  It also promotes scalability 

as it uses lightweight encryption.  

Adithamet al. [11] proposed different thread detection mechanisms that may arise from malicious insiders. Their 

solution includes profiling process behaviour using library and system calls and memory access patterns. After 

building process profiles, they are verified dynamically at runtime to know any discrepancies. Principal 

Component Analysis (PCA) and Singular Value Decomposition (SVD) methods are employed to estimate 

violations. In future, they intended to deal with big data privacy when the data is subjected to analytics. Gambset 

al. [13] used a tool known as GEPETO for analysing big data privacy by interpretation of mobility traces in large 

scale. They considered MapReduce environment for their empirical study where they sanitized data to prevent 

privacy attacks. They intended to improve it by using spatial cloaking methods in future. Dinhet al. [15] proposed 

a methodology for privacy preserving MapReduce computations. They incorporated secure shuffling, secure 

grouping and execution integrity.  

Stephen et al. [16] proposed a method with program analysis to find security threats in MapReduce code. Geyer et 

al. [17] on the other hand proposed a security framework for processing big data in distributed environment. Pireset 

al. [20] proposed a light weight security framework for MapReduce programming paradigm. Raiziet al. [22] 

proposed a hybrid framework for secure data analytics. In the same fashion, Lu et al. [23] focused on opportunistic 

computing framework with privacy and security in healthcare domain. Du et al. [24] proposed an attestation 

mechanism for cloud service integrity as part of Software as a Service (SaaS). Xue and Hong [26] proposed a 

framework for secure data sharing in presence of dynamic groups while Li et al. [27] proposed secure and privacy 

preserving mechanism for sharing of health records. Yang et al. [28] used polynomial codes for security in 

distributed environments. Dong et al. [29] proposed a distributed processing approach that is hierarchical in nature. 

From the literature, it is observed that there has been considerable research to make MapReduce operations with 

privacy consideration. However, with respect to differential privacy, the existing works showed different 

approaches and there is need for an integrated multi-modal approach for preventing query based inference attacks.  

 

3. PRELIMINARIES 

Differential Privacy (DP) is the technique used to protect data from privacy attacks. It was originally developed 

by Dwork, Nissim, McSherry and Smith and later on improved by others [8]. To be formal, let two databases 

denoted as D1 and D2. These two are known as neighbouring databases when they have difference in at most a 

single data entry. Accordingly, any algorithm denoted as M is considered to be ε-differentially private if D1 and 

D2 output x for all pairs as in Eq. 1.  

Pr[M(D1) =  X] ≤  exp (ε)Pr [M(D2) =  x]                                         (1) 

The output of the computation does not reveal the presence of any data item as input. As adversaries will not be 

able to know whether a specific item is part of the dataset as it precludes deriving any sensitive information from 

the data. Ideally, DP needs to be employed in such a way that when (after adding DP) data is given to third party 

analyst, he/she will never be able to know identity of any entity. Such way of characterization of data is part of DP 

based methods. DP is best used to prevent query based inference attacks. In other words, adversaries cannot know 

the participation of an item (presence or absence of an item) in the dataset. Privacy Budget (ε) is the control 

parameter for enforcing privacy on big data (as used in this paper). Considering two neighbouring datasets D1 and 

D2 and an output function A, the privacy budget needs to be low such as a value that is almost equal to 1. It does 

mean that the outcome probability of A on D1 and D2 is almost same. This is the ideal way of using privacy budget 

when DP is employed. With higher DP more security is possible but it leads to less utility of data subjected to 

analytics. Therefore, the privacy budget € is generally kept at 0.01, 0.1 etc. Eq. 2 shows the usage of privacy 

budget.  

