
Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

515

An Auto-Scaling Approach to Load Balance Dynamic Workloads for Cloud

Systems

Dr. Sharvani GS,

Associate Professor, Department of Computer Science and Engineering, RV College of Engineering-

Bangalore, sharvanigs@rvce.edu.in
Resma KS,

Research Scholar, Department of Computer Science and Engineering, RV College of Engineering-

Bangalore,(Research Center Affiliated to VTU-Belagavi), resma.vin@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online:

10 May 2021

Abstract

With the advances in modern technology, need for cloud services is ever increasing. In such case on public real-

time cloud environments the workload on the respective server can vary depending on the user needs. Cloud

Computing is the latest technology that provides on-demand availability of computer resources without direct

intervention of the user. This technology combined with cloud load balancing enables enterprises to manage

workload demands. The cloud load balancer, with auto scaling features, further increases the efficiency and

optimized utilization of the computing resources. This paper discusses how Amazon Web Services as the cloud

medium along with MobaXterm for remote control, and implement ARR configurations for the load balancer

to route the requests. AWS gives us knowledge about various concepts such as auto-scaling groups, target

groups, load balancers, etc.

Keywords–Cloud Computing, Workload, Availability, Load Balancer, Auto Scaling, Target Groups

I. INTRODUCTION

Purpose: With more and more advances being made in cloud computing and its increasing efficiency, companies

have started using cloud as their underlying architecture for most of the important operations. The demand for

resources is always increasing in these companies and with the help of cloud architecture, all the demand

requirements are met easily. Cloud allows them to increase/decrease the load on servers according to their

requirements as cloud provides the policy of pay-as-you-go which makes it a good option for the organizations.

Scope: Cloud computing is the on-demand delivery of IT resources via the internet, with pay-as-you-go pricing.

Instead of buying, owning and maintaining physical data centers and servers, the companies can leverage this

task to third party companies to do the same for them. These third-party companies then provide a virtual

environment to the user/company which then the user can use without bothering about the details of the

architecture/mechanism. Following are a few reasons why every company should migrate to cloud computing:

a. Cost saving - Companies no longer need to buy, own and maintain their own data centers and servers. They

can use the cloud architecture on a pay-as-you-go pricing.

b. Focus on the business - A company does not need to bother about the architecture of the cloud storage or

the technical issues related to the data stored in the cloud as it will be maintained by the cloud service

provider.

mailto:sharvanigs@rvce.edu.in
mailto:(Research%20Center%20Affiliated%20to%20VTU-Belagavi),%20resma.vin@gmail.com

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

516

c. Performance - Cloud services are efficient as it provides data to the user irrespective of the geographical

location of the user. It also ensures automatic updates for the services and applications.

d. Security - Cloud computing ensures protection against data from any kind of theft possible. It restricts the

access of data to only the authorized entities restricting the unauthorized entities to have any information.

e. Flexibility - There are cases when a part of the cloud might go under repair/maintenance or updates. in

such situations the other resources still continue to function until the problem is solved.

Problem Statement:

The reliability and system performance in a cloud environment heavily depends on the load balancing strategies

used. Usually, the incoming requests for the resources are heterogeneous and highly. This project aims at designing

an optimized load balancer which is robust enough to handle such heterogeneous and varying request and provide

a better reliability and performance.

Motivation:

Instead of buying, owning and maintaining physical data centers and servers, users can leverage the task of storing

data to third party companies. User can access technology services such as computing power, storage and

databases on an as-needed basis from a cloud provider such as AWS. Following are a few reasons that has

motivated users to shift to cloud:

a. Cloud computing, has provided users with the functionality of Auto Scaling. It is a method where

computational resources are scaled and measured in terms of number of servers used based on the load put

onto that server. In big companies, most of the workload can’t be predicted beforehand which causes a

problem. Auto scaling helps in such situations as it allows the companies to scale up/down their resources

automatically without prior knowledge of the workload.

b. A load balancer thus helps in scaling out by distributing the workload among an array of servers. It allows

the user to add or remove the capacity automatically depending on the workload.

