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Abstract 

Achievement in mathematics is widely recognised as a sign of intelligence and cognitive development. Students’ 

involvement in acquiring mathematical competencies is not just automatic, but needs conscious efforts from the 

part of students. The intrinsic factor that motivates the students to plunge into activities that develop 

mathematical competencies is self-belief or belief system. The relationship between personal beliefs and 

competencies acquired is so important that it attracts the interest of researchers to create an ‘intellectual and 

competent’ community. In this paper, the causal influence of mathematics related beliefs on mathematical 

competencies is studied using a hybrid fuzzy model called IVIFRM-TOPSIS. This expert based method is more 

comprehensive in its approach as the uncertain information is modelled with interval-valued intuitionistic fuzzy 

sets. This study exhibits the efficiency of the fuzzy hybrid model in analysing the causal relationship and 

ranking the order of influence.  
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1. Introduction 

In most of the real-world problems, within a social context, words are used to describe the system and 

the related issues. When there was a need to quantify the qualitative data, the introduction of fuzzy 

sets by L. A. Zadeh (1965) came as an alternative approach that is capable of quantifying linguistic 

expressions. The fuzzy sets characterise the membership value of an element belonging to a particular 

set. Using single values to represent the membership values is inadequate to fully describe the 

linguistic expression and also it has no place to express the hesitancy of the expert. In order to include 

the hesitancy in the expert’s opinion several extensions of fuzzy sets have been introduced.  

 

Atanassav (1983) came up with a special fuzzy set which included non-membership value along with 

the membership value [2]. From the membership and non-membership value of an element belonging 

to a set, the hesitancy degree of expert’s opinion can be computed. Atanassav explained this scenario 

in uncertainty modelling convincingly using a substantial metaphor [2]. Let 𝜇 be the membership 

degree of the electorates which voted for a government and 𝜈 = 1 − 𝜇 be the non-membership degree 

of the electorates which voted for a government. In this case, the information about the people who 

have not voted at all. Therefore, if the membership and non-membership could be defined then the 

information about the abstention could be inferred from the expression  𝜋 = 1 − 𝜇 − 𝜈. Hence it can 

be said that Intuitionistic fuzzy sets are efficient in grasping more information and thus, quantifying 

the uncertainty efficiently. This notion is further extended to interval valued intuitionistic fuzzy sets 

(IVIFS) by Atanasssav and Gargov [3] where intervals are used to represent the membership and non-

membership degrees of an element belonging to a set.  

 

Fuzzy Relational Maps are simple but efficient tools to study conceptual problems. It is basically a 

soft computing technique that is a combination of fuzzy logic and neural network techniques [23]. 

FRM are useful in analysing the complex cognitive problems that deals with very high uncertainty. 
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FRMs are similar to FCM in every way except the factors are divided into two disjoint sets. FRM is a 

bi-directed map where the concepts are represented by set of nodes and the interrelations between the 

concepts are represented by edges. The concept values and edge strength are quantified with fuzzy 

sets based on expert’s opinion. The fixed points obtained in the iterative fuzzy inference process are 

used as weights and these weights are used to calculate the global weights. The weights obtained by 

this method are more reliable than the random weights as the interaction among the concepts is also 

taken into account [6], [10].  

 

Hajek et al. proposed a new hybrid decision support method by integrating IVIFCM and TOPSIS 

method in [10] to deal with Multi Criteria Group Decision Making (MCGDM). In this paper, this 

hybrid model is adopted to study the influence between mathematics related beliefs and mathematical 

competencies. The factors of domain and range spaces are treated like criteria and alternatives in 

MCGDM problem. The ranking method gives the ideal about the most and the least influential factors. 

The advantages of this hybrid approach are: 1) The interval-valued intuitionistic fuzzy sets represent 

the uncertain and vague information with greater flexibility. 2) The IVIFRM model provides the 

interrelated interactions among the concepts [10].  

 

It is widely believed that Galileo Galilei said: “Mathematics is the language in which God has written 

the universe”.  Human beings try to understand and operate the universe with the help of mathematics. 

So far, mathematics has been one of the successful means in empowering the humankind with 

necessary methods, tools and techniques to win over the universe defying even several laws of the 

nature. Mathematics and science are central to make an individual competent in understanding the 

world around better. In particular, Mathematics is generally recognized as a tool to explore the 

scientific and technological advancements. Recent researches on neurosciences and psychology have 

opened a new avenue that the world has had a turn around. An extensive study has been done on the 

significant factors of affective and cognitive domains.  

 

There are several contributions from the research community that discuss on the influences among 

beliefs and mathematical performance. Evans emphasizes on aspects of emotion and cognition related 

to mathematics learning and beliefs about mathematics [5]. Malmivuori has developed a theoretical 

framework to explain the dynamic interaction of affect and cognition in relation to the learning 

processes involved in mathematics education [15]. Gomez-Chacon proposed a model for studying the 

interaction between cognition and affect in mathematics education [9]. Goldin conducted an extensive 

research on how affect influences mathematical problem solving [7]. Leder directed the world’s focus 

on reconciling affective and cognitive approaches to research on mathematics learning [13]. All these 

contributions are useful in understanding the influence of beliefs on mathematics education and 

stimulated the attention to research on beliefs and mathematics learning around the world in recent 

years. 

 

In this paper, an attempt is made to study the influence between mathematics related beliefs and 

mathematical competencies using IVIFRM-TOPSIS model that studies the interactions among the 

concepts and ranks the most influential factor.    

 

2. Intuitionistic Fuzzy Sets – Preliminaries  

The Intuitionistic fuzzy sets are one of the most used fuzzy extensions in many real-life applications. 

Let E be a fixed set. Atanassov Intuitionistic Fuzzy Set (IFS) [2] is of the form 

𝐴 = {〈𝑥,   (𝜇𝑎(𝑥), 𝜈𝑎(𝑥))〉|𝑥 ∈ 𝐸})         (1) 

where 𝜇𝑎(𝑥), 𝜈𝑎(𝑥): 𝑋 → [0,1] are the degree of membership and non-membership of the element 𝑥 ∈
𝑋 respectively with a condition that for 𝑥 ∈ 𝑋, 0 ≤ 𝜇𝑎(𝑥) + 𝜈𝑎(𝑥) ≤ 1. 

For every 𝐴 (IFS) in 𝑋, 𝜋𝑃(𝑥) = 1 − 𝜇𝑎(𝑥) − 𝜈𝑎(𝑥), is called the degree of hesitation of  𝑥 ∈ 𝐸  to A. 