Pr[A(D1 ∈ S] ≤ e(2) ∈ Pr [A(D2) ∈ S]                                           (2) 

There is another important term pertaining to DP. It is known as sensitivity that tells the amount of noise added to 

the output of MapReduce function in Hadoop (with respect to the work of this paper). The sensitivity is based on 

the magnitude of change in outcome when a single row is added or removed. When a series of counting queries 

denoted as Q made on D1 and D2 the sensitivity of Q is denoted as ∆Q and it is computed as in Eq. 3 

∆Q = max ||Q(D1) −  Q(D2)||                                                          (3) 

 

In order to achieve DP noise is added to dataset. There are two primary mechanisms of adding noise. They are 

known as Exponential Mechanism (EM) and Laplace Mechanism (LM). The amount of noise added has its 

influence on the global sensitivity and privacy budget. EM is a security controlled strategy to achieve DP. It is 

used for output that is in categorical form. Quite intuitively, it can be understood that EM guarantees the DP 

definition as the change in a row of database will not affect the outcome of the function. It is desired to handle 

situations where best response is to be picked up. In a query – response system, let input database is denoted as D 
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and a potential response is denoted as rϵR for a score function denoted as u: D × R -> R. Let an algorithm named 

A gives a response to query in order to satisfy e-differential privacy as in Eq. 4.   

A(D, u ) = {r ∶| Pr[r ∈ R] ∞ exp (εu(D, r)/2∆u)}                               (4) 

The score function determines the yield of exponential mechanism. The privacy budget will have its influence on 

the possible outcome. For higher level of security, it is essential to keep the value of privacy budget as low as 

possible. LM on the other hand computes given function and perturbs coordinates with noise that is acquired from 

distribution of LM. The level of noise is controlled based on the privacy budget parameter. LM is useful for 

producing numerical outputs. An algorithm denoted A when applied to D with global sensitivity denoted as ∆f and 

the function denoted as f: D ->R∧d, Eq. 5 shows how the noise is added.   

A(D) = f(D) +  noice                                                                       (5) 

If the noise added complies with Laplace distribution, e-differential privacy is satisfied. Thus it is denoted as 

noise~Lap(∆f/ε) where the zero is considered for location parameter while the scale parameter is denoted as ∆f/ε. 

The probability density function, when scale parameter is b and location parameter is zero, is computed as. (X) = 

exp ( - |X|/B)/2B 

σ(x) =  √D(x), D(x) =  2b2, and b =  ∆ f ε⁄                                       (6)  

D(x) =  2(∆f/ε)2 = 2∆f 2/ε2                                                               (7) 

σ(x) =  √D(x) =  √2∆f 2/ε2 =  √2∆f/ε                                              (8) 

In Eq. 6, standard deviation is denote as σ(X)and variance is denoted as D(X). Finally, the results are obtained as 

in Eq. 7 and Eq. 8. DP also exhibits two important properties. They are known as sequential composition (SC) and 

parallel composition (PC). The former refers to the sequence of computations that provide DP at each computation 

and DP at sequence level as well while the latter involves in many disjoint computations in parallel.  

 

4. PROPOSED FRAMEWORK  

Technological innovations changed the way an application stores and processes data.With cloud computing 

infrastructure, Internet-based computing has emerged to be an ideal approach. The traditional means of storage 

and retrieval are no longer preferred for cost and other reasons while handling large volumes of data. Before 

indulging into the proposed framework here is the problem statement or motivating scenario. 

4.1 Problem Statement  

A MapReduce paradigm consists of two units of computation known as map and reduce. Each unit takes key-value 

pairs as input and produces desired output in the form of key-value pairs after processing. Both input and output 

are stored in Hadoop Distributed File System (HDFS). It is assumed that input given to any MapReduce computing 

is encrypted and adversaries can only get encrypted data if they succeed in launching attacks. However, when data 

is being processed, it is done in plain text. Therefore, it is essential to protect such data from privacy attacks. Figure 

2 shows the map reduce computations for WordCount benchmark.  

 
Figure 2:Shows execution of WordCount benchmark with MapReduce computations 

 

For big data analytics, a programmer typically implements Map and Reduce tasks. In many real world data 

analytics applications, data of an organization is used for gaining business intelligence (BI). In the process, the 

main problem considered in this paper is privacy attacks launched by adversaries. To be specific the attacks are 

query based inference attacks where adversary wanted to infer knowledge by knowing the presence of specific 
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customer in the dataset. That is the reason it is known as query based inference attack. Considering the MapReduce 

source code in Listing 1, there is evidence of such attack from adversary. 

