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Abstract: The search efficiency of in-memory databases depends significantly on how quickly DRAM data can 

be obtained. With an increasing multiple core on processors, it is more difficult to satisfy the requirement that all 

attached DRAM on a processor is equally accessible to any core. Intel has therefore implemented a Sub-NUMA 

Clustering (SNC) mode on Skylake, which subdivides cores and memories into various sub for enhanced core-to-

memory access within each processor sub-domain. Similar modes are given by other models. When an in-memory 

database shares data between staff on cores in separate sub-domains, the use of SNC creates problems in how to 

manage database workloads among domains. In this research, we verify the effect of SNC specifically on Intel 

Skylake on memory latency and bandwidth. We conclude that two similarly broad analytical workloads are 

focused on different and fully independent sub-domains just up to 3 percent will improve query throughput and 

be totally isolated from each other. Often, as memory bandwidth is split into sub-domains rather than aggregated 

across the entire processor, bandwidth-sensitive analytical workloads significantly reduce application 

performance if data is not split equally among sub-domains. 

 

1. Introduction 

 

Data output depends heavily on how easily vast volumes of data can be accessed by the database. SAP HANA is 

a database built by SAP among many various vendors of relational SQL databases, driven by an in-memory 

approach to make interprocess communication fast. Full datasets may remain in memory by compressing the data 

and utilizing machines with large DRAM memories, preventing access to sluggish disks. As in conventional 

databases, columns are processed column-wise, rather than row-wise, allowing aggregation simpler when co-

locating similar data. For analytical workloads that typically deal with agglomerations in a columnar format, these 

methods are advantageous. The main selling point for SAP HANA is quick metrics. 

 

The efficiency of an in-memory database is highly dependent on how easily the database can reach its DRAM 

data. Access time will depend not only on the memory type, as well as on the encryption technique used in the 

processor, as well as how far a request for memory access has to travel to the targeted memory within the 

processor. Processor manufacturers are increasingly selling more cores to processors, and memories are becoming 

larger and cheaper. Hardware has become more cluster-oriented with co-located cores and memories, operating 

either in isolate or collaboration, rather than making one central processor attached to one memory area. Just 

because of that, it is becoming extremely difficult to provide equally quick access to data from any core in a 

processor in all memory regions. In order to reveal these variants to applications, Intel implemented an alternative 

mode coined by Cluster-on-Die (COD) in its Haswell generation that was later replaced in the Skylake generation 

by Sub-NUMA Clustering (SNC)[1]. Certain vendors considered similar technologies [2] [3]. In order to make 

core-to-memory access faster within each sub-domain of the processor, such functions subdivide the processor 

into sub-domains. There is still open connectivity across multiple domains, but at a potentially higher latency. In 

specific, sub-domains are interesting as the latest trend suggests a further rise in the number of processor cores, 

which eventually makes access times more dependent on the location of a core within the processor. 

For implementations where processes use their own memory rather than exchanging it among them, technologies 

such as COD/SNC and such are intuitively appropriate. This is generally the case for Virtual Machines (VMs), 

where VMs seldom access the memory of each other. VMware is one forum for VMs that can take advantage of 

the COD mode of Intel [4]. In-memory databases, by comparison, use a memory interface region shared between 

query tasks performed simultaneously. As in VMs, execution and memory cannot be separated from each other 

mailto:srikanta.mohapatra@chitkara.edu.in
mailto:sankar2367@gmail.com
mailto:rk30111972@klh.edu.in
mailto:arunravula12@gmail.com
mailto:kschandra.rao@gmail.com


Authentication of Sub-NUMA Clustering effect on Intel Skylake for Memory Latency and Bandwidth 

196 

as quickly. However, databases such as SAP HANA use certain task allocation methods on multi-processor 

computers, although functions checking a table segment are preferably performed on the processor to which the 

column's memory DRAM unit is connected for improved location. For load balancing purposes, however, it may 

be permitted to operate elsewhere. This makes it quicker to search memory and SAP HANA scales easier for more 

processors on a machine [5]. 

 

2. RELATED WORK: 

 

Earlier studies on task theft have studied remote task stealing on multi-machine setups in a hierarchical way for 

generic workloads. The location of the task to be stolen is represented in "HotSLAW"[6] using a locality hierarchy 

where the stealer first tries to loot from the local area and travels up the hierarchy to steal tasks from a less local 

zone. Locality hierarchy levels may be a shared L2 cache, a NUMA domain, another processor, or a separate 

server. The stealer randomly selects victims for each hierarchy to loot from and only progresses upwards in the 

hierarchy after all random attempts have failed. HotSLAW uses Partitioned Global Address Space (PGAS) to give 

remote memory on any server access to a mission. Memory in PGAS is kept consistent across software-use 

servers. Our device varies slightly in that we only use processors on the same computer. 

