
Turkish Journal of Computer and Mathematics Education Vol.12 No. 11 (2021), 195- 204

Research Article

195

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency

and Bandwidth

Srikanta Kumar Mohapatra a, Sankararao Majji b, Prathipati Ratna Kumar c, Ravula Arun

Kumar d and Santoshachandra Rao Karanam e

a Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab,

srikanta.mohapatra@chitkara.edu.in
b Assistant Professor, GRIET, Hyderabad, sankar2367@gmail.com
c Assistant Professor, CSE Department, Koneru Lakshmaiah Education Foundation, Hyderabad,

rk30111972@klh.edu.in
d Assistant Professor, Vardhaman college of Engineering, Hyderabad India, arunravula12@gmail.com
e Assistant Professor, Department of IT, Anurag University, Hyderabad, kschandra.rao@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 10 May 2021

Abstract: The search efficiency of in-memory databases depends significantly on how quickly DRAM data can

be obtained. With an increasing multiple core on processors, it is more difficult to satisfy the requirement that all

attached DRAM on a processor is equally accessible to any core. Intel has therefore implemented a Sub-NUMA

Clustering (SNC) mode on Skylake, which subdivides cores and memories into various sub for enhanced core-to-

memory access within each processor sub-domain. Similar modes are given by other models. When an in-memory

database shares data between staff on cores in separate sub-domains, the use of SNC creates problems in how to

manage database workloads among domains. In this research, we verify the effect of SNC specifically on Intel

Skylake on memory latency and bandwidth. We conclude that two similarly broad analytical workloads are

focused on different and fully independent sub-domains just up to 3 percent will improve query throughput and

be totally isolated from each other. Often, as memory bandwidth is split into sub-domains rather than aggregated

across the entire processor, bandwidth-sensitive analytical workloads significantly reduce application

performance if data is not split equally among sub-domains.

1. Introduction

Data output depends heavily on how easily vast volumes of data can be accessed by the database. SAP HANA is

a database built by SAP among many various vendors of relational SQL databases, driven by an in-memory

approach to make interprocess communication fast. Full datasets may remain in memory by compressing the data

and utilizing machines with large DRAM memories, preventing access to sluggish disks. As in conventional

databases, columns are processed column-wise, rather than row-wise, allowing aggregation simpler when co-

locating similar data. For analytical workloads that typically deal with agglomerations in a columnar format, these

methods are advantageous. The main selling point for SAP HANA is quick metrics.

The efficiency of an in-memory database is highly dependent on how easily the database can reach its DRAM

data. Access time will depend not only on the memory type, as well as on the encryption technique used in the

processor, as well as how far a request for memory access has to travel to the targeted memory within the

processor. Processor manufacturers are increasingly selling more cores to processors, and memories are becoming

larger and cheaper. Hardware has become more cluster-oriented with co-located cores and memories, operating

either in isolate or collaboration, rather than making one central processor attached to one memory area. Just

because of that, it is becoming extremely difficult to provide equally quick access to data from any core in a

processor in all memory regions. In order to reveal these variants to applications, Intel implemented an alternative

mode coined by Cluster-on-Die (COD) in its Haswell generation that was later replaced in the Skylake generation

by Sub-NUMA Clustering (SNC)[1]. Certain vendors considered similar technologies [2] [3]. In order to make

core-to-memory access faster within each sub-domain of the processor, such functions subdivide the processor

into sub-domains. There is still open connectivity across multiple domains, but at a potentially higher latency. In

specific, sub-domains are interesting as the latest trend suggests a further rise in the number of processor cores,

which eventually makes access times more dependent on the location of a core within the processor.