 

 
Listing 1: Application specific MapReduce source code (malicious) 

 

As observed in Line 14 through Line 16, attacker is trying to find the presence of a customer named “Suzuki”. If 

the customer is found in the data being processed, then the adversary is setting the word “Sazaki” at Line 15 and 

set a value 1000000 as output. This is in map() function. In the reduce() function, from Line 33 through Line 35, 
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the adversary  is manipulating sum value to gain very specific value as output. If that value is found in output, 

adversary confirms that there is presence of customer “Suzuki” in the big data. This kind of attack is known as 

query based inference attack. This is the main privacy leakage problem addressed in this paper.  

4.2 Methodology  

The objective of this methodology is to protect sensitive data even in presence of potentially untrusted mapper and 

reducer codes.It is based on cloud computing technology and distribued programming framework. Hadoop is the 

MapReduce framework used for empirical study which facilitates new paradigm in programming with map and 

reduce functions. The source code of map() and reduce()  functions may have code which is malicious in nature. 

Often it is injected by adversaries to launch privacy attacks. Therefore, it is essential to ensure non-disclosure of 

sensitive information. The solution provided in this paper is based on DP. Cloudera Distribution Hadoop (CDH) 

has MapReduce framework. This framework is generally scalable, available and fault tolerant. It supports various 

real world use cases associated with big data analytics. Figure 3 shows the architectural overview of the proposed 

methodology.  

 
Figure 3: Architectural overview of the proposed methodology 

 

The computation system has different components such as MapReduce framework, cloud storage, JVM and 

compute cloud. MapReduce supports input from HDFS and sending output to HDFS. MapReduce runs in a cluster 

of commodity computers. Privacy of big data is achieved using DP based algorithm. In presence of malicious 

mapper or reducer, the proposed algorithm ensures that the privacy of big data is not lost. DP, as explained in 

Section 3, has capabilities to prevent certain kinds of privacy attacks such as query based inference attacks. Here 

is the procedure used to prevent privacy attacks. Let us consider D as original dataset while D’ is derived from D 

by using DP technique. There will be no much difference between these two datasets. Hence they are known as 

neighbouring datasets. An algorithm A achieves DP with output denoted as O as in Eq. 9.  

Pr[A(D)=O] <=exp(𝜺). Pr[A(D’) =O]                                                         (9) 

The degree with which privacy is protected is represented as 𝜺. As the proposed methodology deals with large 

volumes of data, it is likely that there is sensitive data. The data may be of any domain like healthcare, banking, 

social networks and so on. There are many algorithms to provide privacy but may result in information loss due to 

data transformation for ensuring privacy. Thus, there is trade-off between privacy level and deterioration of utility 

of data. If such trade-off is not handled, it leads to utility problem of big data. This fact is understood with the 

reconstruction function found in [33] which is shown in Eq. 10.  

Fxi(a)=
∫ f

a
−∞ y (w1−z)fx(z)dz

∫ f
∞

−∞ y (w1−z)fx(z)dz
                                                                      (10) 

When there are many randomsamples with cumulative distribution function (CDF) is denoted as Fy and samples 

are as x1+y1, x2+y2..., xn+yn and Fx. As in Eq. 10, there is posterior distribution. In the same fashion, for x1+y1, 

x2+y2, ..., xn+ynestimation is as in Eq. 11.  

Fxi(a)=
1

n
∑ ḟxi

n
i=1 =

1

n

∫ f
a

−∞ y (w1−z)fx(z)dz

∫ f
∞

−∞ y (w1−z)fx(z)dz
                                                (11)  

By differentiating the Fx density function is obtained as in Eq. 12.  

Fxi(a)=
1

n
∑ ḟxi

n
i=1 =

y (w1−a)fx(a)

∫ f
∞
−∞ y (w1−z)fx(z)dz

                                                   (12) 

The reconstruction and randomization solutions may cause data leakage as they have some associated data. 

Therefore, such solutions are not suitable for strong privacy for big data. The DP construct (∈, a)-differential 
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Privacy satisfies the computation function given in Eq. 9 by considering D and D’ as neighboring datasets. The 

relation S⊆ Range(F)is found to be true. Eq. 13 is thus used to achieve this.  

Pr[F(D)ϵS] ≤ exp(ϵ) × Pr[F(D)ϵṠ ]                                                  (13) 

As per this, it is not possible to have inference attacks or query based privacy attacks. Thus adversaries cannot find 

the presence or absence of given entity in the data with any probability.  