A pair 𝐴 = (𝜇𝑎 , 𝜈𝑎) where (𝜇𝑎 , 𝜈𝑎) ∈ [0,1] with 0 ≤ 𝜇𝑎(𝑥) + 𝜈𝑎(𝑥) ≤ 1 is called an Intuitionistic 

Fuzzy Number (IFN) [2].  
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Atanassov and Gargov introduced interval-valued Intuitionistic fuzzy set (IVIFS) [3] in 1989. An 

interval-valued Intuitionistic fuzzy set A over E is defined as  

𝐴 = {〈𝑥, ([𝜇𝑎
𝐿(𝑥), 𝜇𝑎

𝑈(𝑥], [𝜈𝑎
𝐿(𝑥), 𝜈𝑎

𝑈(𝑥])〉|𝑥 ∈ 𝐸}       (2) 

Where 0 ≤ 𝜇𝑎
𝐿 ≤ 𝜇𝑎

𝑈 ≤ 1, 0 ≤ 𝜈𝑎
𝐿 ≤ 𝜈𝑎

𝑈 ≤ 1 and 0 ≤ (𝜇𝑎
𝑈) + (𝜈𝑎

𝑈) ≤ 1 for all 𝑥 ∈ 𝐸. 
 

A pair  𝐴 = ([𝜇𝑎
𝐿 , 𝜇𝑎

𝑈], [𝜈𝑎
𝐿, 𝜈𝑎

𝑈]) is called interval-valued Intuitionistic fuzzy number (IVPFN) with 

[𝜇𝑎
𝐿 , 𝜇𝑎

𝑈], [𝜈𝑎
𝐿, 𝜈𝑎

𝑈] ∈ [0,1] and 0 ≤ 𝜇𝑎
𝑈 + 𝜈𝑎

𝑈 ≤ 1, where [𝜇𝑎
𝐿 , 𝜇𝑎

𝑈], [𝜈𝑎
𝐿, 𝜈𝑎

𝑈]: 𝑋 → [0,1] are the degree of 

membership and non-membership of the element 𝑥 ∈ 𝐸 respectively with a condition that for 𝑥 ∈ 𝐸, 

0 ≤ (𝜇𝑎
𝑈) + (𝜈𝑎

𝑈) ≤ 1. The degree of hesitant membership is defined as  

𝜋𝑎(𝑥) = [𝜋𝑎
𝐿(𝑥), 𝜋𝑎

𝑈(𝑥)] = [(1 − 𝜇𝑎
𝑈(𝑥) − 𝜈𝑎

𝑈(𝑥)), (1 − 𝜇𝑎
𝐿(𝑥) − 𝜈𝑎

𝐿(𝑥))] 
Some of the basic operations on interval-valued Intuitionistic fuzzy number are as follows [12]. 

Let 𝐴1 = ([𝜇1
𝐿 , 𝜇1

𝑈], [𝜈1
𝐿 , 𝜈1

𝑈]) and 𝐴2 = ([𝜇2
𝐿 , 𝜇2

𝑈], [𝜈2
𝐿 , 𝜈2

𝑈]) be two IVPFNs.  

𝐴1⊕𝐴2 =

(

 
 [
√𝜇1

𝐿(𝑥) + 𝜇2
𝐿(𝑥) − 𝜇1

𝐿(𝑥) ⋅ 𝜇2
𝐿(𝑥),

√𝜇1
𝑈(𝑥) + 𝜇2

𝑈(𝑥) − 𝜇1
𝑈(𝑥) ⋅ 𝜇2

𝑈(𝑥)
] ,

[(𝜈1
𝐿(𝑥) ⋅  𝜈2

𝐿(𝑥)) , (𝜈1
𝐿(𝑥) ⋅  𝜈2

𝐿(𝑥))] )

 
 

     (3) 

𝐴1⊗𝐴2 =

(

 
 

[𝜇1
𝐿(𝑥) ⋅  𝜇2

𝐿(𝑥) , 𝜇1
𝐿(𝑥) ⋅  𝜇2

𝐿(𝑥)],

[
√𝜈1

𝐿(𝑥) + 𝜈2
𝐿(𝑥) − 𝜈1

𝐿(𝑥) ⋅ 𝜈2
𝐿(𝑥),

√𝜈1
𝑈(𝑥) + 𝜈2

𝑈(𝑥) − 𝜈1
𝑈(𝑥) ⋅ 𝜈2

𝑈(𝑥),
] 

)

 
 

     (4) 

 

Xu introduced the following aggregation operators, defined on IVIFN in [24], [25] using operations of 

addition and multiplication. These operations were called interval-valued Intuitionistic fuzzy weighted 

average (IVIFWA) operator and interval-valued Intuitionistic fuzzy ordered weighted average 

(IVIFOWA) operator, respectively These aggregation operators are useful in aggregating the opinions 

of multiple experts.  

 

Let {𝐴𝑖} be a collection of ‘𝑛’ IVIFNs where 𝐴𝑖 = 〈[𝑎𝑖 , 𝑏𝑖], [𝑐𝑖, 𝑑𝑖]〉 (𝑖 = 1,2,…… , 𝑛) is the 𝑖𝑡ℎ IVIFN. 

The IVIFWA operator with respect to a weighting vector ‘𝑤’ is a map 𝐼𝑉𝐼𝐹𝑊𝐴:Ω𝑛 → Ω defined by  

𝐼𝑉𝐼𝐹𝑊𝐴(𝐴1, 𝐴2… . , 𝐴𝑛) =⊕𝑖=1
𝑛 𝑤𝑖𝐴𝑖 

= ([(1 − ∏ (1 − 𝑎𝑖)
𝑤𝑖𝑛

𝑖=1 ), (1 −∏ (1 − 𝑏𝑖)
𝑤𝑖𝑛

𝑖=1 ) ], [∏ 𝑐𝑖
𝑤𝑖𝑛

𝑖=1 ,∏ 𝑑𝑖
𝑤𝑖𝑛

𝑖=1
])   (5) 

where = (𝑤1, 𝑤2, …… ,𝑤𝑛)
𝑇 𝑤𝑖 ∈ [0,1],  ∑ 𝑤𝑖

𝑛
𝑖=1 = 1.  

Let {𝐴𝑖} be a collection of ‘𝑛’ IVIFNs where 𝐴𝑖 = 〈[𝑎𝑖 , 𝑏𝑖], [𝑐𝑖, 𝑑𝑖]〉 (𝑖 = 1,2,…… , 𝑛) is the 𝑖𝑡ℎ IVIFN. 