For implementations where processes use their own memory rather than exchanging it among them, technologies

such as COD/SNC and such are intuitively appropriate. This is generally the case for Virtual Machines (VMs),

where VMs seldom access the memory of each other. VMware is one forum for VMs that can take advantage of

the COD mode of Intel [4]. In-memory databases, by comparison, use a memory interface region shared between

query tasks performed simultaneously. As in VMs, execution and memory cannot be separated from each other

mailto:srikanta.mohapatra@chitkara.edu.in
mailto:sankar2367@gmail.com
mailto:rk30111972@klh.edu.in
mailto:arunravula12@gmail.com
mailto:kschandra.rao@gmail.com

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth

196

as quickly. However, databases such as SAP HANA use certain task allocation methods on multi-processor

computers, although functions checking a table segment are preferably performed on the processor to which the

column's memory DRAM unit is connected for improved location. For load balancing purposes, however, it may

be permitted to operate elsewhere. This makes it quicker to search memory and SAP HANA scales easier for more

processors on a machine [5].

2. RELATED WORK:

Earlier studies on task theft have studied remote task stealing on multi-machine setups in a hierarchical way for

generic workloads. The location of the task to be stolen is represented in "HotSLAW"[6] using a locality hierarchy

where the stealer first tries to loot from the local area and travels up the hierarchy to steal tasks from a less local

zone. Locality hierarchy levels may be a shared L2 cache, a NUMA domain, another processor, or a separate

server. The stealer randomly selects victims for each hierarchy to loot from and only progresses upwards in the

hierarchy after all random attempts have failed. HotSLAW uses Partitioned Global Address Space (PGAS) to give

remote memory on any server access to a mission. Memory in PGAS is kept consistent across software-use

servers. Our device varies slightly in that we only use processors on the same computer.

Research has also been done to try to use Remote Direct Memory Access (RDMA)[7] to make databases spread

through several machines run faster. Some technologies use standard IP-based underlying networking, and some

use special protocols such as InfiniBand. These types of high-performance hardware for networking have recently

become more cost-competitive. At levels close to what is achieved in memory bandwidth inside a computer, the

networking hardware may provide bandwidth between machines. RDMA will also reduce latency to memory on

a remote computer by not needing to go through the CPU or OS during memory accesses across computers. It is

shown in [8] that the transfer of 1 KB of data using RDMA will end at about the same time as a request for local

memory. It is noted, however, that it is difficult to render RDMA as fast as local memory access on smaller data

requests such as hash table lookups, as the network latency, and not the bandwidth, is the most dominant factor

in this case.

Psaroudakis has conducted previous column investigations and placement of scanning tasks in SAP HANA on

multi-processor configurations [9]. A higher Processor load is achieved in these simulations by increasing the

number of rows selected by question constants. In the more CPU-intensive process of materialization, this

increases work. Result is a reduction in throughput on a balanced workload with highly selective predicates when

these data-intensive tasks are permitted to be captured by remote processors. Nevertheless, on less selective

predicates, thus increasingly CPU-intensive, robbery offered advantages. The simulations were only performed

with one processor representing each NUMA domain. When using sub-domains using COD and SNC, we expand

this by looking at the effect.

Depending on the manufacturer, AMD's EPYC and potentially ARM's Neoverse processor are processors made

from multiple silicon dies, which can be exposed as sub-NUMA domains and used for optimization of

applications. The hop across dies adds latency and is definitely higher on Haswell and Skylake than sub-domains.

This should increase the importance of enhanced locations with sub-domains. This would be something of interest

for scanning heavy database queries if one could achieve high memory throughput across dies. Even though we

just look at Intel's COD and SNC offerings in this thesis. Intel is also the first provider to sell sub-domains of

anything like that.

No previous study has examined task stealing inside a database on sub-domains within a processor, to the

knowledge of the author.

3. Methods of analysis

 To address our query, we first check the effect of COD and SNC on memory latency and bandwidth when the

core and DRAM are situated in the same versus specific sub of a memory demand. This will give us an idea of

what the underlying hardware works and eliminates any complications introduced when the database is placed on

top. Since our target database queries depend heavily on memory latency and throughput, our subsequent database

experiments will hopefully help to clarify this. We implement the database in our tests in the second round of

experiments and study the effect of query throughput on single- and multi-row queries in various scheduler

architectures and during slanted workforces. These two kinds of queries are easy to test and should be correlated

with both memory latency and bandwidth.