4.3 Algorithm Design 

We defined an algorithm known as Multi-Model Defence Against Query Based Inference Attacks (MMD-QBIA) 

which analyses reducer code and original dataset D. After execution of the algorithm, the neighbouring dataset D’ 

is resulted. The D’ is produced by reducer in MapReduce paradigm in order to defeat query based inference attacks. 

It is achieved by adding noise to the reducer output. However, adding too much noise will lead to losing utility of 

big data. Therefore, we devised a plan to determine the noise level by analysing reducer code (byte code pattern). 

If the bytecode pattern is found genuine, NoiseAddition() function is invoked to add little noise. If pattern is not 

found, StrongNoiseAddition() function is invoked as the attack is suspected. Table 1 shows notations used in the 

algorithm. 

NOTATION  DESCRIPTION  

D Original dataset (big data) 

D’ Neighbouring dataset (transformed for privacy protection) 

key, <v1, v2, … vn> Reducer input 

max Max value in the range of values 

min  Min value in the range of values  

R(x) Returns a random number from the range of values denoted as -|x| to |x| 

random_value_list Contains a set of random values  

single_value_list Contains a set of values from reducer that appear only once (as the adversary model 

has its significance) 

𝜺 Privacy parameter whose value is given by owner of big data (or a domain expert) 

Table 1: Notations used in the MMD-QBIA algorithm 

 

In order to add noise to aggregate values such as sum, count, average, max and min produced by reducer, different 

procedures are defined as part of the algorithm. They include NoiseAdditionForSum (), NoiseAdditionForCount 

(), NoiseAdditionForAvg (), NoiseAdditionForMax () and NoiseAdditionForMin (). All these procedures are 

invoked as part of normal noise addition procedure named NoiseAddition (). If the expected bytecode pattern is 

not found (suspected attack), the reducer output will be subjected to StrongNoiseAddition() that ensures complete 

sanitization of all target values prior to returning final reducer output.  

Algorithm: Multi-Model Defence Against Query Based Inference Attacks (MMD-QBIA) 

Input:MapReduce code, Dataset D, 𝜺 

Output:Protected Dataset D’ 

1. Start 

2. Analyze reducer 

3. IF pattern found Then 

4. D’=Invoke NoiseAddition() 

5. ELSE 

6. D’=Invoke StrongNoiseAddition()  

7. END IF 

8. Return D’ 

9. End 

Procedure NoiseAddition() 

1. Start 

2. Invoke NoiseAdditionForSum() 

3. Invoke NoiseAdditionForCount() 

4. Invoke NoiseAdditionForAverage() 

5. Invoke NoiseAdditionForMax() 

6. Invoke NoiseAdditionForMin() 

7. End 

Procedure NoiseAdditionForSum() 

1. Start 

2. Initialize min and max range 

3. sum=Obtain original sum value 

4. noise = (1+𝜺) * R(max) 

5. return noise + sum  

6. End 

Procedure NoiseAdditionForCount() 

1. Start 

2. Initialize min and max range 

3. count=Obtain original count value 
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4. noise = (1+𝜺) * R(1) 

5. return noise + count  

6. End 

Procedure NoiseAdditionForAvg() 

1. Start 

2. Initialize min and max range 

3. sum=Obtain original sum value 

4. noise = ((1+𝜺) * R(max))/n 

5. return noise + sum 

6. End 

Procedure NoiseAdditionForMax() 

1. Start 

2. Initialize min and max range 

3. maxvalue=Obtain original maximum value 

4. noise = (1+𝜺) * R(max) 

5. return noise + Max(min) 

6. End 

Procedure NoiseAdditionForMin() 

1. Start 

2. Initialize min and max range 

3. minvalue=Obtain original minimum value 

4. noise = (1+𝜺) * R(max) 

5. return noise + minvalue 

6. End 

Procedure StrongNoiseAddition() 

1. Start 

2. Take reducer input (key, <v1, v2, … vn>) 

3. random_value_list = <v1, v2, … vn> 

4. single_value_list = getSingeValueList() 

5. For each value x in n 

6.    IF vi exists in single_value_list THEN 

7.       vi=getRandomValue(random_value_list) 

8.    END IF 

9. End For 

10. output=<v1, v2, … vn> 

11. noise = (1+R(𝜺)) 

12. return noise + output 

13. End 

Algorithm 1:Multi-Model Defence Against Query Based Inference Attacks 

 

As defined in Algorithm 1, the given data (big data) from reducer prior to returning output of reduce function is 

taken as input. It is denoted as D and the algorithm transforms it into a neighboring dataset D’. Finally, instead of 

returning D, the reducer returns D’ as output. Thus adversaries fail in succeeding query based inference attacks. 