The IVIFWA operator with respect to a weighting vector ‘𝑤’ is a map 𝐼𝑉𝐼𝐹𝑂𝑊𝐴:Ω𝑛 → Ω defined by  

𝐼𝑉𝐼𝐹𝑂𝑊𝐴(𝐴1, 𝐴2… . , 𝐴𝑛) =⊕𝑖=1
𝑛 𝑤𝑖𝐴𝜎(𝑖) 

 

= (

[(1 −∏ (1 − 𝑎𝜎(𝑖))
𝑤𝑖

𝑛

𝑖=1
) , (1 −∏ (1 − 𝑏𝜎(𝑖))

𝑤𝑖
𝑛

𝑖=1
) ] ,

 [∏ 𝑐𝜎(𝑖)
𝑤𝑖

𝑛

𝑖=1
,∏ 𝑑𝜎(𝑖)

𝑤𝑖
𝑛

𝑖=1
]

)     (6) 

where (𝜎(1), 𝜎(2), …… , 𝜎(𝑛)) is a permutation of (1, 2, …… , 𝑛) such that 𝐴𝜎(𝑖−1) ≥ 𝐴𝜎(𝑖), 𝑖 =

1, 2, …… , 𝑛 and  𝒘 = (𝑤1, 𝑤2, …… ,𝑤𝑛)
𝑇 , 𝑤𝑖 ∈ [0,1],  ∑ 𝑤𝑖

𝑛
𝑖=1 = 1.  

 

3. TOPSIS method based on IVIFS [10] 

Technique for order of preference by similarity to ideal solution (TOPSIS) method is one of the 

effective multi-criteria group decision making methods. This method was initially proposed by Yoon 

(1981) and then extended by Boran (2009) to solve MCGDM problems. In the TOPSIS method based 

on IVIFS both criteria and alternatives are expressed in terms of IVIFS. The choice of each decision 

maker is represented with a decision matrix 𝑅(𝑘) = (𝑟𝑖𝑗
(𝑘)
)
𝑚×𝑛

 in terms of IVIFS. The decision 

matrices 𝑅(𝑘) of different decision makers is aggregated using IVIFOWA operator.  
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The IVIFS Positive Ideal Solution (𝑎+) and Negative Ideal Solution (𝑎−) are calculated using 

equations (7) and (8)  

𝑎+ = ([𝜇𝑎+
𝐿 (𝑐), 𝜇𝑎+

𝑈 (𝑐)], [𝜈𝑎+
𝐿 (𝑐), 𝜈𝑎+

𝑈 (𝑐)])        (7) 

𝑎− = ([𝜇𝑎−
𝐿 (𝑐), 𝜇𝑎−

𝑈 (𝑐)], [𝜈𝑎−
𝐿 (𝑐), 𝜈𝑎−

𝑈 (𝑐)])        (8) 

Let 𝐶1and 𝐶2 be the set of benefit and cost criteria respectively. Then  

𝜇𝑎+
𝐿 (𝑐)

= ((max
𝑖
𝜇𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜇𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜇𝑎+
𝑈 (𝑐)

= ((max
𝑖
𝜇𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜇𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜈𝑎+
𝐿 (𝑐)

= ((max
𝑖
𝜈𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜈𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜈𝑎+
𝑈 (𝑐)

= ((max
𝑖
𝜈𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜈𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜇𝑎−
𝐿 (𝑐)

= ((max
𝑖
𝜇𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜇𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜇𝑎−
𝑈 (𝑐)

= ((max
𝑖
𝜇𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜇𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜈𝑎−
𝐿 (𝑐)

= ((max
𝑖
𝜈𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜈𝑎𝑖
𝐿 (𝑥) |𝑐 ∈ 𝐶2)) 

𝜈𝑎−
𝑈 (𝑐)

= ((max
𝑖
𝜈𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶1) , (min

𝑖
𝜈𝑎𝑖
𝑈 (𝑥) |𝑐 ∈ 𝐶2)) 

 

The separation measures of each alternative 𝑎𝑖 from IVIFS-PIS and IVIFS-NIS are calculated using 

the normalised Euclidean distance between the IVIFS are calculated using equations (9) and (10) 

𝑆𝑖+ = √
1

2
∑ (

|𝜇𝑎𝑖
𝐿 (𝑐𝑗) − 𝜇𝑎+

𝐿 (𝑐𝑗)|
2
+ |𝜇𝑎𝑖

𝑈 (𝑐𝑗) − 𝜇𝑎+
𝑈 (𝑐𝑗)|

2

+|𝜈𝑎𝑖
𝐿 (𝑐𝑗) − 𝜈𝑎+

𝐿 (𝑐𝑗)|
2
+ |𝜈𝑎𝑖

𝑈(𝑐𝑗) − 𝜈𝑎+
𝑈 (𝑐𝑗)|

2)
𝑛
𝑗=1      (9) 

𝑆𝑖− = √
1

2
∑ (

|𝜇𝑎𝑖
𝐿 (𝑐𝑗) − 𝜇𝑎−

𝐿 (𝑐𝑗)|
2
+ |𝜇𝑎𝑖

𝑈 (𝑐𝑗) − 𝜇𝑎−
𝑈 (𝑐𝑗)|

2

+|𝜈𝑎𝑖
𝐿 (𝑐𝑗) − 𝜈𝑎−

𝐿 (𝑐𝑗)|
2
+ |𝜈𝑎𝑖

𝑈(𝑐𝑗) − 𝜈𝑎−
𝑈 (𝑐𝑗)|

2)
𝑛
𝑗=1      (10) 

The relative closeness coefficient of the alternative (𝑎𝑖) to the IVIFS-PIS (𝑎+) is calculated using 

equation (11). 

𝐶𝐶𝑖+ =
𝑆𝑖−

𝑆𝑖++𝑆𝑖−
 with 0 ≤ 𝐶𝐶𝑖+ ≤ 1, 𝑖 = 1, 2, …… , 𝑛       (11) 

 

4. Interval Valued Intuitionistic Fuzzy Relational Maps Model 

Fuzzy Relational Map (FRM) is an extension of Fuzzy Cognitive Map (FCM) that is constructed 

between two disjoint sets. FRMs are capable of modelling complex systems based on experts’ opinion 

[21]. An FRM is a dynamical structure and captures the causal interactions between the concepts from 

two disjoint sets and the causal links between the concepts. This dynamical system of causal influence 

is usually represented by the adjacency matrix between the two disjoint sets of concepts. Both the 

concepts and edge weights of FRM are represented by Interval valued intuitionistic fuzzy sets.  