Srikanta Kumar Mohapatra a, Sankararao Majji b, Prathipati Ratna Kumar c, Ravula Arun Kumar d and

Santoshachandra Rao Karanam e

197

4. Microarchitecture of Processors

The external interface and internal architecture of a processor are important for quickly serving several memory

requests. A generalized processor microarchitecture that is identical to what is found on the Intel Skylake is shown

in Figure 1. With the exception of a completely different caching logic, Haswell's microarchitecture is also

identical to this figure. An array of DRAMs is physically mounted to the processor through memory channels.

Memory requests can involve communication across processors via a socket interlink if a machine has multiple

processors in able to reach DRAM connected to some other processor, which is often used to preserve cache

coherence seen between processors. QPI [10] for Intel processor models including such Haswell and the faster

UPI [11] for recent Intel generations such as Skylake are standard interconnect protocols. For their processors,

other vendors give similar protocols. Communication over an interconnect provides extra latency and has a small

bandwidth, but allows more DRAM attached and processing capacity within a system to be increased.

Internally, cores and external interfaces interact via a bus within a processor. The logic of the processor, closer to

each other on the bus, interacts faster and does not transfer other bus paths [12].

Every core has one or more threads of hardware, comparably referring to as CPUs in this thesis, and perhaps even

cache alignment logic. DRAM external interfacing is controlled by one or more memory controllers, each

controlling its memory channel array. In the virtual memory address space, a continuous memory area is always

interlocked with a 256-byte granularity between the systems in

order to use the bandwidth of both channels in parallel [13]. Output may also be done through controllers on

processors with even more than one memory controller.

Figure 1: Generalized processor microarchitecture and its connected memory.

The arrows annotate the route of a CPU sample DRAM request to its register cache directory, to the target cache

memory controller, to the alternating memory channel point. Only one memory controller and socket interconnect

are accessible in this figure.

Cache Coherence Directory-based:

Cache coherence logic can accompany each cores and memory controllers. For each core, cores on both Haswell

and Skylake microarchitectures incorporate local L1 and L2 caches, as well as a slice of the L3 cache that is shared

in a domain among cores. It is important to check any memory request a CPU makes against the cache logic and

implement the cache coherence protocol provided.

Directory-based cache coherence is the only protocol available on Skylake [14] that is used on Haswell when

COD is enabled [15]. For a specific set of physical main memory that are assigned to it, a directory consolidates

cache line tracking. Each application for a memory address that is not cached locally in L1 or L2 must be glanced

in the directory that is liable for it. The path checks whether the address is present on any processor in the

corresponding L3 slice or any other cache. If not, the request will be redirected to a memory controller with a

DRAM targeting channel.

Through COD, Haswell uses single directory for each memory controller that is concerned for its addresses.

Rather, Skylake has as many directories as cores, co-located along the cores, to minimize latency at these stages.

A hash function maps directory addresses for an even load.

Caching data will render regularly accessed rows from indexed columns easily accessible for the in-memory

database queries we are looking at. However, it also has a small advantage when scanning columns far larger than

the cache, as is often the case with SAP HANA [16]. If we will consider the factors like reliability, confidentiality,

and Quality of Service etc. of IOT then this clustering architecture can be effectively implemented [17].