The main algorithm starts analyzing reducer byte code pattern. If the regular pattern is found, there is need for 

noise addition but it is limited considering computational cost. Step 2 of the algorithm does this analysis. Step 3 

through Step 7, one of the two procedures named NoiseAddition() and StrongNoiseAddition() is executed based 

on the given condition that checks whether pattern is found.  

NoiseAddition() procedure is desinged in such a way that it takes care of only aggregated values that are generally 

produced by the reduce() function of MapReduce computing. As there are different aggregate values known as 

sum, max, min, average and count, different procedures are defiend to deal with all these aggregates. The 

procedures are named as NoiseAdditionForSum(), NoiseAdditionForMax(), NoiseAdditionForMin(), 

NoiseAdditionForAvg() and NoiseAdditionForCount() respectively. Noise addition is made based on the privacy 

parameter 𝜺 given by domain expert of data provider. Line 4 of all these procedures computes noise dynamically. 

All these functions avoid adding much noise.  

When there is no pattern found (attack suspected), the algorithm invokes StrongNoiseAddition() procedure. This 

procedure considers sanitization or anonymization of all single valued numbers (as the attack model has 

significance to such values). Step 2 of this procedure takes reducer input in the form of key-value pair. In Step 4, 

it finds all single valued numbers. It also considers a random value list used for privacy protection as in Step 3. 

Step 5 through Step 9 is an iterative process for adding noise. Step 10 takes the output values and before returning 

them by the reducer, they are subjected to noise addition. Step 11 computes noise and Step 12 returns noise added 

outcome that comes back to Step 6 of the main algorithm. This outcome is nothing but D’ that represents 

neighboring database that defeats query based infernce attacks launched by adversaries as per DP philosophy.  

 

5. SECURITY INTEGRATED FRAMEWORK 
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Our prior works [31] and [32] provided security enhancements. In [31] a security mechanism known as 

Lightweight Security Scheme (LSS) is defined. In [32], an algorithm named Flexible and Efficient Encryption 

(FEE) is defined to deal with structured data security and data dynamics on the encrypted data that has been 

outsourced. The work presented in Section 4 deals with prevention of query based inference attacks on big data in 

Hadoop MapReduce framework.  

MMD-QBIA 

Flexible and Efficient           

Encryption (FEE) 

Key 

Exchange 

(LSS) 

Encrypt and Upload Data  

Cloud Infrastructure 

HDFS 

MY SQL 

Data Provider 

Users 

Lightweight Cryptography Unstructured / 

Semi-Structured 

Data 

Relational Data 

(Structured 

Data) 

 
Figure 4: Integrated architecture for big data security, privacy and data dynamics 

 

As shown in Figure 4, the key sharing scheme LSS is used to have secure exchange of keys between data provider 

and users. A lightweight cryptographic method is used to outsource data and retrieve data from cloud. This method 

ensures secure end to end communication between cloud server and data provider. When data is to be shared to 

users, then the data provider and users need LSS for secure key exchange. With the security keys, the users can 

perform two kinds of operations on cloud. First, they can make queries to obtain data from non-relational data. 

Second, they can use SQL based queries for storage and retrieval of data from relational database. Besides, users 

can perform data dynamics (changes on the outsourced relational data) directly. It is achieved with Flexible and 

Efficient Encryption (FEE) scheme. The scheme takes care of security of data flown between the users and cloud 

infrastructure. MMD-QBIA algorithm described in Section 4 is used to see that the queries made by users for data 

from non-relational databases are securely processed. In fact, the algorithm is aimed at preventing query based 

inference attacks. With the integration architecture shown in Figure 4, it has a comprehensive and holistic 

phenomenon for realizing big data security and privacy when data is at rest, in transit and when being used for data 

analytics. 