II. LITERATURE REVIEW

The topic of load balancing is vast and applicable to various sizes of networks. A lot of research has been made on

this topic and several researchers have written scientific articles and research papers on load balancing. A

conceptual model for the future of cloud computing using load balancing algorithms is discussed in [1]. The

proposed model is used for efficient resource management, improving the reliability of cloud services and

providing the different load balancing algorithms such as static load balancing algorithms (SLBA), dynamic load

balancing algorithms (DLBA), and dynamic nature inspired load balancing algorithms (NDLBA). It is concluded

that DLBA and NDLBA are more efficient than SLBA.

The analysis of load balancing algorithms using the simulation tool Cloud Analyst has been done in [7]. The

researchers have analyzed the performance of round robin algorithm, Equally Spread Current Execution (ESCE)

load algorithm and Throttled Load Balancing (TLB) algorithm. It is concluded that TLB performs the best among

the three algorithms.

A meta-study has been conducted on load balancing and server consolidation in cloud computing environments in

the literature of [3]. It is stated that load balancing with server consolidation enriches the exploitation of resource

utilization and can enhance Quality of Service (QoS) metrics, since data centers and their applications are

increasing exponentially. Their work attempts to present taxonomy with a new classification for load balancing and

server consolidation, such as migration overhead, hardware threshold, network traffic, and reliability.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

517

Furthermore, a detailed analysis of traffic management that occurs in the cloud when a security attack occurs is

discussed in detail in [4]. Analytical modelling and evaluation are considered to get QoS measurements under

security attacks. The traffic control management is also proposed and considered together with the analytical model.

The resulting analytical model is solved using successive over-relaxation (SOR) approach to get QoS

measurements.

III. PROPOSED METHODOLOGY

Figure 1: Typical Load Balancer

The following section describes the methodology to be followed. The session provides an overview of system,

service or process. It also provides us with the concepts being used throughout the study. Some of the concepts

being used will be discussed in the following sections followed by the system architecture and the flow diagram.

An EC2 instance is a virtual server in Amazon Web services which stands for Elastic Compute Cloud. Due to its

functionality of on-demand scalable computing capacity, the AWS subscriber can request and provision for a

compute server in the cloud. EC2 is the reason why companies can eliminate the need to buy, own and maintain

physical data centers and servers. It allows to launch multiple web servers which can be scaled up or down as per

use.

It is a template used by the EC2 Auto scaling group to launch EC2 instances. Some of the information specified

are the Amazon Machine Image ID, type of instance, key-pair value, etc. This same information is specified in case

the user has launched an EC2 instance before.

A target group is specified when creating a listener rule. The main task of the target group is to route the incoming

traffic to the registered target. Traffic is only forwarded to the traffic group if a specific condition is satisfied.

Multiple types of target groups can be created in order to support different types of incoming requests. For instance,

one can create a target group to handle general incoming requests and a separate target group to handle the requests

to the micro-services.

An Auto Scaling group maintains a collection of Amazons EC2 instances which are treated as a logical grouping

for the purposes of automatic scaling and management. Various functionalities are implemented using auto-scaling

groups. These functionalities include health check replacements and scaling policies. Size of the auto scaling group

is decided by the number of desired EC2 instances set. Maintaining the number of instances is one of the main core

functionalities along with automatic scaling. Using different scaling policies, the user can increase/decrease the

number of instances in the Auto Scaling group.

A security group is responsible for controlling the traffic for instances by acting as a virtual firewall. More than

one security group can be specified while launching the instance. If the user does not specify the security group,

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

518

then the default security group is used. Rules can be added to each security group which will allow traffic in the

associated instances. When the new rules are added or the old one gets modified, all the instances get automatically

updated with the new/modified rules. The user needs to specify a security group while launching an instance in the

VPC. The security group can later. Security groups associated with the primary network interface changes if the

security group of an instance is changed as it is associated with network interfaces. Different types of load balancers

which could be used are:

• Application Load Balancer - For flexible application management.

• Network Load Balancer - For extreme performance and static IP.