 

Research has also been done to try to use Remote Direct Memory Access (RDMA)[7] to make databases spread 

through several machines run faster. Some technologies use standard IP-based underlying networking, and some 

use special protocols such as InfiniBand. These types of high-performance hardware for networking have recently 

become more cost-competitive. At levels close to what is achieved in memory bandwidth inside a computer, the 

networking hardware may provide bandwidth between machines. RDMA will also reduce latency to memory on 

a remote computer by not needing to go through the CPU or OS during memory accesses across computers. It is 

shown in [8] that the transfer of 1 KB of data using RDMA will end at about the same time as a request for local 

memory. It is noted, however, that it is difficult to render RDMA as fast as local memory access on smaller data 

requests such as hash table lookups, as the network latency, and not the bandwidth, is the most dominant factor 

in this case. 

 

Psaroudakis has conducted previous column investigations and placement of scanning tasks in SAP HANA on 

multi-processor configurations [9]. A higher Processor load is achieved in these simulations by increasing the 

number of rows selected by question constants. In the more CPU-intensive process of materialization, this 

increases work. Result is a reduction in throughput on a balanced workload with highly selective predicates when 

these data-intensive tasks are permitted to be captured by remote processors. Nevertheless, on less selective 

predicates, thus increasingly CPU-intensive, robbery offered advantages. The simulations were only performed 

with one processor representing each NUMA domain. When using sub-domains using COD and SNC, we expand 

this by looking at the effect. 

 

Depending on the manufacturer, AMD's EPYC and potentially ARM's Neoverse processor are processors made 

from multiple silicon dies, which can be exposed as sub-NUMA domains and used for optimization of 

applications. The hop across dies adds latency and is definitely higher on Haswell and Skylake than sub-domains. 

This should increase the importance of enhanced locations with sub-domains. This would be something of interest 

for scanning heavy database queries if one could achieve high memory throughput across dies. Even though we 

just look at Intel's COD and SNC offerings in this thesis. Intel is also the first provider to sell sub-domains of 

anything like that. 

No previous study has examined task stealing inside a database on sub-domains within a processor, to the 

knowledge of the author. 

 

 

3. Methods of analysis 

 

 To address our query, we first check the effect of COD and SNC on memory latency and bandwidth when the 

core and DRAM are situated in the same versus specific sub of a memory demand. This will give us an idea of 

what the underlying hardware works and eliminates any complications introduced when the database is placed on 

top. Since our target database queries depend heavily on memory latency and throughput, our subsequent database 

experiments will hopefully help to clarify this. We implement the database in our tests in the second round of 

experiments and study the effect of query throughput on single- and multi-row queries in various scheduler 

architectures and during slanted workforces. These two kinds of queries are easy to test and should be correlated 

with both memory latency and bandwidth. 
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4. Microarchitecture of Processors  

 

The external interface and internal architecture of a processor are important for quickly serving several memory 

requests. A generalized processor microarchitecture that is identical to what is found on the Intel Skylake is shown 

in Figure 1. With the exception of a completely different caching logic, Haswell's microarchitecture is also 

identical to this figure. An array of DRAMs is physically mounted to the processor through memory channels. 

Memory requests can involve communication across processors via a socket interlink if a machine has multiple 

processors in able to reach DRAM connected to some other processor, which is often used to preserve cache 

coherence seen between processors. QPI [10] for Intel processor models including such Haswell and the faster 

UPI [11] for recent Intel generations such as Skylake are standard interconnect protocols. For their processors, 

other vendors give similar protocols. Communication over an interconnect provides extra latency and has a small 

bandwidth, but allows more DRAM attached and processing capacity within a system to be increased. 

Internally, cores and external interfaces interact via a bus within a processor. The logic of the processor, closer to 

each other on the bus, interacts faster and does not transfer other bus paths [12]. 

Every core has one or more threads of hardware, comparably referring to as CPUs in this thesis, and perhaps even 

cache alignment logic. DRAM external interfacing is controlled by one or more memory controllers, each 

controlling its memory channel array. In the virtual memory address space, a continuous memory area is always 

interlocked with a 256-byte granularity between the systems in  

order to use the bandwidth of both channels in parallel [13]. Output may also be done through controllers on 

processors with even more than one memory controller. 