 

6. EXPERIMENTAL RESULTS 

Experiments are made with a cluster made up of 3 machines, one master node and two slave nodes. Intel Core i5 

processor with 3.4 GHz is the configuration used for the machines. The configuration of Hadoop is changed to 

have replication number set to 2 in conf/hadoop-site.xml. Two datasets are used for empirical study. The first 

dataset is the real word dataset collected from [6]. The second dataset is synthesized one. Therefore, details of two 

experiments are provided in this section. In the first experiment dataset from [6] is used while the second 

experiment used the synthesized dataset.  

 

6.1 Experiment 1 

The big data [6] contains different attributes such as IP address, date, time and link. Here the sensitive attribute is 

IP address and adversaries launch query based inference attacks to know the presence or absence of a specific IP 

address in the big data being processed in Hadoop MapReduce. The program uses aggregate function sum. For 

this reason, the MMD-QBIA algorithm invokes NoiseAddition() procedure that turn calls NoiseAdditionForSum() 

procedure which returns the noisy (privacy protected) outcome to its caller and thus D’ is generated. The D’ is then 

returned by the reducer as final output. The system gets two queries from user. The first query is genuine (not 

malicious). The purpose of the program is to know how many times each link is repeated in the given log file. 

Noise is added accordingly. With respect to second query, the attacker tries to fine the presence of an IP address 

“192.168.133.33”. As noise is added, it is not possible for adversary to infer the privacy or presence of an IP 

address.  
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IP 

Actual Count 

192.168.133.33 

13654 

192.168.133.34 

8435 

192.168.133.35 

12447 

192.168.133.36 

13461 

192.168.133.37 

13363 

192.168.133.38 

8591 

192.168.133.39 

14876 

192.168.133.40 

13983 

192.168.133.41 

14765 

Table 2:MapReduce outcome in absence of attacker 

 

As presented in Table 2, 192.168.133.33is the IP address highlighted as it is used later by the adversary to know 

its presence in the data. The table shows actual count of the IP address in the dataset. The results of MapReduce 

came as expected by the mapper and reducer that are genuine. However, when mapper or reducer are compromised, 

the intention is to have privacy attacks on big data. To safeguard the IP address from disclosure to attacker, the 

patter of Reduce function is obtained using decompiler. The outcome is used in the algorithm to know whether 

attack is made or not. The result in presence of attacker is shown in Table 3.  

IP 

Count in Presence of Attacker 

192.168.133.33 

13653 

192.168.133.34 

8434 

192.168.133.35 

12446 

192.168.133.36 

13460 

192.168.133.37 

13362 

192.168.133.38 

8590 

192.168.133.39 

14875 

192.168.133.40 

13982 

192.168.133.41 

14764 

Table 3: Results of MapReduce in presence of attacker 

 

As presented in Table 3, the IP address and corresponding noise added value for count is provided. The D is 

converted to D’ with the proposed algorithm. For the IP address 192.168.133.33 which is the target of privacy 

attack made by adversary, the result is slightly changed and the value is 13653. The computation process of the 

algorithm for 1 highlighted IP is as follows.  

𝜺 = 8.85x10−12 

count (in presence of attacker) =count+ [(1+ 𝜺)+R] 

=13654+[(1+8.85x10−12)-2.00000000001] 

=13653 

The above computation illustration shows proof of the concept. It is computed for the target IP address 

192.168.133.33.   
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Figure 4:MapReduce outcome comparison (Stacked Line Graph) 

 

As presented in Figure 4, it is observed that the IP address is shown in horizontal axis and the count (genuine and 

in presence of attacker) is shown in vertical axis. As the different between D and D’ is very less, stacked line graph 

is preferred. It shows the result of proposed DP algorithm.  