 

Let (𝑑1, 𝑑2, …… , 𝑑𝑛) and (𝑟1, 𝑟2, …… , 𝑟𝑚) denote the nodes of the concepts in domain space and range 

space of an FRM respectively. In FRMs, an instantaneous state value 𝑑𝑖
𝑘+1, where 𝑘 denotes the index 

of iteration is calculated as follows. 

𝑑𝑖
𝑘+1 = 𝒇(𝑑𝑖

𝑘 + ∑ 𝑟𝑗
𝑘 ⋅ 𝑒𝑗𝑖

𝑛
𝑗=1 )        (12) 

where 𝑟𝑗
𝑘 = 𝒇(∑ 𝑑𝑖

𝑘 ⋅ 𝑒𝑗𝑖
𝑇𝑚

𝑖=1 ) where 𝑑𝑖
𝑘 , 𝑖 = 1,…… ,𝑚 and 𝑟𝑗

𝑘 , 𝑗 = 1,…… , 𝑛 are the concepts in 

domain space and range space respectively, 𝑒𝑗𝑖 is the strength of the influence of the concept 𝑑𝑖
𝑘 on 𝑟𝑗

𝑘 

and 𝑓 is a non-linear activation function such as sigmoid or hyperbolic type of function. 

 

The membership value of the concepts or edge strength in conventional FRM is represented by real 

numbers. The single values may be insufficient to quantify the qualitative data and take in the 
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uncertainty. In such situations, interval valued Intuitionistic fuzzy sets are more appropriate than 

single values of membership as they take into account the membership, non-membership and 

hesitancy degrees of elements. Applying the addition and multiplication operators for IVIFS from (3) 

and (4), the inference in conventional FRM defined by (10) can be reformulated as follows: 

𝑑𝑖
𝑘+1 = {[𝜇𝑃

𝐿(𝑑), 𝜇𝑃
𝑈(𝑑)], [𝜈𝑃

𝐿(𝑥), 𝜈𝑃
𝑈(𝑑)]}𝒊

𝒌+𝟏 

= 𝒇({[𝜇𝑃
𝐿(𝑑), 𝜇𝑃

𝑈(𝑑)], [𝜈𝑃
𝐿(𝑑), 𝜈𝑃

𝑈(𝑑)]}𝑖
𝑘⊕(

⊕𝑗=1
𝑛 {[𝜇𝑃

𝐿(𝑟), 𝜇𝑃
𝑈(𝑟)], [𝜈𝑃

𝐿(𝑟), 𝜈𝑃
𝑈(𝑟)]}𝑗

𝑘

⨂{[𝜇𝑃
𝐿(𝑤), 𝜇𝑃

𝑈(𝑤)], [𝜈𝑃
𝐿(𝑤), 𝜈𝑃

𝑈(𝑤)]}𝑗𝑖
)) (13) 

Where {[𝜇𝑃
𝐿(𝑟), 𝜇𝑃

𝑈(𝑟)], [𝜈𝑃
𝐿(𝑟), 𝜈𝑃

𝑈(𝑟)]}𝑗
𝑘 = 𝒇((

⊕𝑗=1
𝑛 {[𝜇𝑃

𝐿(𝑟), 𝜇𝑃
𝑈(𝑟)], [𝜈𝑃

𝐿(𝑟), 𝜈𝑃
𝑈(𝑟)]}𝑗

𝑘

⨂{[𝜇𝑃
𝐿(𝑤), 𝜇𝑃

𝑈(𝑤)], [𝜈𝑃
𝐿(𝑤), 𝜈𝑃

𝑈(𝑤)]}𝑗𝑖
𝑇 )) 

 

5. IVIFRM-TOPSIS – A fuzzy hybrid approach   

In order to explore the influence of mathematics related beliefs on mathematical competencies Multi 

Criteria Group Decision Making (MCGDM) approach is adopted in this study. Integrating two 

efficient method to find the influence of beliefs on improving mathematical competencies and rank the 

most influential beliefs give a clear assessment of the study. The IVIFRM model is capable of 

representing the imprecise knowledge of experts involved in decision making and also it takes into 

account the interactions among the criteria. The TOPSIS method is a ranking method that is employed 

to study the order of influence based on the Euclidean distance measures. The integrated IVIFRM-

TOPSIS method is used to model the causal relationship between mathematics related beliefs on 

mathematical competencies. The algorithm for construction and analysis of IVIFRM-TOPSIS is 

described in the following steps. 

Step 1: The factors that constitute the nodes of the domain and range IVIFRM are chosen with the 

help of experts and they are given in Table-1.  

Step 2: The relationship between nodes is obtained from decision makers (DM) on their domain 

knowledge. Using linguistic evaluations that describe the causal relations between concepts of graph-

based Intuitionistic FRM model is constructed.  

Step 3: Let 𝑐1, 𝑐2, …… , 𝑐𝑛 be ‘𝑛’ elements of the domain space and let 𝑎1, 𝑎2, …… , 𝑎𝑚 be the ‘𝑚’ 
elements of range space. Let ‘K’ be the number of DMs. From the information provided by the DMs, 

an IVIF decision matrix,  𝑅(𝑘) = (𝑟𝑖𝑗
(𝑘)
)
𝑚×𝑛

 for each kth DM is constructed where 𝑟𝑖𝑗
(𝑘)
∈ [0,1]. 

Step 4: The weighted aggregated decision matrix 𝑅 ⊗𝑊 is calculated as follows. 

Step 4a: The weight of the kth DM is calculated using equation (14) where ∑ 𝜆𝑘
𝐾
𝑘=1 = 1 

𝜆𝑘 =
𝜇𝑘+𝜋𝑘(

𝜇𝑘
𝜇𝑘+𝜈𝑘

)

∑ 𝜇𝑘+𝜋𝑘(
𝜇𝑘

𝜇𝑘+𝜈𝑘
)𝐾

𝑘=1

           (14) 

Step 4b: The aggregated decision matrix 𝑅 is obtained from the decision matrices 𝑅(𝑘) provided by 

each DM using the DM’s weights obtained in Step 4a and IVIFOWA operator. The IVIFS addition 

and multiplication operators defined in (3) and (4) are used. The resulting weighted aggregated IVIF 

matrix is with values that are interval valued Intuitionistic fuzzy number (IVIFN).   

Step 5: The IVIFN values obtained in the above step is taken as the edge strength of causal relation 

between the variables of domain space and range space of FRM model. These causal values of the 

edges constitute the adjacency matrix of the IVIFRM. 

