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Abstract— Operations and Maintenance costs have always posed a heavy burden in wind turbines and the main 

aspects in spending are on unplanned unscheduled breakdowns, repairs and down time costs. Technology 

enhancements with connectivity between wind farms and operations control center would reduce risk and improve 

efficiency during maintenance by continuously analysing the data acquired.  Digital solutions of industrial internet 

of things and machine learning have made inroads and are the real game changers with the potential to supervise, 

predict and prevent catastrophic failures.  Generating the insights from the data to understand the wear pattern and 

to formulate replacement strategies for reducing frequent maintenance costs and to increase the production. This 

paper shall discuss and review about the prognostics and diagnostics of the wind turbines, machine learning 

algorithms, identifying their inter-dependency within the subsystems and the available digital solutions for 

effective handling of data in predictive maintenance schedules.  

Keywords— condition monitoring;Industrial IoT;predictive maintenance;fault diagnosis;machine 

learning;prognostics; 

 

INTRODUCTION 

Wind power is one of the fastest-growing renewable energy technologies due to multi-fold increase in energy 

generation capacities both at onshore and offshore. According to International Renewable Energy Agency [1], 

almost 75% of new electricity generation capacity built in 2019 uses renewable energy, out of which wind energy 

accounts to 25% as shown in the Figure-1.  Latest data from IRENA shows solar, wind and other green 

technologies provide more than one-third of the world’s power.   

 
Figure-1: Renewable energy generation capacity 

 

Renewable energy generation capacity is increased by 7.4% in 2019 of which solar along with wind energy 

continued to lead capacity expansion by 20%, and 10% respectively. These are the two sources of energy that are 

growing with a pace. India too is experiencing an exponential growth [2] in the production capacity from the 

onshore wind turbines (WT) as shown in the Figure-2. 

 
Figure-2: Production capacity of wind energy in India  
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II. BACKGROUND STUDY 

The challenges faced during the operation and maintenance at wind farms with number of wind turbines 

scattered and positioned in remote areas has been exceedingly difficult for a quick access and is also expensive. 

The wind energy industry typically follows reactive maintenance approach or run-to-failure maintenance. This 

form of maintenance has been the most critical practice available to operators. Reactive maintenance work costs 

four to five times as much as proactively replacing worn and damaged parts. When an equipment fails due to lack 

of awareness of degraded performance there may incur immediate costs because of insufficient productivity, 

inventory backup, delay in replacing the parts. Preventive maintenance is another scheduled periodic maintenance 

which enables a routine check up of wearable components at prefixed intervals. The breakdown of the different 

types of maintenance [3] have been stated in the Figure-3 and briefed in the Table-1. 

 
Figure-3: Types of maintenance 

 

Maintenance  Description 

Reactive 

Maintenance 

▪ Allows components/assembly to run to failure  

▪ Catastrophic failure which may lead to collateral damage 

▪ High risk due to higher downtime 

▪ High maintenance cost 

▪ May lead to damage other sub-assemblies 

Preventive 

Maintenance 

▪ Prevents failure before they occur 

▪ Chances of catastrophic failure is less 

▪ Lower risk and lower downtime  

▪ Less chances of damaging other sub-assemblies 

Predictive 

Maintenance 

▪ Full asset visibility 

▪ Initial cost to benefit is high 

▪ Early detection of wear and tear in components/assembly 

▪ Increases asset life cycle 

▪ Lowest downtime 

▪ Significant reduction/complete elimination of unscheduled breakdowns.  

Table 1: Features of different types of maintenance 

Sudden failures can also happen due to higher wind loads in times of strong seasonal winds. The wear damage 

of components, dry or water contaminated lubrication, transient loads with sudden accelerations and finally 

uneven load sharing are the causes of high edge stresses. If early detection or preventive action is not in operation 

this may lead to plant shutdown causing heavy expenditure and hampering production.  