 

Data Size (GB) 

Time taken for execution (sec) 

With MMD-QBIA WithoutMMD-QBIA 

50 103 105 

100 143 140 

150 197 190 

200 259 250 

250 310 300 

300 355 340 

350 417 400 

400 440 420 

450 510 490 

500 525 510 

 

Table 4:MapReduce outcome with and without privacy protection 

 

As presented in Table 4, the results pertaining to execution time of MapReduce based DP algorithm MMD-

QBIAmeant for protecting big data is observed.  
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Figure 5: Execution time of MapReduce with and without MMD-QBIA 

 

As presented in Figure 5, the workload of experiments is shown in horizontal axis and vertical axis shows the time 

taken in seconds. As the results showed, the size of workload has its influence on the execution time. There is 

linear increase in the execution time as workload size increases. It shows the performance difference when the 

proposed DP algorithm MMD-QBIA is employed.  

 

6.2 Experiment 2 

In this experiment, the proposed algorithm is evaluated using synthetic dataset. The dataset contains family name 

of a person, day of birth (0-30) and the score achieved in an entrance examination conducted by a university. The 

purpose of the program is to compute average score of the data provided based on the family name of person. As 

number of people with same family name existed in the data, the MapReduce computing finds the average score. 

In the bytecode of the program, the average function is intentionally removed. This action forces the algorithm to 

go with StrongNoiseAddition() procedure. Here the attacker knows the birth day of a person and tries to find the 

family name of the person. Since day of birth has range of values from 0 to 30, the average is always less than 30. 

Attacker finds birth day value and replaces it with a big number such as 1000000. Thus attacker expects the average 

value greater than 30. In the experiment, however, the algorithm replaces the value 1000000 with a random number 

between 0 and 30. This will defeat the attack and proves the efficacy of the algorithm. The rationale behind this is 

that the actual value in the experiment is different from that of expected value by the adversary. 

 

6.3 Results of Integrated Architecture 

The integrated architecture with FEE and LSS algorithms is evaluated with Cloudera Distribution Hadoop (CDH). 

The observations are recorded in terms of encryption decryption time, total upload time and total download time 

for given workload size.  

Data Size 

(MB) 

Execution Time for Encryption and Decryption (seconds) 

Encryption 

(AES) 

Encryption 

(FEE) 

Decryption 

(AES) 

Decryption 

(FEE) 

Encryption 

(LSS) 

Decryption 

(LSS) 

10 1.0168 0.999 0.9956 0.8932 0.8989 0.7921 

50 2.6237 2.4956 2.0879 2.0936 2.4956 1.9925 

100 2.9948 2.7979 2.7583 2.2267 2.6968 2.1156 

500 13.8648 13.0997 9.8845 9.2243 13.0896 9.1132 

Table 5: Encryption and decryption time comparison 

 

As presented in Table 5, the encryption and decryption time for AES, FEE and LSS are compared against different 

workloads.  
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Figure 6: Performance comparison with encryption time and decryption time 

 

As presented in Figure 6, the encryption and decryption performance is evaluated. The security schemes used in 

the empirical study are provided in horizontal axis while the vertical axis shows the execution time for encryption 

and decryption. The results revealed that the proposed methods such as FEE and LSS took relatively less time for 

cryptographic operations. The rationale behind this is that, they are designed to be lightweight.  

 

Data Size (MB) 

Total Upload Time (seconds) 

AES RSA FEE ECDH LSS 

10 0.7973 1.8191 0.6678 0.6862 0.6568 

50 2.9273 4.1609 2.371 2.8162 2.6689 

100 4.6873 8.8621 3.5369 4.5762 4.4258 

500 17.6373 32.1845 14.2967 17.5262 17.0856 

Table 6: Total upload time taken by security schemes 

 

As presented in Table 6, the total upload time for AES, RSA, FEE, ECDH and LSS are compared against different 

workloads.  
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Figure 7: Total upload time comparison with the schemes in integrated architecture 

 

As presented in Figure 7, the execution time for total upload time is evaluated. The security schemes used in the 

empirical study are provided in horizontal axis while the vertical axis shows the execution time for total upload 

time. The results revealed that the proposed methods such as FEE and LSS took relatively less time for uploading 

data. However, there is linear increased in the time taken as the data grows in size.  