Classic Load Balancer [8] - For existing application that was built within the EC2 - classic network. The load

balancer used in the study is the application load balancer (ALB), Figure 1. These load balancers support content-

based routing which works well for serverless container-based applications. These load balancers are highly

scalable. Figure 1 of Application Load Balancer illustrates the basic components. Each listener in the diagram

contains a default rule, and one listener contains another rule which is responsible to route requests to a different

target group. Same target group can be registered with multiple target groups as shown in the figure 1. The clients

directly contact the application load balancer as it is the single point of contact for them. The incoming application

traffic is then distributed across multiple targets. These targets can be multiple EC2 instances that are spread out in

multiple availability zones. Adding more than one listener to the load balancer increases the application availability.

Using the configured port, the listener keeps a check for any incoming client requests using the configured protocol.

How the load balancer routes its requests to the registered targets is determined by the defined rules for the listener.

Each rule consists of a priority, one or more actions, and one or more conditions. When the conditions for a rule

are met, then the specified actions are performed. A default rule must be defined for each listener after which

additional rules can be optionally defined. The requests are then routed to one or more targets registered with the

target group using the port number and the specified protocols and port numbers. These targets can be EC2

instances in multiple availability zones. A target can be registered with multiple target groups. Health checks can

be configured on a per target group basis and are then performed on all the registered targets.

IV. SYSTEM ARCHITECTURE

As the underlying architecture, the VPC and the region of US East (N. Virginia) is configured. There are 6

availability zones in this region. In every availability region there is 1 single public subnet. An auto scaling groups

which will consist of the web server is configured. The auto-scaling group/web-servers is deployed across 2

availability zones. The Elastic Load Balancers, Figure 2 is deployed across the same 2 availability zones for higher

availability. Regarding the security groups, the elastic load balancer will be exposed to the public, which means,

the public traffic will be hitting the elastic load balancer and the only traffic that will be hitting the auto-scaling

group will be on port 80 from the elastic load balancer. EC2 instances are launched and configured it as a web

server after which, verify that it is working. After launching the instances create an image of the instance as an

Amazon Machine Image (AMI). When it comes to the auto-scaling group, these machine images can be used to

scale up the pool of servers. Launch Configuration will decide the extend of scaling

.

Initially, web server is launched in the AWS console, using Amazon Elastic Compute Cloud service. Then, Amazon

Machine Image (AMI) is created for each EC2 web server. Figure 3, these AMI is used for creating a launch

configuration, which in turn forms the basis for creating autoscaling group, for each EC2 instance, as needed.

Parallelly, an application load balancer is created and configured to form the target group with all the required

constraints.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

519

Figure 2: Proposed Methodology

The launch configuration is further proceeded to form the auto scaling group. On the other hand, the load balancer

along with Target group, in turn, is linked to the auto scaling using the configurations, automatically.

Figure 3: Typical EC2 Load Balancer

V. IMPLEMENTATION DETAILS

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

520

Figure 4: System Architecture of Proposed Load Balancer

 The following section describes the implementation Figure 4, details about the analysis of load balancing

algorithms as well as the active health check module. The analysis of the load balancing algorithms requires the

necessary knowledge of the programming language used in the load balancer. Mobaxterm brings out almost all the

essential UNIX commands to a windows environment.

Figure 5: Data Flow

Least Outstanding Requests Algorithm for Load Balancing Requests. In this algorithm, the new incoming request

is transferred to the target having the least outstanding requests. This load balancer will enable the load to spread

evenly across the targets and ensure that the less capable targets that have low processing power are not burdened

with more requests. This load balancer will further prevent long standing queues. It will enable the newer targets

to take the load off from the targets that are already overloaded. The entire flow of the pseudocode for the Least

Connections algorithm (Figure 6 and Figure 7) begins with the consideration of the total number of back-end web

servers. Once the number is determined, the NGINX load balancer accepts incoming request to the web servers

from the user

. The incoming requests are then served according to the Least Connections algorithm, in which the servers are

checked for their weights and active connections. The one with the least active connections serves the first request,

followed by the one with the second least active connections, and so on. The servers which have been configured

to work with the Least Connections algorithm but are currently not working or “not alive,” are just skipped over

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

521

by the algorithm when assigning incoming requests. Finally, the connection to the user is ended once all the requests

are served by the algorithm in the load balancer. CURL Test Statements: CURL is a command line tool and a

library which is used to receive and send data between a client and a server or any two machines connected over

the internet. It supports a wide range of protocols like HTTP, FTP, IMAP, LDAP, POP3, SMTP and many more.