Step 6: Using the Initial state vector of the concepts from Table-5 and the edge strength from the 

relational matrix (Table-4), the IVIFRM were simulated using the formula given in equation (13) until 

the steady state is reached. Sigmoid functions were used as activation functions. The resultant steady-

state vector values of the concepts are taken to be the weights 𝑊∗ = (𝑤1
∗, 𝑤2

∗, …… ,𝑤𝑛
∗).  

Step 7: The global weights of the criteria  𝑊′ = (𝑤1
′ , 𝑤2

′ , …… ,𝑤𝑛
′ ) are calculated by combining the 

local weights (𝑊) and steady-state weights (𝑊∗) of criteria using equation (15).  

𝑊′ = 𝑊𝑗⊕ (𝑊𝑗⨂𝑊𝑗
∗)          (15) 

Step 8: The weighted aggregated decision matrix 𝑅′ = 𝑅 ⊗𝑊′ = (𝑟𝑖𝑗
′ )
𝑚×𝑛

 is calculated.  
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Step 9: The IVIFS-PIS (𝑎+) and NIS (𝑎−) are obtained from the decision matrix using equation (7) 

and (8) 

Step 10: The separation measures (𝑆𝑖+  and 𝑆𝑖−) are computed using the normalised Euclidean distance 

between IVIFs using equation (9) and (10) 

Step 11: The relative closeness coefficient (𝐶𝐶𝑖+) of the alternative (𝑎𝑖) to the IVIFS-PIS (𝑎+) is 

calculated using equation (11)  

Step 12: From the values of relative coefficient the alternatives are ranked and the most influential 

factor and the order of influence is assessed.  

 

6. Description of the Problem 

Mathematics education is considered to be the foundation of scientific and technological knowledge. 

Therefore, mathematics is considered not only as a core component of the curriculum but also as a 

critical filter to many educational and career opportunities [13]. Developing mathematical 

competencies during early years of education is highly advocated as it has a long-lasting effect on 

their learning in future [11]. Harris also quotes in [11] that there is a connection between being 

competent in early math and success in school. Development of early math skills could be the 

strongest predictor of later success in both reading and math [11]. Mathematical competencies play a 

major role in a child’s growth and help them to have a sense of world around them. Possessing 

mathematical competencies is strongly related to increased levels of knowledge, understanding and 

intelligence. Hence it becomes pertinent to impart education in a manner that children develop 

mathematical competencies in the early years and that in turn would make them competent to face the 

world with greater confidence.  

 

Mathematical competencies comprise skills such as mathematising, reasoning, devising strategies, 

representation, communication, using symbolic/formal/technical language and operations [22]. Every 

kind of intelligence has one or more mathematical competencies beneath. Having acquired different 

kinds mathematical competencies enable an individual to have an edge over others in any field. Niss 

states that the concept of mathematical competence focuses on the enactment of mathematics rather 

than on the subject matter [18]. Ross Turner claims that mathematical competencies can be thought of 

as a set of individual characteristics or qualities possessed to a greater or lesser extent by each person 

[22]. Several recent researchers have identified that the more one possesses and can activate these 

competencies, the better they will be able to make effective use of mathematical knowledge to solve 

contextualised problems. The educational use of mathematical competencies is that they can be used 

as means to design curriculum and implementation of teaching and learning practices.  

 

The major difference between average students and high achievers in mathematics is their belief 

system. Teaching and learning process consists of an interaction between persons for the purpose of 

developing and sharing meanings. [4]. The specific means that shape this interaction is basically 

beliefs that creates a cognitive bonding and yield the expected learning. All knowledge is basically ‘a 

belief’ [8]. McLeod in [16] describes that the beliefs about mathematics, mathematics teaching, self, 

and about contextual factors relevant to mathematics learning are the influential factors in developing 

mathematical competencies. Almost all the students have a self-talk when they have to deal with 

mathematical problems. They make statements such as: mathematics is a mathematics is a difficult 

subject (beliefs about the subject), my mathematics teachers are very boring (about teachers), I feel 

happy to learn new concepts (about self), I am good at Algebra (self-confidence) and so on. The 

statements are nothing but, the expressions of the beliefs one holds strong in their mind [19], [20]. 

Several researches have confirmed the fact that there is a strong relation between personal beliefs and 

mathematics learning. As Fishbein (1987) points out:  there is a world of stabilized beliefs which 

profoundly influence the reception and the practice of mathematical and scientific knowledge which 

are not just remnants of primitive reasoning, but productive components of every other type of 

reasoning [8]. Stumper in [21] notes that it is not possible to establish causality between specific 

beliefs and behaviour in dealing with problems, but confirms that a beliefs system works as an 

explanatory model.  
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In this paper, a study is carried out to identify the causal influence of beliefs on mathematical 

competence. A list of 12 belief clusters related to mathematics is taken from [14] and 8 mathematical 

competencies from [17] are considered to be the factors of domain and range spaces of FRM. The 

experts agreed unanimously to work with these factors [Table-1] and provided the relational map 

between them in terms of linguistic expressions.  

 

Beliefs that influence mathematics learning Mathematical competencies 

𝐵1: Previous experience with Mathematics 𝑀1: Mathematical thinking 

𝐵2: Feelings about School 𝑀2: Mathematical problem handling 

𝐵3: Feelings about Mathematics 𝑀3: Mathematical modelling 

𝐵4: Effort in Mathematics 𝑀4: Mathematical reasoning 

𝐵5: Non-School influences on Motivation 𝑀5: Mathematical representation 

𝐵6: Self-Confidence in Mathematics 𝑀6: Mathematical symbols and formula 

𝐵7: Natural ability in Mathematics 𝑀7: Mathematical communication 

𝐵8: Goal orientation and effort 𝑀8: Mathematical aids and tools 

𝐵9: Study habits in Mathematics  

𝐵10: Mathematics content  

𝐵11: Assessment Practices  

𝐵12: Students’ expectation of teachers  

Table 1: Factors of Domain and Range spaces of FRM 

 

6.1. Analysis of the problem using IVIFRM-TOPSIS 

The mathematics related beliefs 𝐷 = (𝐵1, 𝐵2, …… , 𝐵12) and mathematical competencies 𝑅 =
(𝑀1,𝑀2, …… ,𝑀8) are taken to be the elements of domain and range spaces respectively. The beliefs 

and competencies are treated as alternatives and criteria of the decision matrix accordingly. The 

Decision Makers (𝐷𝑀1, 𝐷𝑀2, 𝐷𝑀3) are teachers from three different levels of education participated in 

this decision-making process using FRM model. Each of them was asked to construct an FRM using 

linguistic expressions independently (Table-3).  