 

Figure 1: Generalized processor microarchitecture and its connected memory. 

 

The arrows annotate the route of a CPU sample DRAM request to its register cache directory, to the target cache 

memory controller, to the alternating memory channel point. Only one memory controller and socket interconnect 

are accessible in this figure. 

 

Cache Coherence Directory-based: 

 

Cache coherence logic can accompany each cores and memory controllers. For each core, cores on both Haswell 

and Skylake microarchitectures incorporate local L1 and L2 caches, as well as a slice of the L3 cache that is shared 

in a domain among cores. It is important to check any memory request a CPU makes against the cache logic and 

implement the cache coherence protocol provided. 

Directory-based cache coherence is the only protocol available on Skylake [14] that is used on Haswell when 

COD is enabled [15]. For a specific set of physical main memory that are assigned to it, a directory consolidates 

cache line tracking. Each application for a memory address that is not cached locally in L1 or L2 must be glanced 

in the directory that is liable for it. The path checks whether the address is present on any processor in the 

corresponding L3 slice or any other cache. If not, the request will be redirected to a memory controller with a 

DRAM targeting channel. 

 

Through COD, Haswell uses single directory for each memory controller that is concerned for its addresses. 

Rather, Skylake has as many directories as cores, co-located along the cores, to minimize latency at these stages. 

A hash function maps directory addresses for an even load. 

Caching data will render regularly accessed rows from indexed columns easily accessible for the in-memory 

database queries we are looking at. However, it also has a small advantage when scanning columns far larger than 

the cache, as is often the case with SAP HANA [16]. If we will consider the factors like reliability, confidentiality, 

and Quality of Service etc. of IOT then this clustering architecture can be effectively implemented [17]. 
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Non-Uniform Accessing Memory 

 

Non-Uniform Memory Access (NUMA) is a design for exposing different memory address regions on a computer 

to relative memory access times at various CPUs. These relative access times are interpreted by the Linux Memory 

Management system as NUMA domains, each of which has a set of CPUs and memory address previously been 

associated with it. For a simple description, see figure 2. A significant disruption to other domains is given to any 

domain. It is anticipated that access from a CPU to memory in a domain with a lower relative distance would have 

lower latency and greater bandwidth. In Linux, the OS and its implementations can use this configuration to 

position a given process and the memory that it accesses closer to each other. The placement can be performed 

manually using the library libnuma, or automatically using the NUMA-balancing service, which is performed by 

preserving memory access heuristics. 

 

struct NumaDomain { 

Cpu [] cpus; 

MemChunk[]  regions; 

} 

Struct NumaDistance  { 

NumaDomain* cpu; 

NumaDomain* mem; 

int weight; 

} 

 

Figure 2: Simplified data structures in C of how Linux Memory Management system represents 

a NUMA topology. 

 

Since the NUMA topology shows relative differences in the access time of various memories, it is therefore 

frequently used in multi-processor configurations such as the one shown in Figure 3. Since the socket interconnect 

imposes latency and restricts the bandwidth to a comparatively high degree compared to memory viewed within 

a device, it increases access times by putting similar processes and memory on the same processor. 

 

 

 
 

Figure 3: Example of a NUMA topology of a multi-processor setup, here consisting of two 

interconnected processors each with two DRAMs attached. The displayed memory request 

originates from the processor of Domain0, and targets Memory C that is attached to processor 

of Domain1. 

 

NUMA Within a Processor: 

 

The latency of an entry from a core to DRAM depends on how far inside the processor the memory request needs 

to go. Today's world, larger server processors have hundreds of cores on a processor and more than one memory 

controller. Access latency therefore depends progressively on how far apart the processor logic necessary to satisfy 

the application is located. Intel implemented a new coined Cluster-on-Die (COD) feature in the Haswell 

microarchitecture accessible on designs with more than one memory controller to reveal these latency differences 

within a processor. 

 
CPU domain 1 

 
CPU domain 0 

L3 Cache L3 Cache 

Memory D Memory C Memory B Memory A 
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Enabling COD in the BIOS separates the cores and memory controllers on the same silicon die inside the processor 

into two subdivided NUMA domains. Since the specific memory access cache directory is situated on the target 

memory's memory controller, the request is stored within a subsection of the silicon die. 

