Semi-Generalized Closed Set in the Closure Spaces

¹Dr. Neeran Tahir Abd Alameer * ,² Shahad safy Hussein

^{1,2} Kufa University, Education for Girls Faculty, Mathematics Department. *Corresponding Author: niran.abdulameer@uokufa.edu.iq

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 10 May 2021

Abstract. In this paper, we introduce the concept of semi generalized closed set (= SG- closed) sets, and semi generalized open (=SG- open) sets in the closure space. Furthermore, we study some of their properties. And investigate the relation between them.

Keywords: Closure spaces, G - closed sets, G- open sets, SG- closed sets , SG - open sets.

1. introduction

The purpose of this paper is to introduce and study the concept of semi generalized closed sets in closure spaces . Closure spaces were introduced by E.Čech [1] in 1966 and then studied by many mathematicians, see e.g. [2], [3], [4] and [8]. Closure spaces are sets endowed with a grounded, extensive and monotone closure operator. Khampakdee [6],defined an study g-closed sets (2008), and then in[5], (2009) introduced the notion of semi open sets in closure spaces and showed their fundamental properties. The semi-open sets are used to define semi-open maps.

As a continuation of this work, we introduce and study in Section 3, a new class of sets namely SGclosed sets which is properly placed in between the class of semi-closed sets and the class of g-closed sets. In Section 4, the class of SG- open sets introduced and investigated. All definitions of the several concepts used throughout the sequel are explicitly stated in the following section.

2. preliminaries

Definition 2.1. [1] Let $\mathcal{K}:P(M) \to P(M)$ be a function identified on a power set P(M) of the set M, \mathcal{K} will be the closure operator over M and the couple (M, \mathcal{K}) is called the closure space, if the following axioms are satisfied :

 $(1) (\emptyset) = \emptyset,$

(2) $\mathcal{A} \subseteq \mathcal{K}(\mathcal{A})$ for each $\mathcal{A} \subseteq M$,

(3) $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{K} (\mathcal{A}) \subseteq \mathcal{K} (B)$ for each $\mathcal{A}, \mathcal{B} \subseteq M$.

Definition 2.2. [1] let \mathcal{K} be the closure operator on \mathcal{M} named idempotent when $A \subseteq M$ then $\mathcal{K} \mathcal{K}$ (A) = \mathcal{K} (A), and we say \mathcal{K} is called additive if \mathcal{A} , \mathcal{B} are subset of \mathcal{M} then $\mathcal{K}(\mathcal{A})\cup\mathcal{K}(\mathcal{B})=\mathcal{K}(\mathcal{A}\cup\mathcal{B})$.

Definition 2.3. A function int $:P(M) \rightarrow P(M)$ identified on the power set P(M) from the set M, the interior operator on M is called an interior operator that satisfies:

(1) int(M) = M,

(2) $int(A) \subseteq A$, for each $A,B \subseteq M$.

(3) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$, for each A, $B \subseteq M$.

Definition 2.4. [8] Given the closure space $(\mathcal{M}, \mathcal{K})$ we identified the operator

 $i\mathcal{K}: P(\mathcal{M}) \to P(\mathcal{M})$ to be $i\mathcal{K}(\mathcal{A}) = \mathcal{M} - \mathcal{K}(\mathcal{M} - \mathcal{A})$.

Similarly, given a set $\boldsymbol{\mathcal{M}}$ with an interior operator i, we identified an operator

 $\mathcal{K}i: P(\mathcal{M}) \rightarrow P(\mathcal{M})$ by $\mathcal{K}i(\mathcal{A}) = \mathcal{M} - i(\mathcal{M} - \mathcal{A}).$

Definition 2.5. [5] A subset A of \mathcal{M} is said to be closed over the closure space $(\mathcal{M}, \mathcal{K})$ when \mathcal{K} (A) = A. In addition, subset B of \mathcal{M} is named open when its complement $(\mathcal{M}\setminus B)$ is closed. The empty set and the entire space where both open and closed Simultaneously.

Definition 2.6. [5] The closure space (N, E) named is subspace of $(\mathcal{M}, \mathcal{K})$ if N \subseteq M and E(A) = C(A) \cap N for each subset A \subseteq N.

Proposition 2.7. [5] Let (N, E) be a closure subspace of $(\mathcal{M}, \mathcal{K})$. If G is an open set in X, then G \sqcap N is an open set in (N, E).