 

Data Size (MB) 

Total Download Time (seconds) 

AES RSA FEE ECDH LSS 

10 1.0169 1.8191 0.9229 0.9058 0.8098 

50 2.5348 4.1609 2.1967 2.6237 2.0856 

100 3.9048 8.8621 3.6374 2.8937 2.5265 

500 13.8648 32.1845 12.5679 13.7537 12.4568 

Table 7: Total download time taken by security schemes 

 

As presented in Table 7, the total download time for AES, RSA, FEE, ECDH and LSS are compared against 

different workloads.  
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Figure 8: Total download time comparison with the schemes in integrated architecture 

 

As presented in Figure 8, the execution time for total download time is evaluated. The security schemes used in 

the empirical study are provided in horizontal axis while the vertical axis shows the execution time for total 

download time. The results revealed that the proposed methods such as FEE and LSS took relatively less time for 

downloading data. However, there is linear increased in the time taken as the data grows in size.  

 

7. PERFORMANCE EVALUATION  

There are certain assumptions made in the empirical study. First, attackers have no direct access to data in HDFS. 

Second, users have access to code of map and reduce functions. Third, Map and Reduce functions in the 

MapReduce framwork can gain access to storge media and network. Fourth, there is secure communication among 

the nodes involved in the cluster. Fifth, any user of the system has normal network access previleges as end users. 

The attack model is as follows. Attackers gain access to map()  function and encodes sensitive data to a key. 

Afterwards, the same key is sent to reduce() function. Reducer does not change key and finally it results in output. 

The presence of the key in the final output indicates attack is successful. This model is known as query based 

inference attack. When compared with the existing system named Airavat [25], the proposed system uses reducer 

analysis to know whether thre is a pre-registered pattern and the proposed algoritm is employed to apply noise to 

the data. Unlike Airavat, potentially malicious value is replaced by the value with noise to defeat privacy attack. 

Ther threat from Unique critial value used by adverasary is removed with thhe proposed algorithm. The usability 

of the proposed algorithm is found better than Airavat in case of prevention of query based inference attacks. The 

integrated framework provides improved security and privacy to big data.  

 

8. THREATS TO VALIDITY 

The proposed solution to prevent privacy attacks on big data has targeted query based inference attacks. The 

presence of a sensitive entity in the big data is interested by the attacker in this case. The proposed solution is based 

on the pre-registered reduce concept that assumes that the reducer pattern is known beforehand. This is a threat to 

validity of the proposed system if there is undetectable reducer pattern priori. Nevertheless, it the proposed 

algorithm is able to detect query based inference attacks with pattern analysis and noise addition of multiple 

modals. It is useful for preventing privacy attacks of that kind aforementioned. Another threat to validity of the 

system is that, the empirical study is made with 3 nodes in the cluster. This may appear less as thousands of 

commodity computers are involved in the real world cloud based distributed frameworks. However, it is to be 

understood that experiments are made with 3 low configured systems for developing proof of concept prototype 

that needs further enhancement to generalize the proposed solution to big data of different fields or domains.  

 

9. CONCLUSIONS AND FUTURE WORK 

In distributed programming frameworks, it is essential to protect data from untrusted or malicious code. 

MapReduce programming model is widely used for handling big data. However, there are number of security 

attacks on the big data. Our prior works [31] and [32] provided security enhancements to protect big data when it 

is in rest and when it is on transit. They also considered both structured and unstructured data for security besides 

supporting data dynamics on encrypted structured data. However, they do not cover the query based inference 

attacks when big data is subjected to data analytics. The proposed algorithm Multi-Model Defence Against Query 

Based Inference Attacks (MMD-QBIA) in this paper considers multiple models of preventing privacy attacks on 
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big data. The algorithm has different strategies for different scenarios. For protecting aggregate values produced 

by the reducer, it has provision for various procedures by adding appropriate noise. When there is inference attack 

exhibited by the absence of pre-defined mapper pattern, it invokes StrongNoiseAddition() that ensure privacy so 

as to prevent disclosure of sensitive data to adversaries. Cloudera Distribution Hadoop (CDH) is the environment 

used for empirical study. One real time dataset and one synthetic dataset are used for the experiments. Proof of 

concept prototype is made and the results revealed that the proposed system shows better usability over the existing 

system named Airavat in providing privacy protection to big data.Then integrated security architecture is evaluated 

with different schemes and found that the framework provides enhanced security and privacy to big data. In future, 

we intend to perform experiments with more machines in Hadoop cluster. Another direction for future work is to 

consider attacks other than query based inference attacks and improve our methodology to handle such attacks.  
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