Figure 6: Pseudocode of Least Connections Algorithm

A. Implementation Workflow

Figure 7: Syntax of configuration of Least Connections algorithm

Firstly, the environment was setup in the AWS management console by configuring a total of 7 EC2 instances, 2

of them being load balancers and 5 of them being the back-end web servers. Additionally, 2 EC2 instances were

set up and configured to test the implementation of the active health check module. The instance IDs of the EC2

instances and their attached EBS volumes are displayed in Table 1. NGINX was then set up and configured to run

on all the instances, such that the load balancers can redirect traffic to the web servers accordingly. The

configuration of NGINX was easy as it is open-sourced and there is a lot of documentation available for the

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

522

configuration process. The flow control is defined in figure 5.

This was followed by the stress tests that were done for both single load balancer setup as well as the double load

balancer setup, with varying the number of servers. These stress tests were done using the RESTful Stress API,

which provides various configurations that can be changed when performing the stress tests. Figure 10, depicts the

configurations provided by the RESTful Stress API.

Observations were then taken down for each and every implementation scenario, in the form of AWS CloudWatch

metrics. A total of 15 metrics has been taken into consideration for the analysis of the load balancing algorithms

in the real-time cloud environment of AWS. Some metrics describe the EC2 instances themselves, whereas some

metrics describe the attached EBS volumes. These metrics are given in Table 2. This was followed by the

preparation of detailed analysis reports for each implementation scenario, with respect to the range of values

observed for each CloudWatch metric and the stability of the trend of the graph obtained in the AWS console for

each CloudWatch metric.

Comparative results were then tallied with regards to the best load balancing algorithm for a particular scenario.

This is due to the fact that there can be a number of variations in terms of network conditions and back-end server

configurations in a real-time cloud environment.

 Figure 8: Sample configuration settings of RESTful Stress API

Finally, the active health check module has been written from scratch and implemented in the load balancers in

order to continuously check the statuses of the back-end web servers attached to the particular load balancer.

Screenshots of the outputs of the active health check module in action have also been taken for both cases of active

servers as well as stopped servers.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

523

Table 1: Parameters Taken for the Study

B. Restful Stress API And Testing Scenarios

The tool used for the stress tests (figure 8) of the load balancing algorithms in the real- time cloud environment of

AWS is the RESTful Stress API. The version 1.6.0 was obtained from the Google Chrome Store and used in the

stress tests. Stress tests have been performed on the back-end web servers for varying number of iterations, ranging

from 100 to 20000. Each stress test took around 1.5 to 2 hours, due to the large number of iterations. The RESTful

Stress API supports a variety of options for the massive stress test, including the number of iterations, delay between

each iteration, timeout duration for the iterations and warm-up duration. The testing can also be done using a

manual Python script using a finite loop, but there is no option to provide delays between each iteration and the

subsequent testing would also take a lot longer, due to the large number of iterations.

A configuration was used for testing the load balancing algorithms using the RESTful Stress API, so that it would

be easier for analysis. This configuration is given in Table 3. Delay and timeout were constant for all tests, namely

100ms and 30000ms.

VI. RESULTS AND ANALYSIS

This section discusses all the results that were obtained during the implementation and stress testing phases.

Table V.1: Test Configuration

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

524

Figure 9: Server Configuring on MobaXterm

Figure 9 gives the snap shot of the server running on the load balancer and figure 11 gives the web server

configuration on mobaxterm.

Figure 10: Displaying Server running on the Load Balancer in action

Figure 10 Gives the web server configuration on MobaXterm.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

525

Figure 11: CPU Utilization of Designed LB

Figure 11 gives the CPU utilization obtained from the load balancer set up. which is better than the average

performance given by the default systems. Those values enumerated in table 4 and table 5.

Figure 12: Network IN Designed Load Balancer

Network IN figure 12, is giving the bytes received to unit time. an improved network in means an optimized

load balancer.

Figure 13: Network Out Proposed System

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

526

Network IN figure 13, is giving the bytes send out of the network to unit time. an improved network out means

an optimized load balancer.

Figure 14: CPU Credit Usage Proposed System

cloud being a pay and use service, figure 14, cpu credit usage is a very important metrics to be studied. this

measure directly corelated to the billing for the tenant usage. this metrics is showing a reduced value to average

value because of the implementation of the auto scaling features.