 

 Linguistic terms to assess the 

alternatives 

Linguistic terms to assess the Criteria Linguistic terms to assess 

the importance of DMs 

Linguistic 

term 

IVIFS Linguistic term IVIFS Linguistic term IFS 

Very strong 

(VS) 

([0.75, 0.85], [0.00, 

0.10]) 

Very important 

(VI) 

([0.90, 0.90], [0.10, 

0.10]) 

Very important 

(VI) 

(0.90, 

0.10) 

Strong (S) ([0.51, 0.70], [0.15, 

0.25]) 

Important (I) ([0.40, 0.76], [0.00, 

0.21]) 

Important (I) (0.75, 

0.20) 

Medium (M) ([0.35, 0.50], [0.30, 

0.45]) 

Medium (M) ([0.15, 0.51], [0.25, 

0.46]) 

Medium (M) (0.50, 

0.45) 

Weak (W) ([0.16, 0.30], [0.46, 

0.60]) 

Unimportant (U) ([0.00, 0.36], [0.40, 

0.61]) 

Unimportant (U) (0.35, 

0.60) 

Very weak 

(VW) 

([0.00, 0.15], [0.65, 

0.80]) 

Very unimportant 

(VU) 

([0.10, 0.10], [0.90, 

0.90]) 

Very unimportant 

(VU) 

(0.10, 

0.90) 

Table 2: Linguistic terms 

 

    𝑅(1)        𝑅(2)        𝑅(3)     

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

𝐵1 M M W W S VS S S S S S M S VS S S S M S W S VS M M 

𝐵2 M M M M M S M S S S S M S S M S S M S M S S M S 

𝐵3 S VS VS VS S VS S S S VS VS S VS VS S VS S VS S S S S S S 

𝐵4 S S S S S VS S S S VS VS S S S VS VS S S S S S VS VS S 

𝐵5 M M W W M M M M S S S M S S S S S M S W S M S W 

𝐵6 M VS VS VS VS VS VS VS VS VS VS S VS VS S VS VS VS VS VS VS VS S VS 

𝐵7 M VS VS VS S VS S S VS VS VS S VS S VS VS S VS VS VS S VS VS S 
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𝐵8 M M W W S VS S S VS VS VS S VS VS M VS VS M S W VS VS M S 

𝐵9 S S S S S VS S S S S VS M S S S VS S S S S S VS S S 

𝐵10 M M W W M M M M S VS VS S S S S VS S W VS W S M S M 

𝐵11 S S S S S VS S S S S S S S S S S S S S S S VS S S 

𝐵12 S S S S S VS S S M M VS S S VS VS VS M S VS S S VS VS S 

Table 3: Relational Matrix Provided by the DMs 

 

The relational matrices 𝑅(1), 𝑅(2), and 𝑅(3) are provided by the three DMs respectively. These relational 

matrices of FRM model, constructed with the linguistic terms provided by the experts, is quantified with 

values from IVIFS. The importance of each DM is expressed in linguistic terms as follows: 𝐷𝑀1: 
strong, 𝐷𝑀2: strong and 𝐷𝑀3: medium. The weight of each DM is calculated and the weight 

information of the DMs is given by 𝑤 = (0.38, 0.38, 0.25). These FRMs provided by the individual 

decision makers are aggregated by applying the IVIFOWA operator method and it is given in Table-4. 

 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

𝐵1 ([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.42 

0.59], 

[0.25, 

0.39]) 

([0.00, 

0.36], 

[0.40, 

0.61]) 

([0.24, 

0.39], 

[0.41, 

0.56]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

𝐵2 ([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.42 

0.59], 

[0.25, 

0.39]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.35, 

0.50], 

[0.30, 

0.45]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.35 

0.50], 

[0.30, 

0.45]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

𝐵3 ([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.71 

0.82], 

[0.00, 

0.15]) 

([0.62 

0.85], 

[0.00, 

0.22]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

𝐵4 ([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

([0.62 

0.77], 

[0.00, 

0.22]) 

([0.51 

0.82], 

[0.15, 

0.25]) 

([0.51, 

0.77], 

[0.15, 

0.25]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

𝐵5 ([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.42 

0.59], 

[0.25, 

0.39]) 

([0.44, 

0.63], 

[0.23, 

0.34]) 

([0.24, 

0.39], 

[0.41, 

0.56]) 

([0.48, 

0.74], 

[0.19, 

0.31]) 

([0.42 

0.69], 

[0.25, 

0.39]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.52 

0.66], 

[0.00, 

0.34]) 

𝐵6 ([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.71, 

0.82], 

[0.00, 

0.14]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

𝐵7 ([0.69, 

0.80], 

[0.00, 

0.25]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.71, 

0.82], 

[0.00, 

0.14]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

𝐵8 ([0.60, 

0.74], 

[0.00, 

0.17]) 

([0.55, 

0.69], 

[0.00, 

0.31]) 

([0.57, 

0.72], 

[0.00, 

0.27]) 

([0.32, 

0.49], 

[0.34, 

0.48]) 

([0.71, 

0.82], 

[0.00, 

0.14]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.42, 

0.59], 

[0.25, 

0.39]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

𝐵9 ([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

([0.48, 

0.66], 

[0.19, 

0.31]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

𝐵10 ([0.48, 

0.66], 

[0.19, 

([0.52, 

0.66, 

[0.00, 

([0.67 

0.78], 

[0.00, 

([0.32, 

0.49], 

[0.34, 

([0.48, 

0.66], 

[0.19, 

([0.42 

0.59], 

[0.25, 

([0.48, 

0.66], 

[0.19, 

([0.55, 

0.69], 

[0.00, 
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0.31]) 0.34]) 0.19]) 0.48]) 0.31]) 0.39]) 0.31]) 0.31]) 

𝐵11 ([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

𝐵12 ([0.39, 

0.59], 

[0.25, 

0.59]) 

([0.47, 

0.66], 

[0.19, 

0.31]) 

([0.71, 

0.82], 

[0.00, 

0.14]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.51, 

0.70], 

[0.15, 

0.25]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([0.71 

0.82], 

[0.00, 

0.14]) 

([0.62 

0.77], 

[0.00, 

0.20]) 

Table 4: Aggregated matrix of IVIFRM 

 

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

([0.50, 

0.80], 

[0.05, 

0.10]) 

([0.55, 

0.75], 

[0.10, 

0.20]) 

([0.30, 

0.50], 

[0.15, 

0.30]) 

([0.40, 

0.75], 

[0.05, 

0.25]) 

([0.45, 

0.60], 

[0.15, 

0.25]) 

([0.45, 

0.65], 

[0.05, 

0.15]) 