Definition 2.8. [6] The subset Q of closure space $(\mathcal{M}, \mathcal{K})$ which named is generalized closed set in the closure space (g- closed) if CQ \subseteq G whenever Q \subseteq G and G is open set over M. A subset A $\subseteq \mathcal{M}$ is called a generalized –open (g-open) set if its complement is generalized closed set.

Definition 2.9. A subset A of a closure space $(\mathcal{M}, \mathcal{K})$ is said to be :

(1) a semi- open set [5] if there exists an open set G in $(\mathcal{M}, \mathcal{K})$ such that $G \sqsubseteq A \sqsubseteq \mathcal{K} G$. A subset A $\sqsubseteq X$ is called a semi-closed set if its complement is semi-open. And a semi-closed set if its complement is semi- closed set.

(2) a clopen set if A is open and closed set at the same time.

Lemma 2.10. Let A be a subset of a closure space $(\mathcal{M}, \mathcal{K})$. Then:

(1) the intersection of two g-open set is g-open set .

(2) if A is semi-closed set then $A \sqsubseteq i\mathcal{K}(\mathcal{K}(A))$.

(3) if $A \sqsubseteq B \sqsubseteq \mathcal{M}$ and A is g-open in B, B is g-open in \mathcal{M} then A is g-open in \mathcal{M} . **Proposition 2.11.** let (M, C) be the closure space and \subseteq . Where a subset Q is open if and only if $\subseteq C$ Anyplace is closed and $\subseteq Q$.

3. semi generalized closed set in the closure space

This section is dedicated to the introduction and discussion of the basic properties of the notion of a semi-generalized closed set.

Definition 3.1. [5] The subset Q of closure space $(\mathcal{M}, \mathcal{K})$ which named is semi-generalized closed set in the closure space (sg - closed) if $\mathcal{K}Q \subseteq G$ whenever $Q \subseteq G$ and G is G- open set over M. **Example 3.2.** Let $\mathcal{M} = \{1, 2, 3\}$ then identified a closure operator \mathcal{K} on M by

 $\mathcal{K} \emptyset = \emptyset, \mathcal{K}\{2\} = \{2\}, \\ \mathcal{K}\{3\} = C\{2,3\} = \{2,3\}, \\ \mathcal{K}\{1\} = C\{2,1\} = C\{1,3\} = \mathcal{M}, \\ C\mathcal{M} = \mathcal{M}. \\ \text{Let } \mathcal{B}=\{1,2\} \\ \mathcal{G}\text{-closed set on } \mathcal{M} \text{ is } \{1,2\}, \{2\}, \{2,3\}, \mathcal{M}, \emptyset \\ \mathcal{G}\text{-open set on } \mathcal{M} \text{ is } \{1\}, \{3\}, \{1,3\}, \mathcal{M}, \emptyset \\ \mathcal{B} \text{ is } \mathcal{S}\mathcal{G}\text{-closed set }. \\ \textbf{Remark 3.3. Every } \mathcal{S}\mathcal{G}\text{-closed set is } \mathcal{G}\text{-closed but not every } \mathcal{G}\text{-closed is } \mathcal{S}\mathcal{G}\text{-closed as shown in the example bellow.} \\ \textbf{Example 3.4. If } \mathcal{M} = \{1,2,3\} \text{ then identified a closure operator } \mathcal{K} \text{ on } M \text{ by} \\ \end{cases}$

 $\mathcal{K}\emptyset = \emptyset,$ $\mathcal{K}\{1\} = \mathcal{K}\{1,2\} = C\{1,3\} = \mathcal{M},$

 $\mathcal{K}{2} = \mathcal{K}{3} = C{2,3} = {2,3},$

 $C\mathcal{M} = \mathcal{M}.$

G-closed set on \mathcal{M} is {1,2},{1,3},{3},{2},{2,3}, \mathcal{M} , \emptyset

G-open set on \mathcal{M} is $\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \mathcal{M}, \emptyset$

then

a subset $B = \{1,2\}$ is *G*-closed but not

SG - closed. Since $\mathcal{B} \sqsubseteq \{1,2\}$ which is G-open set but $\mathcal{K}(\mathcal{B}) = \mathcal{M} \not\sqsubseteq \{1,2\}$.

Remark 3.5. from the above definition and example we have :

(1) every SG-closed is G-closed, however the convers is not true as shown in

(2) the union of two SG-closed sets need not to be SG-closed.