 

 
Figure-4: Components of a horizontal axis wind turbine  

The different parts of the horizontal axis wind turbine [4] are shown in Figure-4 that are prone to wear and 
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review [5] enlists the rate of failures for the gearbox, generator, and blades that contribute huge downtimes as 

shown in Figure-5 both in offshore and onshore.  

 

 
 

Figure-5: Critical components of onshore and offshore wind turbines 

 

The overview of the components in the gearbox that frequently fail [6] have been shown in Figure-6. 

 

 
Figure-6: Top failing components in wind turbine gearboxes 

 

Wind turbines do have commonly arising faults in its tower, nacelle and sub-assemblies as depicted in the 

Figure-7.  

 
 

Figure-7: Commonly arising faults in different parts of the wind turbine 

Traditional Predictive Maintenance (PdM) using SCADA with limited sensor data that enables threshold 

setpoint limits for notifications to operators. Traditional PdM has a few limitations – (1) root cause of the failure 

due to unknown circumstances and sources; (2) lack of visibility due to downtime, reducing the efficiency (3) 

Monitoring the asset is only local. With the recent advent of Industry 4.0, IoT enabled PdM reduces the Operation 

& Maintenance (O&M) costs with an increased life of the devices and continuous production yield of wind energy. 

Detailed insights of the devices can be analyzed by using Artificial Intelligence (AI) based on their execution 

patterns both in normal working conditions as well as abnormal working conditions. 
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Industrial IoT (IIoT) along with AI assists in consistent observation of the machines detecting the wear 

conditions and enable the technician schedule repairs and thus reduce downtime. Technology explosion with 

Industry 4.0 solutions has brought several changes and challenges in remote monitoring and remote data 

collection. IoT edge devices can be used to monitor and acquire instantaneous reports that leads to analysing and 

detecting the abnormal behaviour in the set parameters. These generated reports at specified intervals can be 

evaluated by experts and the action team to formulate strategies for predictive and preventive action and to reduce 

huge down time costs. To avoid sudden catastrophic failures of a component in a system and subsequent 

breakdown cost and loss of time involved, Condition Monitoring Systems (CMS) is a deployable early warning 

system for the preventable failures and is similar to predictive maintenance which relies on sensors data to predict 

any failure or remaining useful life of the device.  

With the advancements in Industrial IoT and Machine Learning (ML), predictive maintenance has taken a 

pivotal role in adopting the above technologies for an increase in operating efficiencies. Recently, Deep Learning 

(DL) models have also been explored and evaluated for the same. PdM was highlighted as one of the primary 

applications in IIoT [7] and continue to dominate. Analysts such as Gartner, PwC have made strong forecasts of 

potential success and identified the critical success factors [8] as shown in the Figure-8. 

 

 
Figure-8: Critical Success Factors of IIoT enabled PdM 

Majority of the analysts and researchers in their reports have commonly highlighted that PdM would benefit 

in reducing the maintenance costs, breakdown costs downtime costs together with an increased production, 

extended lifetime and optimum return on investment (ROI).  A study [9] unveils IoT enabled predictive 

maintenance prevents equipment devices from malfunctioning, while 44% of the manufacturers have already 

deployed, and another 27% are planning to do in the near future. The different fault signals considered for the 

CMS of a wind turbine have been enlisted in Table-2 with respect to the different sub systems. These have been 

collated together both from field study as well as a few literatures [10].  

  Different Signals for Fault Prognostics 

Parts of Wind 

Turbine 

Vibration Current Thermal Acoustic 

Blades þ þ þ þ 

Shaft þ þ þ  

Bearing þ þ þ  

Gearbox þ þ þ  

Braking System  þ þ  

Generator  þ þ  

Tower þ   þ 

 

Table-2: Different signals considered for fault prognostics of different parts of the wind turbine. 