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth

198

Non-Uniform Accessing Memory

Non-Uniform Memory Access (NUMA) is a design for exposing different memory address regions on a computer

to relative memory access times at various CPUs. These relative access times are interpreted by the Linux Memory

Management system as NUMA domains, each of which has a set of CPUs and memory address previously been

associated with it. For a simple description, see figure 2. A significant disruption to other domains is given to any

domain. It is anticipated that access from a CPU to memory in a domain with a lower relative distance would have

lower latency and greater bandwidth. In Linux, the OS and its implementations can use this configuration to

position a given process and the memory that it accesses closer to each other. The placement can be performed

manually using the library libnuma, or automatically using the NUMA-balancing service, which is performed by

preserving memory access heuristics.

struct NumaDomain {

Cpu [] cpus;

MemChunk[] regions;

}

Struct NumaDistance {

NumaDomain* cpu;

NumaDomain* mem;

int weight;

}

Figure 2: Simplified data structures in C of how Linux Memory Management system represents

a NUMA topology.

Since the NUMA topology shows relative differences in the access time of various memories, it is therefore

frequently used in multi-processor configurations such as the one shown in Figure 3. Since the socket interconnect

imposes latency and restricts the bandwidth to a comparatively high degree compared to memory viewed within

a device, it increases access times by putting similar processes and memory on the same processor.

Figure 3: Example of a NUMA topology of a multi-processor setup, here consisting of two

interconnected processors each with two DRAMs attached. The displayed memory request

originates from the processor of Domain0, and targets Memory C that is attached to processor

of Domain1.

NUMA Within a Processor:

The latency of an entry from a core to DRAM depends on how far inside the processor the memory request needs

to go. Today's world, larger server processors have hundreds of cores on a processor and more than one memory

controller. Access latency therefore depends progressively on how far apart the processor logic necessary to satisfy

the application is located. Intel implemented a new coined Cluster-on-Die (COD) feature in the Haswell

microarchitecture accessible on designs with more than one memory controller to reveal these latency differences

within a processor.

CPU domain 1

CPU domain 0

L3 Cache L3 Cache

Memory D Memory C Memory B Memory A

Srikanta Kumar Mohapatra a, Sankararao Majji b, Prathipati Ratna Kumar c, Ravula Arun Kumar d and

Santoshachandra Rao Karanam e

199

Enabling COD in the BIOS separates the cores and memory controllers on the same silicon die inside the processor

into two subdivided NUMA domains. Since the specific memory access cache directory is situated on the target

memory's memory controller, the request is stored within a subsection of the silicon die.

In a multi-processor configuration, tests by Molka on a 12-core Haswell Intel Xeon E5-2680 v3 processor showed

a reduction in latency of about 7 percent (Table III) and a 3.7 percent improvement in bandwidth (Tables VII and

VIII) for requests dynamically within a sub-domain. Obviously, it depends on the caching state, remote reading

of shared memory on the adjacent sub-domain appears to entail a broadcast to other processors, which more than

doubles the latency and decreases bandwidth by 42% opposed to a local sub-domain access (table V and VIII).

The Haswell processor used in these simulations has two buses that are unevenly attached to cores and memory

controllers. There are queues linking the buses to each other. As the two sub-domains revealed are of similar size,

these interfaces do not map to the two unevenly scaled buses, causing the queue to pass any local requests within

a sub-domain. Similar experiments are performed in this study on a Haswell processor where even the two sub-

domains map exclusively to different buses.

Figure 4: Two processors, each processor split into two sub-domains. In this picture, a core in

CPU region # 1 is accessing memory in its neighboring sub-region.

COD was replaced by Sub-NUMA Clustering (SNC) with the Intel Skylake microarchitecture. In comparison to

Haswell that locate cache directories at the memory controllers, Skylake allocates the directories and slices of L3

cache each used by keys mapped to its directory, across the cores as shown in figure 5. Any local and remote

memory address is assigned to one of the directories based on an undocumented hash function. This mapping is

reconfigured when SNC is allowed so that addresses to Memory A (see Figure 5) are only mapped to directories

on the left side of the processor, while addresses to Memory B are only mapped to right section. This effectively

creates two sub-NUMA domains with memory is not interleaved, with quicker access to memory within such a

domain, as the requesting center, directory and memory are closer to each other. On the opposite, only one memory

controller is involved in the request, which may restrict the performance. Both directories and L3 slices are also

mapped with addresses from those other processors. Efforts to try to reverse engineer the unpublished hash

function have resulted in the suggested management of slice-aware memory, where the cores and directories used

are much closer to each other. As these cache lines are never modified across the sub-domains, Intel offers a lower

latency to the neighboring sub-domain and better usage of the L3 cache, but in addition, in some cases, will

increase L3 latency.