 

In a multi-processor configuration, tests by Molka on a 12-core Haswell Intel Xeon E5-2680 v3 processor showed 

a reduction in latency of about 7 percent (Table III) and a 3.7 percent improvement in bandwidth (Tables VII and 

VIII) for requests dynamically within a sub-domain. Obviously, it depends on the caching state, remote reading 

of shared memory on the adjacent sub-domain appears to entail a broadcast to other processors, which more than 

doubles the latency and decreases bandwidth by 42% opposed to a local sub-domain access (table V and VIII). 

The Haswell processor used in these simulations has two buses that are unevenly attached to cores and memory 

controllers. There are queues linking the buses to each other. As the two sub-domains revealed are of similar size, 

these interfaces do not map to the two unevenly scaled buses, causing the queue to pass any local requests within 

a sub-domain. Similar experiments are performed in this study on a Haswell processor where even the two sub-

domains map exclusively to different buses. 

 

 
 

Figure 4: Two processors, each processor split into two sub-domains. In this picture, a core in 

CPU region # 1 is accessing memory in its neighboring sub-region. 

 

 

COD was replaced by Sub-NUMA Clustering (SNC) with the Intel Skylake microarchitecture. In comparison to 

Haswell that locate cache directories at the memory controllers, Skylake allocates the directories and slices of L3 

cache each used by keys mapped to its directory, across the cores as shown in figure 5. Any local and remote 

memory address is assigned to one of the directories based on an undocumented hash function. This mapping is 

reconfigured when SNC is allowed so that addresses to Memory A (see Figure 5) are only mapped to directories 

on the left side of the processor, while addresses to Memory B are only mapped to right section. This effectively 

creates two sub-NUMA domains with memory is not interleaved, with quicker access to memory within such a 

domain, as the requesting center, directory and memory are closer to each other. On the opposite, only one memory 

controller is involved in the request, which may restrict the performance. Both directories and L3 slices are also 

mapped with addresses from those other processors. Efforts to try to reverse engineer the unpublished hash 

function have resulted in the suggested management of slice-aware memory, where the cores and directories used 

are much closer to each other. As these cache lines are never modified across the sub-domains, Intel offers a lower 

latency to the neighboring sub-domain and better usage of the L3 cache, but in addition, in some cases, will 

increase L3 latency.  

 

Intel also presents the microarchitecture of Knights Landing that targets high computing environments, with up 

to 72 cores and a total of 10 different kinds of memory controllers, but without a shared L3 cache. Like Skylake, 

with SNC, the processor can be split into sub-domains, with up to four sub-domains possible. Knights Landing 

also has an optional quadrant mode, which addresses are forwarded to directories in the same way as in SNC, for 

minimized directory-to-memory latency, but without sub-NUMA domain exposure in the OS. 

 

On a single silicon die, Intel processors have steadily increased the number of cores. As this implies larger dies 

and increased development costs, AMD has opted for a multi-die strategy targeting server environments on its 

EPYC processor. Inside the same processor, the EPYC processor is split into four closely connected silicon dies. 

Because of these relations, which are revealed in the NUMA topology as one domain per die, the latency among 

Sub-CPU 
region 0a 

Sub-CPU 
region 0b 

Sub-CPU 
region 1a 

Sub-CPU 
region 1b 

    

Memory D Memory C Memory B Memory A 
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dies is slightly higher. In a multi-processor configuration, dies can link directly to each other on different 

processors without having to move through a standardized socket interconnect on the processors. This is being 

sold by AMD as Infinity Fabric. Similarly, the newly released Neoverse microarchitecture targeting server 

environments from ARM allows the designer to determine whether or not cores should be divided into several 

dies on one processor. Neoverse also does not, by default, have an L3 cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                              Domain0a Domain0b 

Figure 5: Skylake processor microarchitecture for Intel Xeon Platinum 8180 

[1]. Each core has its own part of the distributed directory (Dir) and a slice of 

the L3 cache. Every core and external interface are connected to a Manhattan- 

style bus network. 

 

 

 

Access column in SAP HANA  

 

As described in the introduction, for efficient compression and quick scanning, SAP HANA stores each column 

separate from each other. The option of applying indexes to a column is also possible for large datasets where 

many queries are highly selective. Per-default, the primary key is indexed. Extremely selective access on indexed 

columns uses binary search to touch just a few elements and is thus primarily susceptible to memory latency. 

Column scans that are more susceptible to memory bandwidth result from access to non-indexed columns. Since 

columns in DRAM are compressed and rendered usable, columns. 