([0.40, 

0.55], 

[0.00, 

0.15]) 

([0.60, 

0.70], 

[0.10, 

0.20]) 

Table 5: Input criteria weights 

 

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

([1.00, 

1.00], 

[0.05, 

0.09]) 

([1.00, 

1.00], 

[0.09, 

0.13]) 

([1.00, 

1.00], 

[0.05, 

0.09]) 

([1.00, 

1.00], 

[0.11, 

0.15]) 

([1.00, 

1.00], 

[0.05, 

0.14]) 

([0.75 

0.85], 

[0.00, 

0.10]) 

([1.00, 

1.00], 

[0.00, 

0.11]) 

([1.00, 

1.00], 

[0.09, 

0.13]) 

Table 6: Steady-state weights 

 

The local weights of the criteria 𝑊 = (𝑤1, 𝑤2, …… ,𝑤8) (Table-8) were calculated from the DMs 

opinions in (Table-7) represented by IVIFSs from (Table-2). The steady-state weights 𝑊∗ =
(𝑤1

∗, 𝑤2
∗, …… ,𝑤𝑛

∗) (Table-6) are calculated. From the local weights and steady-state weights the global 

weights 𝑊′ = (𝑤1
′ , 𝑤2

′ , …… , 𝑤𝑛
′ ) (Table-9) are computed. Using the global weights, the weighted 

aggregated IVIFS decision matrix 𝑅′ (Table-10) are constructed. The IVIFS-PIS (𝑎+) and IVIFS-NIS 

(𝑎−) (Table-11) are obtained. The separation measures (𝑆𝑖+) and (𝑆𝑖−) are computed from this the 

relative closeness coefficient (𝐶𝐶𝑖+) and the corresponding ranking is obtained (Table-12).  

 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

𝐷𝑀1 VI I M VI I M I I 

𝐷𝑀2 VI VI M VI M M I I 

𝐷𝑀3 VI I I M I I I I 

Table 7: The importance of criteria 

 

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

([0.80, 

0.90], 

[0.00, 

0.10]) 

([0.61, 

0.83], 

[0.00, 

0.15]) 

([0.22, 

0.59], 

[0.20, 

0.37]) 

([0.72, 

0.85], 

[0.00, 

0.14]) 

([0.32, 

0.69], 

[0.14, 

0.27]) 

([0.22, 

0.59], 

[0.20, 

0.37]) 

([0.40, 

0.76], 

[0.10, 

0.20]) 

([0.40, 

0.76], 

[0.10, 

0.20]) 

Table 8: Aggregated local weights 

 

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

([0.96, 

0.99], 

[0.00, 

0.02]) 

([0.85, 

0.97], 

[0.00, 

0.04]) 

([0.39, 

0.83], 

[0.06, 

0.17]) 

([0.92, 

0.98], 

[0.00, 

0.04]) 

([0.54, 

0.90], 

[0.03, 

0.10]) 

([0.39, 

0.83], 

[0.05, 

0.16]) 

([0.64, 

0.94], 

[0.01, 

0.06]) 

([0.64, 

0.94], 

[0.02, 

0.06]) 

Table 9: Global weights 
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 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

𝐵1 ([0.46, 

0.66], 

[0.19, 

0.32]) 

([0.35, 

0.57], 

[0.25, 

0.41]) 

([0.18, 

0.53], 

[0.27, 

0.46]) 

([0.22, 

0.38], 

[0.41, 

0.57]) 

([0.28, 

0.64], 

[0.18, 

0.32]) 

([0.30, 

0.71], 

[0.05, 

0.25]) 

([0.31, 

0.63], 

[0.20, 

0.35]) 

([0.31, 

0.63], 

[0.21, 

0.35]) 

𝐵2 ([0.46, 

0.66], 

[0.19, 

0.32]) 

([0.35, 

0.57], 

[0.25, 

0.41]) 

([0.19, 

0.55], 

[0.24, 

0.43]) 

([0.32, 

0.49], 

[0.30, 

0.47]) 

([0.26, 

0.60], 

[0.22, 

0.38]) 

([0.20, 

0.59], 

[0.19, 

0.37]) 

([0.23, 

0.48], 

[0.30, 

0.48]) 

([0.33, 

0.66], 

[0.16, 

0.29]) 

𝐵3 ([0.49, 

0.70], 

[0.15, 

0.26]) 

([0.64, 

0.83], 

[0.00, 

0.13]) 

([0.28, 

0.69], 

[0.06, 

0.30]) 

([0.57, 

0.83], 

[0.00, 

0.25]) 

([0.33, 

0.70], 

[0.03, 

0.28]) 

([0.28, 

0.69], 

[0.05, 

0.28]) 

([0.33, 

0.66], 

[0.16, 

0.29]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

𝐵4 ([0.49, 

0.70], 

[0.15, 

0.26]) 

([0.53, 

0.75], 

[0.00, 

0.23]) 

([0.25, 

0.64], 

[0.06, 

0.35]) 

([0.47, 

0.81], 

[0.15, 

0.28]) 

([0.28, 

0.70], 

[0.18, 

0.32]) 

([0.28, 

0.71], 

[0.05, 

0.28]) 

([0.46, 

0.78], 

[0.01, 

0.19]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

𝐵5 ([0.46, 

0.66], 

[0.19, 

0.32]) 

([0.35, 

0.57], 

[0.25, 

0.41]) 

([0.18, 

0.53], 

[0.27, 

0.46]) 

([0.22, 

0.38], 

[0.41, 

0.57]) 

([0.26, 

0.67], 

[0.22, 

0.38]) 

([0.17, 

0.57], 

[0.28, 

0.49]) 

([0.31, 

0.63], 

[0.20, 

0.35]) 

([0.33, 

0.62], 

[0.02, 

0.38]) 

𝐵6 ([0.46, 

0.66], 

[0.19, 

0.32]) 

([0.64, 

0.83], 

[0.00, 

0.13]) 

([0.30, 

0.71], 

[0.06, 

0.25]) 

([0.65, 

0.81], 

[0.00, 

0.17]) 

([0.40, 

0.77], 

[0.03, 

0.19]) 

([0.28, 

0.69], 

[0.05, 

0.28]) 

([0.46, 

0.78], 

[0.01, 

0.19]) 

([0.48, 

0.81], 

[0.02, 

0.15]) 

𝐵7 ([0.57, 

0.73], 

[0.00, 

0.26]) 

([0.64, 

0.83], 

[0.00, 

0.13]) 

([0.30, 

0.71], 

[0.06, 

0.25]) 

([0.65, 

0.81], 

[0.00, 

0.17]) 