III. ENABLING TECHNOLOGIES FOR PREDICTIVE MAINTENANCE 

With CMS in place the data indicators warn the deterioration of key components and the likely decrease/failure 

in performance of the equipment in advance. Furthermore, they act as troubleshooters through real time messaging 

and real time monitoring.  

Recently AI and ML have been the most popular, widely accepted and adopted technologies to analyse in several 

applications: 

▪ Automatic fault detection by recognizing the fault patterns and associating them together. 
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▪ Detection of faults at an early stage for a cost-effective planning maintenance keeping the systems 

operational and improve production capacity. 

▪ Prognostics in calculating the remaining useful life of the wind turbine components.  

 

ML / 

DL 

Model 

System  

Device 

Data 

Description 

Sensors used 

to monitor 

Major Insights  

(Reference with *) 

Applications 

for PdM 
References 

RF 
Wind 

turbine 
Accelerometer 

▪ Predictive models generated 

upon processing the 

historical wind turbine data 

using big data frameworks. 

▪ Experimentation and 

evaluations achieved 

optimum level of success.   

Condition 

Monitoring 

[*12, 13, 

14, 15, 16] 

k-NN Bearings Accelerometer 

▪ Applied Mahalanobis 

distance with KNN classifier 

as an improvised manifold 

learning approach instead of 

default Euclidean distance. 

▪ Classification of bearing 

faults normal and racing 

were analyzed in both time 

and frequency domain. 

Fault 

Diagnosis 

[20, *26, 

27, 28, 29] 

 

SVM 
Wind 

turbine 
Accelerometer 

▪ Applied SVM and SVR 

along with Hilbert Huang 

transform to classify the 

faults and determine the 

remaining useful life of the 

bearings. 

Condition 

Monitoring,  

Fault 

Diagnosis, 

Remaining 

Useful Life 

[*23, 24, 

25] 

SVM, 

k-

Means, 

k-NN, 

Bearings 

Accelerometer, 

Displacement, 

Velocity, 

torque 

▪ Evaluated multiple ML 

models for bearing fault 

classification. 

▪ Investigated similarity of 

models and proposed 

collaborative 

recommendation approach 

that can recommend with 

93% accuracy. 

Condition 

Monitoring,  

Fault 

Diagnosis 

[*20, 30] 

ANN 
Wind 

turbine 
Accelerometer 

▪ Evaluated the time domain 

vibration signatures for 

critical components. 

▪ Healthy and faulty condition 

vibration signature have 

been analyzed by using 

ANN classification model 

achieving an accuracy of 

92.6%. 

Condition 

Monitoring,  

Fault 

Diagnosis 

[*17, 21] 

CNN 

Bearings, 

Vibration 

signals data 

Accelerometer 

▪ CNN model applied on 

image representation of 

vibration signals of bearings 

and classifying their faults.  

▪ Three time-frequency 

analysis methods (STFT, 

WT, and HHT) were 

compared and respective 

image representations of the 

vibration signals have been 

evaluated in 2 different 

image dimensions. 

Fault 

Diagnosis 
[18, *22] 
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ML / 

DL 

Model 

System  

Device 

Data 

Description 

Sensors used 

to monitor 

Major Insights  

(Reference with *) 

Applications 

for PdM 
References 

▪ High performance of 99.9% 

has been showcased. 

LSTM Gearbox Vibration 

▪ Investigated LSTM with 

different activation functions 

(Sigmoid, tanh, ReLU) and 

optimized with multiple 

Swarm Intelligence 

algorithms (ACO, FA, CSO, 

PSO) in a hybrid approach. 

▪ Detail observations have 

been analyzed herewith for 

10 different loads to classify 

healthy or broken tooth 

condition of gears. 

▪ Compared the hybrid LSTM 

results with conventional 

LSTM. 

▪ This hybrid deep learning 

approach achieved highest 

accuracy of 87.5. 