Intel also presents the microarchitecture of Knights Landing that targets high computing environments, with up

to 72 cores and a total of 10 different kinds of memory controllers, but without a shared L3 cache. Like Skylake,

with SNC, the processor can be split into sub-domains, with up to four sub-domains possible. Knights Landing

also has an optional quadrant mode, which addresses are forwarded to directories in the same way as in SNC, for

minimized directory-to-memory latency, but without sub-NUMA domain exposure in the OS.

On a single silicon die, Intel processors have steadily increased the number of cores. As this implies larger dies

and increased development costs, AMD has opted for a multi-die strategy targeting server environments on its

EPYC processor. Inside the same processor, the EPYC processor is split into four closely connected silicon dies.

Because of these relations, which are revealed in the NUMA topology as one domain per die, the latency among

Sub-CPU
region 0a

Sub-CPU
region 0b

Sub-CPU
region 1a

Sub-CPU
region 1b

Memory D Memory C Memory B Memory A

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth

200

dies is slightly higher. In a multi-processor configuration, dies can link directly to each other on different

processors without having to move through a standardized socket interconnect on the processors. This is being

sold by AMD as Infinity Fabric. Similarly, the newly released Neoverse microarchitecture targeting server

environments from ARM allows the designer to determine whether or not cores should be divided into several

dies on one processor. Neoverse also does not, by default, have an L3 cache.

 Domain0a Domain0b

Figure 5: Skylake processor microarchitecture for Intel Xeon Platinum 8180

[1]. Each core has its own part of the distributed directory (Dir) and a slice of

the L3 cache. Every core and external interface are connected to a Manhattan-

style bus network.

Access column in SAP HANA

As described in the introduction, for efficient compression and quick scanning, SAP HANA stores each column

separate from each other. The option of applying indexes to a column is also possible for large datasets where

many queries are highly selective. Per-default, the primary key is indexed. Extremely selective access on indexed

columns uses binary search to touch just a few elements and is thus primarily susceptible to memory latency.

Column scans that are more susceptible to memory bandwidth result from access to non-indexed columns. Since

columns in DRAM are compressed and rendered usable, columns.

In SAP HANA, Job Scheduling

 UPI interconnect to

other sockets

UPI

PCIe

PCIe

PCIe

UPI

PCIe

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Core Core Core Core Core Core

Memor

y

Controll

er

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Memor

y

Controll

er
Core Core Core Core

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Core

Core

Core

Core

Core

Core

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Core

Core

Core

Core

Core

Core

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Dir +

L3

Core

Core

Core

Core

Core

Core

Memory A

Memory B

Srikanta Kumar Mohapatra a, Sankararao Majji b, Prathipati Ratna Kumar c, Ravula Arun Kumar d and

Santoshachandra Rao Karanam e

201

Each database-connected client session is allocated its own OS thread used for link management, which may also

generate query execution plans. A task graph is dynamically generated by the implementation plan and tasks

themselves, where a given task is executable after all children have finished executing. One of the work queues

that are current in every NUMA domain is forced into a task. During task formation, the preference for a particular

domain is set and used when the task primarily accesses the memory in that domain. Preference is used in SAP

HANA for column screening, but not on indexed columns. For each domain, worker threads pull tasks out of the

local queue for implementation.

Figure 6: SAP HANA task execution flow.

Executable tasks in the task graph are pushed to the task’s preferred domain, or any queue if a preference is not

set. Worker threads primarily pull tasks from its local queue or from a neighbor queue if the local one is empty.