Example 3.6 let $\mathcal{M} = \{1, 2, 3, 4\}$ then identified a closure operator \mathcal{K} on M by $\mathcal{K} \phi = \phi$,

 $\mathcal{K}\{2,3\} = \mathcal{K}\{2,4\} = C\{2,3,4\} = \{2,3,4\},\$

 $\mathcal{K}{3} = \mathcal{K}{4} = C{3,4} = {3,4},$

 $\mathcal{K}\{2\} = \mathcal{K}\{2\}$

 $\mathcal{CM} = \mathcal{M}.\mathcal{K}$ for the other set equal to \mathcal{M}

{2},{3} is two SG-closed sets but {2} \cup {3}={2,3} is not SG-closed

Since $\{1,2,3\}$ is *G*-open set and $\{2,3\} \sqsubseteq \{1,2,3\}$

But $\{2,3\} = \{2,3,4\} \not\sqsubseteq \{1,2,3\}$

Not that $\{2,3\}$ is *G*-closed set.

Proposition 3.7. Let \mathcal{B} be a $S\mathcal{G}$ – closed set in \mathcal{M} . Then (B)\B does not contain any non-empty \mathcal{G} -closed set.

Proof. Assume that V is a *G*-closed subset of $(\mathcal{B})\backslash\mathcal{B}$.

This implies that $V \subseteq (\mathcal{B})$ and $V \subseteq \mathcal{M} \setminus \mathcal{B}$.

Since $\mathcal{M}\setminus V$ is a \mathcal{G} -open set, \mathcal{B} is \mathcal{SG} – closed and $\mathcal{K}(\mathcal{B})\subseteq \mathcal{M}\setminus V$. Therefore,

 $V \subseteq (\mathcal{B}) \sqcap (\mathcal{M} \setminus \mathcal{K}(\mathcal{B})) = \varphi$.Hence $\mathcal{K}(\mathcal{B}) \setminus \mathcal{B}$ does not contain any non-empty \mathcal{G} -closed set.

Proposition 3.8. If \mathcal{B} is \mathcal{G} -open and \mathcal{SG} -closed sets in \mathcal{M} , then \mathcal{B} is closed set.

Proof. Since \mathcal{B} is \mathcal{G} -open and \mathcal{SG} -closed, then $(\mathcal{B})\subseteq \mathcal{B}$, but $\mathcal{B}\subseteq \mathcal{K}(\mathcal{B})$. Therefore $\mathcal{K}(\mathcal{B}) = \mathcal{B}$. Hence, \mathcal{B} is closed.

Corollary 3.9. Let \mathcal{B} be open and \mathcal{SG} -closed sets in \mathcal{M} . Then \mathcal{B} is semi-closed.

Proof: since \mathcal{B} is open then it is \mathcal{G} -open and from Proposition 3.2. then \mathcal{B} is closed set which is semiclosed set.

Proposition 3.10. Let $H \subseteq \mathcal{B} \subseteq \mathcal{M}$. If H is *G*-open in \mathcal{M} , and \mathcal{B} is clopen in \mathcal{M} . Then H is *G*-open in \mathcal{B} .

Proof. Let F be a closed subset of \mathcal{B} such that $F \subseteq H$, F closed set in \mathcal{M} , $F \subseteq H$ then F is closed in \mathcal{M} , Since \mathcal{B} is closed in \mathcal{M} , where H \mathcal{G} -open in \mathcal{M} , then $F \subseteq i_{\mathcal{K}}(H)$, but \mathcal{B} is \mathcal{G} -open in \mathcal{M} , $F \subseteq H \subseteq B$, $F \subseteq B$, $F \subseteq i_{\mathcal{K}}(B)$. $F \subseteq i_{\mathcal{K}}(H) \sqcap B$, hence $i_{\mathcal{B}}(H) = \mathcal{B} \cap i_{\mathcal{K}}(H)$ holds. Hence, $F = F \cap \mathcal{B} \subseteq i_{\mathcal{B}}(H)$. Therefore, H is \mathcal{G} -open in \mathcal{B} .