Condition 

Monitoring,  

Fault 

Diagnosis 

[*31] 

 

Table-3: Summary of few ML and DL models widely used for predictive maintenance applications. 

(* - Reference cited explained in brief among the other references enlisted that are closely related to similar 

models.) 

Vibration analysis is performed to evaluate the performance of non-stationary components and is widely used 

for condition monitoring of bearings (gearbox bearings and generator bearings) blades and tower of wind turbines. 

A variety of AI models have been explored and investigated on vibration analysis approach more on bearings and 

gearbox that frequently fail with different types of sensors on wind turbines. Random Forest (RF), Support Vector 

Machine (SVM), Artificial neural Network (ANN) are few of the extensively used machine learning models and 

recently Convolutional Neural Network (CNN) and Long-short Term Memory (LSTM) are few of the extensively 

applied deep learning algorithms widely applied for PdM of wind turbines. Recently, the AI models are evaluated 

more in a hybrid approach with swarm intelligence algorithms. A research [26] showcases how different activation 

functions of the LSTM model have been optimized with Ant Colony optimization (ACO), Cuckoo Search 

Optimization (CSO), Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) to derive the condition of 

the gears in a gearbox of the wind turbine. Table-3 enlists Summary of few ML and DL models widely applied 

for predictive maintenance applications. 

The COVID-19 pandemic has been the primary driver to increase the need of adoption of AI and ML for the 

IoT digital initiatives in most of the recent industrial and manufacturing use cases. This has been increasing rapidly 

during this period with heighted need of digitization. One of the surveys [32] in the year 2020 states 69% of the 

respondents have been using the AI and ML in their IoT deployments. Further, 41% increase in budget has been 

anticipated by the end of 2020 and 51% expected an increase by the first quarter of 2021. 

The most emerging technologies of AI in the applications of PdM are – Big data and Transfer learning. Big 

data technologies enable collection, storage and process large volumes of data. It can also indicate the condition 

of the equipment based on vibration, current signatures, acoustic, temperature and lubrication including thermal 

images. Big data enables to derive the insights, develop, and deploy PdM systems, that supports plant operators 

for timely accurate estimation of lifecycle parameters together with the remaining useful life of the equipment. 

 

A research [12, 19] states how big data analytics approach has been applied for PdM of wind turbines. 

Adoption of the big data application frameworks improves in accessing the historical data storing it in the cloud. 

This helps in providing the ability to scale up the computing and processing the data of multiple wind turbines in 

a fault-tolerant manner. The concept of prognostics and health management has been playing a significant role in 

performing the analysis of industrial big data and smart manufacturing. In addition, it helps in monitoring the 

health status of the industrial equipment too [33].  

Transfer learning enables the AI models to acquire the knowledge from one system and apply it on another 

system by quickly adapting the parameters. A study [34] exhibited a novel versatile inductive exchange learning 



Gopi Krishna Durbhaka, Barani Selvaraj 

211 

technique for wind turbine ice recognition. The information move is accomplished by offering a moderately steady 

expectation for target task through the built-up model prepared in source task. 

 

In addition to AI, few other emerging technologies in IoT have taken in-roads with condition monitoring - Digital 

Twins and Edge Computing and an amalgamation of AI and IoT can also be applied as well. According to a survey 

by Gartner in 2020 [35], a quote by Lheureux states -  

“Digital twins can help companies recognize equipment failures before they stall production, allowing 

repairs to be made early or at less cost. Or a company can use digital twins to automatically schedule the 

repair of multiple pieces of equipment in a manner that minimizes impact to operations.”  

A review [36] proposed a digital twin-based methodology for remaining useful life prediction of fixed and 

floating offshore wind turbines by considering the influencing factors of thermal loads due to environmental 

condition and electrical system. The adoption of digital twin methodology helps to improve the capability of the 

wind turbine during the generation of energy. This assists to improve the remote asset monitoring and to reduce 

the frequency of in-person monitoring.  