If a preferred task is stolen, the worker thread might have to access memory remotely, as seen in domain 0a in

this figure.

SAP HANA enables worker threads in a domain with unused task queues to steal tasks from queues in other

domains in order to balance tasks between domains, that is, grab tasks from a remote domain queue. Task theft is

a highly studied technique for load balancing and is commonly used in programming languages like Go. Stealing

can be switched off internally in SAP HANA, enabled only between near neighbors in NUMA-topology, or across

any domain. The default setting in SAP HANA is neighbor-stealing, as it avoids expensive stolen activities from

placing unnecessary load on socket interconnects. The probability of bulk theft by stealing several tasks at a time

is also present.

• no binding: workers are freely movable by the OS

• preferred binding: bind to the preferred domain only when working on a task with preference

• opportunisticbinding(default): In addition to preferred binding, also bind the task’s direct children

• bind always: Prohibit the OS from moving around workers.

5. Results

Using Broadwell Processor:

The average lag and its duration observed from various hardware threads within each domain to memory located

in distinct domains, as calculated using MLC, are presented in table 1 and table 2. With COD, we see an average

7 percent decrease and an average 94 percent rise in local versus neighboring sub-domain latency, respectively.

There is also a significant rise in remote processor latency.

Table 1: In nanoseconds, memory access latency for hardware threads in each domain. Disabled COD.

Mem

CPU

min

Domain 0

avg max

min

Domain 1

avg max

Domain 0 -2,8 79,3 +2,3 -3,8 134,4 +5,0

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth

202

Domain 1 -3,6 134,2 +5,7 -3,4 79,5 +4,0

Table 2: memory access latency with COD enabled.

Mem

CPU

Domain 0a

min avg max

Domain 0b

min avg max

Domain 1a

min avg max

Domain 1b

min avg max

Domain 0a -1,5 74,0 +2,1 -0,8 156,6 +2,4 -0,4 195,4 +1,0 -2,1 204,9 +0,6

Domain 0b -2,3 152,7 +2,2 -1,3 75,2 +1,4 -1,7 196,7 +3,4 -2,3 204,7 +1,0

Domain 1a -1,0 196,3 +2,1 -1,2 205,3 +0,2 -1,3 74,1 +1,0 -1,8 156,2 +2,0

Domain 1b -2,6 197,9 +2,5 -2,2 205,4 +1,5 -1,9 152,0 +2,4 -1,5 75,1 +1,6

When COD is activated, bandwidth per memory controller is enhanced by 2.1-3.7 percent versus falling by 38-51

percent for local and neighbor sub-domain. We can also see that on a remote processor, the throughput number of

both sub-domains decreases by 3-8 percent per memory controller.

 Table 3 Bandwidth between domains in MB/s. COD disabled.

Mem

CPU

Domain 0 Domain 1

Domain 0 62 134 30 471

Domain 1 30 155 61 502

Table 4 Bandwidths with COD enabled

Mem

CPU

Domain 0a Domain 0b Domain 1a Domain 1b

Domain 0a 32 210 15 322 12 742 12 274

Domain 0b 18 335 31 749 15 013 14 503

Domain 1a 12 754 12 296 31 751 15 268

Domain 1b 14 850 14 392 18 808 31 750

Using Skylake Machine:

Table 5 and table 6 display our Skylake machine's MLC latency measurements. We see an insignificant

difference in local latency of 6.4 percent when SNC is activated. As the CPU, target cache directory, and

specified memory controller are closer to each other on average, this is fair. Notice that our earlier observations

on older BIOS versions have been disabled with SNC with 7 nanoseconds faster local latency than the

measurements shown here, and have thus seen a lower improved performance in latency with SNC.

Table 5: Memory access latency in nanoseconds for hardware threads in each domain.

SNC disabled.