Proposition 3.11. If $V \subseteq \mathcal{B} \subseteq \mathcal{M}$, V is $S\mathcal{G}$ -closed in \mathcal{B} and \mathcal{B} is clopen, then V is $S\mathcal{G}$ -closed in \mathcal{M} . **Proof.** Let H be a \mathcal{G} -open set in \mathcal{M} and $V \subseteq H$. Then $V \subseteq H \cap \mathcal{B}$ and $H \cap \mathcal{B}$ is \mathcal{G} -open in \mathcal{M} . Hence by using Proposition 3.4, $H \cap \mathcal{B}$ is \mathcal{G} -open in \mathcal{B} . Since $V S\mathcal{G}$ - closed in \mathcal{B} , then $\mathcal{K}_{\mathcal{B}}(V) \subseteq H \cap \mathcal{B}$. Since \mathcal{B} is closed in \mathcal{M} , then $(\mathcal{B}) = \mathcal{B}$ Hence, we have $(V) \subseteq H$. This shows that V is $S\mathcal{G}$ - closed in \mathcal{M} .

Proposition 3.12. Let $V \subseteq \mathcal{B} \subseteq \mathcal{M}$. If V is - closed in \mathcal{M} and \mathcal{B} is open, then V SG- closed in \mathcal{B} .

Proof. If H is a *G*-open set in \mathcal{M} such that $V \subseteq H$, $V \subseteq \mathcal{B}$ there for $V \subseteq \mathcal{B} \sqcap H \subseteq \mathcal{B}$, and \mathcal{B} is *G*-open in \mathcal{M} , then by using Proposition 3.4 H is *G*-open in \mathcal{M} . Where $\mathcal{B} \sqcap H$ is *G*-open in \mathcal{M} . Since, V is $\mathcal{S}G$ -closed in \mathcal{M} , $\mathcal{K}(V) \subseteq \mathcal{K}(B)$ but B is closed set (i.e. $\mathcal{K}(B) = B$) there for $\mathcal{K}(V) \subseteq B$, $\mathcal{K}(V) \sqcap B \sqsubseteq H \sqcap B$, then $\mathcal{K}(V) \subseteq H$. Hence $\mathcal{K}_{\mathcal{B}}(V) = \mathcal{B} \cap \mathcal{K}(V) \subseteq H$. Therefore V is $\mathcal{S}G$ -closed in \mathcal{B} .

Proposition 3.13. For a closure space (\mathcal{M}) , if $V \subseteq \mathcal{B} \subseteq \mathcal{M}$ and \mathcal{B} is clopen in \mathcal{M} , then the following are equivalent:

(1) V is SG- closed in \mathcal{B} ,

(2) V is SG- closed in \mathcal{M} .

Proof. (1) \Rightarrow (2). Let V be SG- closed in \mathcal{B} . Then by Proposition 3.4, V is SG-closed in \mathcal{M} . (2) \Rightarrow (1). If V is SG- closed in \mathcal{M} , then by Proposition 3.6, V is SG- closed in \mathcal{B} .

4. semi generalized - open sets in the closure spaces

The aim of this section is to introduce the concept of a semi- generalized open set and study some of their properties.

Definition 4.1. A subset \mathcal{B} of a closure space $(\mathcal{M}.)$ is called a semi-generalized open (= SG- open) set if $\mathcal{M}\setminus \mathcal{B}$ is SG- closed.

Proposition 4.2. A subset \mathcal{B} of a closure space $(\mathcal{M}.)$ is \mathcal{SG} - open if and only if $F \subseteq \mathcal{K}(\mathcal{B})$ whenever F is \mathcal{G} -closed and $F \subseteq \mathcal{B}$.

Proof. Suppose that \mathcal{B} is \mathcal{SG}^- open in \mathcal{M} , F is \mathcal{G} -closed and F $\subseteq \mathcal{B}$. Then $\mathcal{M}\setminus F$ is \mathcal{G} -open and $\mathcal{M}\setminus \mathcal{B}\subseteq \mathcal{M}\setminus F$. Since, $\mathcal{M}\setminus \mathcal{B}$ is \mathcal{SG}^- closed, then $(\mathcal{M}\setminus \mathcal{B})\subseteq \mathcal{M}\setminus F$. but, $(\mathcal{M}\setminus \mathcal{B})=\mathcal{M}\setminus i_{\mathcal{H}}(\mathcal{B})\subseteq \mathcal{M}\setminus F$. Hence F $\subseteq (\mathcal{B})$.