Edge computing has been widely used in industrial IoT despite cloud being present. AI on the edge is the 

highest edge computing workload in comparison to the data acquisition, sensing, and actuators. Challenges in 

leveraging the AI on the edge devices are understanding and interpreting the data. Recently, fog computing 

devices have been in place between the edge nodes and the cloud. There are certain use cases where edge nodes 

may not be able to directly relay the data to cloud due to less transmission power or non-availability of consistent 

continuous network. In such cases, edge devices relay the data to the nearest routing devices (known as fog nodes) 

from which the data shall be periodically relayed to the cloud.  

The local control units connected to the machinery terminal units widely known as edge nodes to the towers 

and inside the nacelle at the wind turbine can be made intelligent enough to detect and diagnose on its own and 

take some action to reduce the huge down time costs. Identifying the inter-dependency of the parameters within 

a subsystem to state the present health condition of the wind turbines, rectification, and likely behavior pattern. 

The study of behavior pattern of different devices and subsystems shall be monitored and evaluated to perform 

health monitoring of the wind turbines.  

Few of the top IoT platforms widely used in the industry for predictive maintenance applications [37] have 

been listed here in the Table-4. In addition to them there do exist few other proprietary industrial IoT platforms. 

S No IoT platforms Description 

1.  Siemens MindSphere 
A cloud based IoT operating system that establishes 

connectivity and harness data from the physical assets. 

2.  
GE Predix – Asset Performance 

Management (APM) 

An IIoT platform for handling industrial data from edge to 

cloud with big data processing along with analytics and 

machine learning. APM is a software suite to optimise the 

performance of the industrial assets. 

3.  
IBM Predictive Maintenance and 

Quality (PMQ) 

This helps to monitor, analyse, and report the equipment 

data enabled by cognitive intelligence engine IBM Watson. 

4.  Microsoft Azure IoT Hub A managed platform as service developed by Microsoft. 

5.  AWS IoT Core 
A managed service that is used for IoT on Amazon Web 

Services (AWS). 

6.  Google Cloud IoT Core 
A managed service that is used for IoT on Google Cloud 

Platform (GCP). 

7.  Presenso 
A Cloud platform widely used for real time for predictive 

asset management. 

8.  PTC ThingWorx 

Application development in IIoT platform that can be 

leveraged to carry out predictive maintenance and other IIoT 

applications. 

9.  
MATLAB Predictive 

Maintenance toolbox 

Analyse and label sensor data from local as well as cloud 

storages and estimating the remaining useful life of the 

devices. 

10.  Bosch IoT Suite 
A platform as a service with a set of cloud services and 

software packages for development of IoT applications. 

11.  Hitachi Lumada 

IoT techniques significantly improve maintenance 

efficiency, asset availability and lifetime value both 

computing at networks and operating at the utility or device 

level. 

12.  Honeywell Forge APM 
Asset performance management in real-time, machinery 

analytics solution to monitor the assets health performance, 
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S No IoT platforms Description 

issues and deterioration and predicting the remaining useful 

life. 

13.  ABB Ability 
Digital technology with remote support to wind turbines by 

increasing turbine uptime and lower the O&M costs. 

 

Table-4: Top IoT platforms used for predictive maintenance. 

CONCLUSION 

This review paper discussed and highlighted the frequent operational failures that occur in wind turbines and 

its sub systems. Technologies that can be applied for monitoring wind turbines such as internet of things and 

artificial intelligence to analyze the data and their amalgamation has been discussed for predictive maintenance 

to formulate schedules and strategies.  Key points about the different AI models and methods applied for deriving 

the insights from the condition monitoring systems of wind turbines were reviewed. Few widely used industrial 

IoT platforms for predictive maintenance applications were enlisted. A few facts and statistics of the predictive 

maintenance have also been shared. The wind turbine industry should interpolate effective use of data to maximize 

generation and reduce operating maintenance costs. 
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