Mem

CPU

min

Domain 0

avg max

min

Domain 1

avg max

Domain 0 -3,7 80,8 +1,6 -3,6 138,9 +3,8

Domain 1 -3,9 139,7 +3,8 -3,2 79,9 +1,9

Srikanta Kumar Mohapatra a, Sankararao Majji b, Prathipati Ratna Kumar c, Ravula Arun Kumar d and

Santoshachandra Rao Karanam e

203

Table 6: Memory access latency with SNC enabled.

Mem

CPU

Domain 0a

min avg max

Domain 0b

min avg max

Domain 1a

min avg max

Domain 1b

min avg max

Domain 0a -1,2 74,2 +3,1 -0,1 81,5 +0,3 -2,1 132,0 +3,0 -1,4 142,1 +1,6

Domain 0b -0,2 82,0 +0,2 -3,5 76,4 +5,0 -1,9 135,6 +2,0 -1,5 144,5 +1,6

Domain 1a -2,1 132,4 +3,0 -1,4 142,0 +1,5 -0,7 73,6 +6,0 -0,1 81,5 +0,1

Domain 1b -1,9 136,0 +2,1 -1,4 144,4 +1,7 -0,1 81,5 +0,1 -3,6 76,6 +5,0

Table 7 and table 8 demonstrate the calculation of MLC bandwidth on our Skylake computer. As with COD,

utilizing SNC mode should give us approximately half the bandwidth per sub-domain, which we can notice in

the tables as well. On average, bandwidth per memory controller increases for local and neighboring sub

domains by 4.2 percent and 4.4 percent. It is important to note here that the bandwidth of the neighboring sub-

domain is higher and thus greater than that of the local sub-domain.

Table 7: Bandwidth between domains in MB/s. SNC disabled.

Mem

CPU

Domain 0 Domain 1

Domain 0 111 083,3 34 451,2

Domain 1 34 454,9 111 618,7

Table 8: Bandwidth between sub-domains in MB/s. SNC enabled.

Mem

CPU

Domain 0a Domain 0b Domain 1a Domain 1b

Domain 0a 58 087,1 58 122,9 34 254,3 34 238,9

Domain 0b 58 144,8 58 012,9 34 265,9 34 235,1

Domain 1a 34 287,6 34 248,1 58 064,0 58 146,7

Domain 1b 34 288,3 34 253,6 58 145,0 58 006,9

Our observed COD latencies and bandwidths are nearly similar to those measured by Molka. It did not seem to

alter the behavior of substantially increased latency and decreased bandwidth to neighbor sub-domain by using

our Broadwell processor with symmetrical sub-domains and shrinking in transistor capacity. With SNC, adjacent

sub-domain latency and bandwidth are closer to what has been calculated on local access than access to a remote

processor. This is more rational than what has been found with COD, and is possibly due to the different Skylake

caching strategy. Memory access to that other processor appears to be largely unchanged, in comparison to COD.

Conclusion and Future scope:

In this thesis, when allowing COD and SNC modes on Intel, we checked the change in memory latency and

bandwidth between different cores and memory devices. For any remote access, COD did not display attractive

latency and bandwidth, partially due to the cache policy being used. SNC provided the OS and its applications

with better latency outcomes and a more comprehensive exposure of the processor topology. Bandwidth to the

local and neighbor sub-domain with SNC mode both increased slightly at about the same level.

This is possibly due to the nature of the test question. The bigger problem with sub-domain scans is that there is

no interleaved memory and no aggregated throughput available. It renders an application unable to use the total

bandwidth available in a processor without load balancing. While our attempts to balance scanning, workloads

did not resolve the interleaving of hardware with SNC disabled, it might be worthwhile to look at whether

software-based interleaving can be achieved relatively quickly in the future, so that random access workloads can

enjoy lower latencies at the same time. It will also be of interest to test the sub-domain solutions of other processor

vendors to see whether query throughput with sub-domains can be enhanced.

Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth

204

Assuming that there will be even more cores for future processors, placing both cores on one die will be more

difficult. Therefore, it will also be important to test processors in the future with multiple dies. Even further

analysis at the stealing mechanisms in a multi-machine RDMA setup will also be of interest. It is logical to assume,

with even more cores, that cores will inevitably have to be spread through many machines.

References

1. Intel, "Intel Xeon Processor Scalable Family Technical Overview," 14 Sep 2017. [Online]. Available:

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family- technical-overview.

2. T.P Morgan, "The Next Platform," Feb 2019 [Online]. Available:

https://www.nextplatform.com/2019/02/20/arm-goes-to-war-in-the-datacenter-with-aries- designs/.

3. TIRIAS Research, "AMD Optimizes EPYC Memory with NUMA," Mar 2018. [Online]. Available:

https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory- With-NUMA.pdf.

4. VMware, "Intel Cluster-on-Die (COD) Technology, and VMware vSphere 5.5 U3b and 6.x," [Online].

Available: https://kb.vmware.com/s/article/2142499.

5. I. Psaroudakis, T. Scheuer, N. May, A. Sellamiand A. Ailamaki, “Scaling Up Concurrent Main- Memory

Column-Store Scans: Towards Adaptive NUMA-aware Data and Task Placement," in VLDB

Endowment, 2015.

6. Intel, "An Introduction to the Intel Quick Path Interconnect," Jan 2009. [Online]. Available:

https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-

introduction-paper.html.

7. Intel, "How Memory Is Accessed," [Online]. Available: https://software.intel.com/en- us/articles/how-

memory-is-accessed. [Accessed 6 Sep2019].

8. D. Molka, D. Hackenberg, R. Schöneand W.E. Nagel,"Cache Coherence Protocol and Memory

Performance of the Intel Haswell-EP Architecture," in Proceedings of the 44th International Conference

on Parallel Processing (ICPP’15),2015.

9. S. Noll, J. Teubner, N. May and A. Bohm, "Accelerating Concurrent Workloads with CPU Cache

Partitioning,"2018.

10. The Linux Foundation, "What is NUMA?" 8 Jul 2019. [Online]. Available: https: //www.

kernel. org/doc /html/v4.18/vm/numa.html.

11. A. Kleen, "NUMA policy library," [Online]. Available:http://man7.org/linux/man- pages/man3

/numa.3.html. [Accessed 27 Aug2019].

12. SUSE, "Automatic Non-Uniform Memory Access (NUMA) Balancing," [Online]. Available:

https://doc.opensuse.org/documentation/leap/tuning/html/book.sle.tuning/cha.tuning.numactl.html.

[Accessed 27 Jul2019].

13. U. Drepper, "What Every Programmer Should Know About Memory," 21 Nov 2007. [Online].

Available: https: //people.freebsd.org/~lstewart/articles/cpumemory.pdf.

14. Intel, "Intel 64 and IA-32 Architectures Optimization Reference Manual," 2019. [Online]. Available:

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures- optimization-

manual.pdf.

15. A. Farshin, A. Roozbeh, M.J.Gerald Q and D.Kostić,"Make the Most out of Last Level Cache

16. inIntelProcessors,"inProceedingsoftheFourteenthEuroSysConference2019, Dresden,2019.

17. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall and Y. Zhou, "Cilk: an efficient

multithreaded runtime system," Sigplan Notices, vol. 30, no. 8, pp. 207-216,1995.

18. P. Datta, and B. Sharma. "A survey on IOT architectures, protocols, security and smart city based

applications." In 2017 8th International Conference on Computing, Communication and Networking

Technologies (ICCCNT), pp. 1-5. IEEE, 2017.

http://www.nextplatform.com/2019/02/20/arm-goes-to-war-in-the-datacenter-with-aries-
http://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-
http://www.kernel.org/doc/html/v4.18/vm/numa.html
http://www.kernel.org/doc/html/v4.18/vm/numa.html
http://man7.org/linux/man-%20pages/man3