Figure 15 gives the demonstration of the auto scaling features of the designed load balancer. as and

figure 15: servers scaled up automatically with increased load.

when the load on the system increases, the web servers are launched automatically according to the rule set for

the autoscaling. in the experiment conducted the rule set was to increase the number of server if the utilization

of the server increases >=50% of the total capacity of the pool of servers.

Figure 16: Consumed Load Balancer Capacity

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

527

In Figure 16, the matrix is about how optimized the resource utilization is happening with the load

Figure 17: Graphical Analysis before the implementation of ARR algorithm

Table 3: Analysis report for Least Connections algorithm

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

528

Table 5: Final analysis report

balancer. this is showing a positive result in comparison to the existing systems [2]. Figure 16 And Figure

17 gives the comparison number of request and rule evaluation, where the graphs show clear advantages of

implementation with ARR algorithm. table 4, table 5 and table 6 enumerates all the observations obtained from

the load balancer implementation in a concise format.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

529

Table 4: Final scores for the load balancing algorithms

VII. CONCLUSION

The paper is presenting a load balancing model using the Amazon Web Services (AWS) cloud. Various types of

load balancers were studied before finalizing our load balancer. These three EC2 instances were maintained on the

’MobaXterm’ platform for back-end, as Linux machines, using their respective IPV4 addresses. The default load

balancer to be implemented was Round Robin. The algorithm used for the study is an improved Least Outstanding

Request as the main load balancing strategy for the implementation. The EC2 servers were further auto scaled

depending on the increasing/decreasing ’CPU Utilization’ on the EC2 configurations of the same instances in the

MobaXterm. Advanced Request Routing (ARR) algorithm was also implemented. The basic if-then rules were

configured for the results in the Mobaxterm. With the use of ARR algorithm, server running on the load balancer,

at any time, could be traced back in any EC2 configurations running on the MobaXterm in real-time. Graphical

Analysis as a measure of comparison in ’Rule Evaluation Count’ was done before and after the use of the ARR

algorithm in the AWS console.

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

530

References

[1] Mohamed Belkhouraf, Ali Kartit And Hassan Ouahmane Hamza Kamal Idrissi, Zaid Kartit And

Mohamed El Marraki Secured Load Balancing Architecture For Cloud Computing Based On Multiple

Clusters- 978-1-4673-8149-9/15/$31.00 ©2015 IEEE

[2] Dr.B.Vinayagasundaram, R Swathy ,Load Balancing In Cloud Environment Using Stackelberg’s

Approach, 2017 Ninth International Conference On Advanced Computing (Icoac).

[3] Shang-Liang Chen ,Yun-Yao Chen∗,Suang-Hong Kuo, CLB: A Novel Load Balancing Architecture And
Algorithm For Cloud Service, Http://Dx.Doi.Org/ 10.1016 /J.Compeleceng.2016.01.029, 0045- 7906/©

2016 Elsevier Ltd.

[4] Kashif Bilal, Saif Ur Rehman Malik, And Samee U. Khan, Trends And Challenges In Cloud Datacentres,
IEEE Cloud Computing · June 2014 DOI: 10.13140/2.1.1032.2568

[5] Jianhua Gu, Jinhua Hu, Tianhai Zhao, A New Resource Scheduling Strategy Based On Genetic

Algorithm In Cloud Computing Environment, © 2012 ACADEMY PUBLISHER

Doi:10.4304/Jcp.7.1.42-52.

[6] Resma K. S, Akash Hegde, Dr. Sharvani G. S. Elastic Load Balancing In Real-Time Cloud Environment,

International Journal Of Advanced Science And Technology Vol. 29, No. 12s, (2020), Pp. 269-283.