 

 

In SAP HANA, Job Scheduling 
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Each database-connected client session is allocated its own OS thread used for link management, which may also 

generate query execution plans. A task graph is dynamically generated by the implementation plan and tasks 

themselves, where a given task is executable after all children have finished executing. One of the work queues 

that are current in every NUMA domain is forced into a task. During task formation, the preference for a particular 

domain is set and used when the task primarily accesses the memory in that domain. Preference is used in SAP 

HANA for column screening, but not on indexed columns. For each domain, worker threads pull tasks out of the 

local queue for implementation. 

 

 
 

Figure 6: SAP HANA task execution flow. 

 

Executable tasks in the task graph are pushed to the task’s preferred domain, or any queue if a preference is not 

set. Worker threads primarily pull tasks from its local queue or from a neighbor queue if the local one is empty. 

If a preferred task is stolen, the worker thread might have to access memory remotely, as seen in domain 0a in 

this figure. 

SAP HANA enables worker threads in a domain with unused task queues to steal tasks from queues in other 

domains in order to balance tasks between domains, that is, grab tasks from a remote domain queue. Task theft is 

a highly studied technique for load balancing and is commonly used in programming languages like Go. Stealing 

can be switched off internally in SAP HANA, enabled only between near neighbors in NUMA-topology, or across 

any domain. The default setting in SAP HANA is neighbor-stealing, as it avoids expensive stolen activities from 

placing unnecessary load on socket interconnects. The probability of bulk theft by stealing several tasks at a time 

is also present. 

 

• no binding: workers are freely movable by the OS 

• preferred binding: bind to the preferred domain only when working on a task with preference 

• opportunisticbinding(default): In addition to preferred binding, also bind the task’s direct children 

• bind always: Prohibit the OS from moving around workers. 

 

5. Results 

 

Using Broadwell Processor: 

The average lag and its duration observed from various hardware threads within each domain to memory located 

in distinct domains, as calculated using MLC, are presented in table 1 and table 2. With COD, we see an average 

7 percent decrease and an average 94 percent rise in local versus neighboring sub-domain latency, respectively. 

There is also a significant rise in remote processor latency. 

 

 

    

Table 1: In nanoseconds, memory access latency for hardware threads in each domain. Disabled COD. 

 

 

Mem 

CPU 

 

min 

Domain 0 

avg max 

 

min 

Domain 1 

avg max 

Domain 0 -2,8 79,3 +2,3 -3,8 134,4 +5,0 
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Domain 1 -3,6 134,2 +5,7 -3,4 79,5 +4,0 

 

Table 2: memory access latency with COD enabled. 

 

 

Mem 

CPU 

Domain 0a 

min avg max 

Domain 0b 

min avg max 

Domain 1a 

min avg max 

Domain 1b 

min avg max 

Domain 0a -1,5 74,0 +2,1 -0,8 156,6 +2,4 -0,4 195,4 +1,0 -2,1 204,9 +0,6 

Domain 0b -2,3 152,7 +2,2 -1,3 75,2 +1,4 -1,7 196,7 +3,4 -2,3 204,7 +1,0 

Domain 1a -1,0 196,3 +2,1 -1,2 205,3 +0,2 -1,3 74,1 +1,0 -1,8 156,2 +2,0 

Domain 1b -2,6 197,9 +2,5 -2,2 205,4 +1,5 -1,9 152,0 +2,4 -1,5 75,1 +1,6 

 

When COD is activated, bandwidth per memory controller is enhanced by 2.1-3.7 percent versus falling by 38-51 

percent for local and neighbor sub-domain. We can also see that on a remote processor, the throughput number of 

both sub-domains decreases by 3-8 percent per memory controller. 

                                                                                           

                     Table 3 Bandwidth between domains in MB/s. COD disabled. 

 

 

Mem 

CPU 

Domain 0 Domain 1 

Domain 0 62 134 30 471 

Domain 1 30 155 61 502 

 

 

Table 4 Bandwidths with COD enabled 

 

 

Mem 

CPU 

Domain 0a Domain 0b Domain 1a Domain 1b 

Domain 0a 32 210 15 322 12 742 12 274 

Domain 0b 18 335 31 749 15 013 14 503 

Domain 1a 12 754 12 296 31 751 15 268 

Domain 1b 14 850 14 392 18 808 31 750 

 

Using Skylake Machine: 

 

Table 5 and table 6 display our Skylake machine's MLC latency measurements. We see an insignificant 

difference in local latency of 6.4 percent when SNC is activated. As the CPU, target cache directory, and 

specified memory controller are closer to each other on average, this is fair. Notice that our earlier observations 

on older BIOS versions have been disabled with SNC with 7 nanoseconds faster local latency than the 

measurements shown here, and have thus seen a lower improved performance in latency with SNC. 