([0.33, 

0.70], 

[0.03, 

0.28]) 

([0.28, 

0.69], 

[0.05, 

0.28]) 

([0.46, 

0.78], 

[0.01, 

0.19]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

𝐵8 ([0.66, 

0.79], 

[0.00, 

0.19]) 

([0.46, 

0.67], 

[0.00, 

0.33]) 

([0.22, 

0.60], 

[0.06, 

0.40]) 

([0.29, 

0.48], 

[0.34, 

0.50]) 

([0.38, 

0.75], 

[0.03, 

0.23]) 

([0.30, 

0.71], 

[0.05, 

0.25]) 

([0.27, 

0.56], 

[0.26, 

0.42]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

𝐵9 ([0.49, 

0.70], 

[0.15, 

0.26]) 

([0.43, 

0.68], 

[0.15, 

0.28]) 

([0.25, 

0.64], 

[0.06, 

0.33]) 

([0.44, 

0.65], 

[0.19, 

0.33]) 

([0.28, 

0.64], 

[0.18, 

0.32]) 

([0.28, 

0.69], 

[0.05, 

0.28]) 

([0.33, 

0.66], 

[0.16, 

0.29]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

𝐵10 ([0.46, 

0.66], 

[0.19, 

0.32]) 

([0.44, 

0.64], 

[0.00, 

0.37]) 

([0.26, 

0.65], 

[0.06, 

0.33]) 

([0.29, 

0.48], 

[0.34, 

0.50]) 

([0.26, 

0.60], 

[0.22, 

0.38]) 

([0.17, 

0.49], 

[0.28, 

0.49]) 

([0.31, 

0.63], 

[0.20, 

0.35]) 

([0.35, 

0.65], 

[0.02, 

0.35]) 

𝐵11 ([0.49, 

0.70], 

[0.15, 

0.26]) 

([0.43, 

0.68], 

[0.15, 

0.28]) 

([0.20, 

0.59], 

[0.20, 

0.38]) 

([0.47, 

0.69], 

[0.15, 

0.28]) 

([0.28, 

0.64], 

[0.18, 

0.32]) 

([0.28, 

0.69], 

[0.05, 

0.28]) 

([0.33, 

0.66], 

[0.16, 

0.29]) 

([0.33, 

0.66], 

[0.16, 

0.29]) 

𝐵12 ([0.38, 

0.59], 

[0.25, 

0.40]) 

([0.40, 

0.64], 

[0.19, 

0.34]) 

([0.28, 

0.69], 

[0.06, 

0.29]) 

([0.47, 

0.69], 

[0.15, 

0.28]) 

([0.28, 

0.64], 

[0.18, 

0.32]) 

([0.30, 

0.71], 

[0.05, 

0.25]) 

([0.46, 

0.78], 

[0.01, 

0.19]) 

([0.40, 

0.73], 

[0.02, 

0.24]) 

Table 10: Aggregated weighted IVIFS decision matrix 

 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 

𝑎+ ([0.66, 

0.79], 

([0.64, 

0.83], 

([0.30, 

0.71], 

([0.65, 

0.83], 

([0.40, 

0.77], 

([0.30, 

0.71], 

([0.46, 

0.78], 

([0.48, 

0.81], 
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[0.00, 

0.19]) 

[0.00, 

0.13]) 

[0.06, 

0.25]) 

[0.00, 

0.17]) 

[0.03, 

0.19]) 

[0.05, 

0.25]) 

[0.01, 

0.19]) 

[0.02, 

0.15]) 

𝑎− ([0.38, 

0.59], 

[0.25, 

0.40]) 

([0.35, 

0.57], 

[0.25, 

0.41]) 

([0.18, 

0.53], 

[0.27, 

0.46]) 

([0.22, 

0.38], 

[0.41, 

0.57]) 

([0.26, 

0.60], 

[0.22, 

0.38]) 

([0.17, 

0.49], 

[0.28, 

0.49]) 

([0.23, 

0.48], 

[0.30, 

0.48]) 

([0.31, 

0.62], 

[0.21, 

0.38]) 

Table 11: IVIFS-PIS and IVIFS-PIS 

 

Beliefs 𝑺𝒊+ 𝑺𝒊− 𝑪𝑪𝒊+ Rank 

𝐵1 0.9117 0.3643 0.2855 10 

𝐵2 0.8684 0.2422 0.2181 11 

𝐵3 0.3596 0.8490 0.7025 3 

𝐵4 0.4088 0.7925 0.6597 4 

𝐵5 0.9314 0.2506 0.2120 12 

𝐵6 0.3115 0.9694 0.7568 2 

𝐵7 0.2610 0.9645 0.7870 1 

𝐵8 0.6804 0.6177 0.4758 8 

𝐵9 0.5289 0.6091 0.5352 6 

𝐵10 0.7847 0.3893 0.3316 9 

𝐵11 0.5526 0.5953 0.5186 7 

𝐵12 0.5789 0.7140 0.5522 5 

Table 12: Separation measures, relative closeness coefficients and rank 

 

6.2. Results and Discussion 

From the steady-state values of IVIFRM, the beliefs are very important. From the TOPSIS method the 

influence mathematical beliefs on mathematical competencies. are ranked as follows: 𝐵7 ≻ 𝐵6 ≻
𝐵3 ≻ 𝐵4 ≻ 𝐵12 ≻ 𝐵9 ≻ 𝐵11 ≻ 𝐵8 ≻ 𝐵10 ≻ 𝐵1 ≻ 𝐵2 ≻ 𝐵5. From rankings it can be inferred that 𝐵7 

(Natural ability in Mathematics) is the most influential, 𝐵6 (Self-confidence in Mathematics) is the 

next most influential and 𝐵5 (Non-school influences on motivation) is the least influential belief 

clusters.  

 

7. Conclusion 

The intuitionistic fuzzy set, an extension of ordinary fuzzy sets, is more sophisticated as they include 

the non-membership values besides the membership values. The presence of non-membership value 

enables the measurement of hesitancy of the decision maker and thus the information provided by the 

expert is complete to a certain to an extent. Further the use of interval-valued intuitionistic fuzzy sets 

allows the expert to choose the membership and non-membership values of an element belonging to a 

set as a continuous range between two points belonging to the unit interval [0,1]. The adaptation of 

interval-valued intuitionistic fuzzy sets makes room for more information which may be missed out 

otherwise. The rankings obtained in this approach is rather reliable than the conventional TOPSIS as 

the interaction among the factors of criteria is taken in by integrating the TOPSIS method with 

IVIFRM model.   
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