[7] Sambit Kumar Mishra, Bidhudatta Sahoo, Priti Paramita Parida, Load Balancing In Cloud Computing

A Big Picture. 1319-1578/ 2018 The Authors. Production And Hosting By Elsevier B.V. On Behalf Of

King Saud University.
[8] Rafiqul Zaman Khan, Md Oqail Ahmad, Load Balancing Challenges On Cloud Computing: A Survey,

© Springer India 2016 D.K. Lobiyal Et Al. (Eds.), Proceedings Of The International Conference On

Signal, Networks, Computing, And Systems, Lecture Notes In Electrical Engineering 396, DOI

10.1007/978-81-322-3589-7_3

[9] Resma K. S, Dr. Sharvani G. S, Amruta Tapas Paul, A Closer Look At The Network Middleboxes, 978-

1-7281-0418-8/19/$31.00©2019 IEEE

[10] Kousik Dasguptaa, Brototi Mandalb, Paramartha Duttac, Jyotsna Kumar Mondald, Santanu

Dame ,A Genetic Algorithm (GA) Based Load Balancing Strategy For Cloud Computing, 2212-0173 ©

2013 The Authors. Published By Elsevier Ltd. Open Access Under CC BY-NC-ND License.

[11] Resma K. S, Dr. Sharvani G. S, Edge Distributed Cloud Middleboxes International Journal Of

Advance Research, Ideas And Innovations In Technology, ISSN: 2454-132X, Volume 5, Issue 3.

Luo, J., Rao, L., & Liu, X. (2017). Spatio-Temporal Load Balancing For Energy Cost Optimization In

Distributed Internet Data Centres. IEEE Transactions On Cloud Computing, 3(3), 387– 397.

[12] Nahir, A., Orda, A., & Raz, D. (2016). Replication Based Load Balancing. IEEE Transactions

On Parallel And Distributed Systems, 27(2), 494–507.

[13] Resma, K. S., G. S. Sharvani, And Ramasubbareddy Somula. "Optimization Of Cloud Load Balancing

Using Fitness Function And Duopoly Theory." International Journal Of Intelligent Computing And

Cybernetics (2021).

[14] KS Resma, GS Sharvani, Datacenter Reliability Pursuance With Optimized Load Balancers, Cloud

Reliability Engineering: Technologies And Tools, 2021,CRC Press.

[15] Akash Hegde, Resma K. S., Dr. Sharvani G. S. (2020). Elastic Load Balancing In Real-Time Cloud

Environment. International Journal Of Advanced Science And Technology, 29(12s), 269 - 283.

Retrieved From Http://Sersc.Org/Journals/Index.Php/IJAST/Article/View/21935.

[16] Somula, R. S., & Sasikala, R. (2018). A Survey On Mobile Cloud Computing: Mobile Computing+

Cloud Computing (MCC= MC+ CC). Scalable Computing: Practice And Experience, 19(4), 309-337.

[17] Somula, R., Anilkumar, C., Venkatesh, B., Karrothu, A., Kumar, C. P., & Sasikala, R. (2019). Cloudlet

Services For Healthcare Applications In Mobile Cloud Computing. In Proceedings Of The 2nd

International Conference On Data Engineering And Communication Technology (Pp. 535-543).

Springer, Singapore.

[18] Somula, R., & Sasikala, R. (2018). Round Robin With Load Degree: An Algorithm For Optimal

Cloudlet Discovery In Mobile Cloud Computing. Scalable Computing: Practice And Experience,

19(1), 39-52.

[19] Somula, R., & Sasikala, R. (2019). A Load And Distance Aware Cloudlet Selection Strategy In Multi-

Cloudlet Environment. International Journal Of Grid And High Performance Computing (IJGHPC),

11(2), 85-102.

[20] Somula, R., & Sasikala, R. (2019). A Honey Bee Inspired Cloudlet Selection For Resource Allocation.

http://dx.doi.org/%2010.1016%20/j.compeleceng.2016.01.029
http://books.google.com/books?hl=en&lr&id=QfAeEAAAQBAJ&oi=fnd&pg=PA191&dq=info%3A-60EPMsa6DQJ%3Ascholar.google.com&ots=FYCQtnXMts&sig=-9rhRDurpJssdHaxPE1vwfUlWy0
http://sersc.org/journals/index.php/IJAST/article/view/21935

Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 515-531

Research Article

531

In Smart Intelligent Computing And Applications (Pp. 335-343). Springer, Singapore.

[21] Somula, R., & Sasikala, R. (2019). A Research Review On Energy Consumption Of Different

Frameworks In Mobile Cloud Computing. Innovations In Computer Science And Engineering, 129-

142.