 

Table 5: Memory access latency in nanoseconds for hardware threads in each domain. 

SNC disabled. 

 

Mem 

CPU 

 

min 

Domain 0 

avg max 

 

min 

Domain 1 

avg max 

Domain 0 -3,7 80,8 +1,6 -3,6 138,9 +3,8 

Domain 1 -3,9 139,7 +3,8 -3,2 79,9 +1,9 
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Table 6: Memory access latency with SNC enabled. 

 

Mem 

CPU 

Domain 0a 

min avg max 

Domain 0b 

min avg max 

Domain 1a 

min avg max 

Domain 1b 

min avg max 

Domain 0a -1,2 74,2 +3,1 -0,1 81,5 +0,3 -2,1 132,0 +3,0 -1,4 142,1 +1,6 

Domain 0b -0,2 82,0 +0,2 -3,5 76,4 +5,0 -1,9 135,6 +2,0 -1,5 144,5 +1,6 

Domain 1a -2,1 132,4 +3,0 -1,4 142,0 +1,5 -0,7 73,6 +6,0 -0,1 81,5 +0,1 

Domain 1b -1,9 136,0 +2,1 -1,4 144,4 +1,7 -0,1 81,5 +0,1 -3,6 76,6 +5,0 

 

Table 7 and table 8 demonstrate the calculation of MLC bandwidth on our Skylake computer. As with COD, 

utilizing SNC mode should give us approximately half the bandwidth per sub-domain, which we can notice in 

the tables as well. On average, bandwidth per memory controller increases for local and neighboring sub 

domains by 4.2 percent and 4.4 percent. It is important to note here that the bandwidth of the neighboring sub-

domain is higher and thus greater than that of the local sub-domain. 

 

Table 7: Bandwidth between domains in MB/s. SNC disabled. 

 

Mem 

CPU 

Domain 0 Domain 1 

Domain 0 111 083,3 34 451,2 

Domain 1 34 454,9 111 618,7 

 

 

 

Table 8: Bandwidth between sub-domains in MB/s. SNC enabled. 

 

Mem 

CPU 

Domain 0a Domain 0b Domain 1a Domain 1b 

Domain 0a 58 087,1 58 122,9 34 254,3 34 238,9 

Domain 0b 58 144,8 58 012,9 34 265,9 34 235,1 

Domain 1a 34 287,6 34 248,1 58 064,0 58 146,7 

Domain 1b 34 288,3 34 253,6 58 145,0 58 006,9 

 

 

Our observed COD latencies and bandwidths are nearly similar to those measured by Molka. It did not seem to 

alter the behavior of substantially increased latency and decreased bandwidth to neighbor sub-domain by using 

our Broadwell processor with symmetrical sub-domains and shrinking in transistor capacity. With SNC, adjacent 

sub-domain latency and bandwidth are closer to what has been calculated on local access than access to a remote 

processor. This is more rational than what has been found with COD, and is possibly due to the different Skylake 

caching strategy. Memory access to that other processor appears to be largely unchanged, in comparison to COD.  

 

Conclusion and Future scope: 

 

In this thesis, when allowing COD and SNC modes on Intel, we checked the change in memory latency and 

bandwidth between different cores and memory devices. For any remote access, COD did not display attractive 

latency and bandwidth, partially due to the cache policy being used. SNC provided the OS and its applications 

with better latency outcomes and a more comprehensive exposure of the processor topology. Bandwidth to the 

local and neighbor sub-domain with SNC mode both increased slightly at about the same level.  

This is possibly due to the nature of the test question. The bigger problem with sub-domain scans is that there is 

no interleaved memory and no aggregated throughput available. It renders an application unable to use the total 

bandwidth available in a processor without load balancing. While our attempts to balance scanning, workloads 

did not resolve the interleaving of hardware with SNC disabled, it might be worthwhile to look at whether 

software-based interleaving can be achieved relatively quickly in the future, so that random access workloads can 

enjoy lower latencies at the same time. It will also be of interest to test the sub-domain solutions of other processor 

vendors to see whether query throughput with sub-domains can be enhanced.  
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Assuming that there will be even more cores for future processors, placing both cores on one die will be more 

difficult. Therefore, it will also be important to test processors in the future with multiple dies. Even further 

analysis at the stealing mechanisms in a multi-machine RDMA setup will also be of interest. It is logical to assume, 

with even more cores, that cores will inevitably have to be spread through many machines. 
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