[22] Somula, R., Narayana, Y., Nalluri, S., Chunduru, A., & Sree, K. V. (2019). POUPR: Properly Utilizing

User-Provided Recourses For Energy Saving In Mobile Cloud Computing. In Proceedings Of The 2nd

International Conference On Data Engineering And Communication Technology (Pp. 585-595).

Springer, Singapore.

[23] Ramasubbareddy, S., Ramasamy, S., Sahoo, K. S., Kumar, R. L., Pham, Q. V., & Dao, N. N. (2020).

CAVMS: Application-Aware Cloudlet Adaption And VM Selection Framework For Multicloudlet

Environment. IEEE Systems Journal.

[24] Sahoo, K. S., Mishra, P., Tiwary, M., Ramasubbareddy, S., Balusamy, B., & Gandomi, A. H. (2019).

Improving End-Users Utility In Software-Defined Wide Area Network Systems. IEEE Transactions

On Network And Service Management, 17(2), 696-707.

[25] Sahoo, K. S., Tripathy, B. K., Naik, K., Ramasubbareddy, S., Balusamy, B., Khari, M., & Burgos, D.

(2020). An Evolutionary SVM Model For DDOS Attack Detection In Software Defined Networks.

IEEE Access, 8, 132502-132513.

[26] Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasubbareddy, S., Chilamkurti, N., & Nam, Y.

(2019). Energy And Delay Aware Data Aggregation In Routing Protocol For Internet Of Things.

Sensors, 19(24), 5486.

[27] Sankar, S., Srinivasan, P., Luhach, A. K., Somula, R., & Chilamkurti, N. (2020). Energy-Aware Grid-

Based Data Aggregation Scheme In Routing Protocol For Agricultural Internet Of Things. Sustainable

Computing: Informatics And Systems, 28, 100422.

[28] Mohanta, B. K., Jena, D., Ramasubbareddy, S., Daneshmand, M., & Gandomi, A. H. (2020).

Addressing Security And Privacy Issues Of Iot Using Blockchain Technology. IEEE Internet Of

Things Journal, 8(2), 881-888.

[29] Sahoo, K. S., Tiwary, M., Sahoo, B., Mishra, B. K., Ramasubbareddy, S., & Luhach, A. K. (2019).

RTSM: Response Time Optimisation During Switch Migration In Software-Defined Wide Area

Network. IET Wireless Sensor Systems, 10(3), 105-111.

[30] Sennan, S., Ramasubbareddy, S., Luhach, A. K., Nayyar, A., & Qureshi, B. (2020). CT-RPL: Cluster

Tree Based Routing Protocol To Maximize The Lifetime Of Internet Of Things. Sensors, 20(20), 5858.

[31] Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasubbareddy, S., Chilamkurti, N., & Nam, Y.

(2019). Energy And Delay Aware Data Aggregation In Routing Protocol For Internet Of Things.

Sensors, 19(24), 5486.

[32] Sennan, S., Balasubramaniyam, S., Luhach, A. K., Ramasubbareddy, S., Chilamkurti, N., & Nam, Y.

(2019). Energy And Delay Aware Data Aggregation In Routing Protocol For Internet Of Things.

Sensors, 19(24), 5486.

[33] Mohanta, B. K., Jena, D., Mohapatra, N., Ramasubbareddy, S., & Rawal, B. S. (2021). Machine

Learning Based Accident Prediction In Secure Iot Enable Transportation System. Journal Of Intelligent

& Fuzzy Systems, (Preprint), 1-13.

[34] Sennan, S., Ramasubbareddy, S., Balasubramaniyam, S., Nayyar, A., Abouhawwash, M., & Hikal, N.

A. (2021). T2FL-PSO: Type-2 Fuzzy Logic-Based Particle Swarm Optimization Algorithm Used To

Maximize The Lifetime Of Internet Of Things. IEEE Access.

[35] Ramasubbareddy, S., Swetha, E., Luhach, A. K., & Srinivas, T. A. S. (2021). A Multi-Objective

Genetic Algorithm-Based Resource Scheduling In Mobile Cloud Computing. International Journal Of

Cognitive Informatics And Natural Intelligence (IJCINI), 15(3), 58-73.