Conversely, Suppose that $F \subseteq (\mathcal{B})$ whenever $F \subseteq \mathcal{B}$ and F is *G*-closed. If H is a *G*-open set in \mathcal{M} containing $\mathcal{M}\backslash\mathcal{B}$, then $\mathcal{M}\backslash\mathcal{H}$ is a *G*-closed set contained in \mathcal{B} . Hence by hypothesis, $\mathcal{M}\backslash\mathcal{H} \subseteq (\mathcal{B})$, then by taking the complements ,we have, $\mathcal{K}(\mathcal{M}\backslash\mathcal{B}) \subseteq \mathcal{H}$. Therefor $\mathcal{M}\backslash\mathcal{B}$ is $\mathcal{S}G$ - closed in \mathcal{M} and hence \mathcal{B} is $\mathcal{S}G$ - open in \mathcal{M} .

Remark 4.3. The intersection of two SG- open sets need not to be SG- open.

Example 4.4. If $\mathcal{M} = \{1, 2, 3, 4\}$ then identified a closure operator \mathcal{K} on M by

 $\mathcal{K} \emptyset = \emptyset, \ \mathcal{K} \{3\} = \mathcal{K} \{4\} = C\{3,4\} = \{3,4\},\$

 $\mathcal{K}\{2,3,4\} = \mathcal{K}\{2,3\} = C\{2,4\} = \{2,3,4\}, \mathcal{K}\{2\} = \mathcal{K}\{2\}$

 $\mathcal{CM} = \mathcal{M}. \mathcal{K}$ for the other set equal to \mathcal{M}

then the sets $\{1,3,4\}$ and $\{1,2,4\}$ are $\mathcal{SG}-$ open

sets but their intersection $\{1,4\}$ is not SG- open.

Note: {4} is *G*-closed, {4} \subseteq {1,4}, {4} $\not\subseteq$ *i*_{*K*}({1,4}) since *i*_{*K*}({1,4})={1}.

Proposition 4.5. If \mathcal{B} is \mathcal{SG} - open in \mathcal{M} , then H= \mathcal{M} , whenever H is \mathcal{G} -open and $(\mathcal{B})U(\mathcal{M} \setminus \mathcal{B}) \subseteq H$.

Proof. Assume that H is *G*-open and (*B*)) \cup ($\mathcal{M}\setminus\mathcal{B}$) \subseteq H. Hence $\mathcal{M}\setminus H\subseteq (\mathcal{M}\setminus\mathcal{B}) \cap \mathcal{B} = \mathcal{K}(\mathcal{M}\setminus\mathcal{B})\setminus (\mathcal{M}\setminus\mathcal{B})$.

Since, $\mathcal{M}\setminus H$ is \mathcal{G} -closed and $\mathcal{M}\setminus \mathcal{B}$ is \mathcal{SG} -closed, then by Proposition 3.7, $\mathcal{M}\setminus H=\emptyset$ and hence, $H=\mathcal{M}$.

Proposition 4.6. If B is SG-closed, then (B) B is SG-open.

Proof. Suppose that \mathcal{B} is $S\mathcal{G}$ -closed. Then by Proposition3.7, (\mathcal{B}) \mathcal{B} does not contain any non-empty \mathcal{G} -closed set. Therefore, (\mathcal{B}) \mathcal{B} is $S\mathcal{G}$ - open.

Proposition 4.7. For each $p \in \mathcal{M}$, then either $\{p\}$ is *G*-closed or $\mathcal{M} \setminus \{p\}$ is *SG*- closed.

Proof. If $\{p\}$ is not *G*-closed, then the only *G*-open set containing $\mathcal{M}\setminus\{p\}$ is \mathcal{M} , hence, $\mathcal{K}(\mathcal{M}\setminus\{p\})\subseteq \mathcal{M}$ is contained in \mathcal{M} and therefore, $\mathcal{M}\setminus\{p\}$ is $\mathcal{S}G$ -closed.

ACKNOWLEDGMENTS

The researcher would like to acknowledge Iraq's Ministry of Higher Education and Scientific Research for the project's assistance.

References

- [1] E. Čech, Topological spaces, (revised by Z. Frolík, M. Katětov), Academia, Prague (1966).
- [2] E. Čech, Topological spaces, Topological papers of Eduard Čech, Academia, Prague (1968), 436-472.
- [3] J. Chvalina, On homeomorphic topologies and equivalent set-system, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII (1976), 107-116.
- [4] J. Chvalina, Separation properties of topologies associated with digraphs, Scripta Fac.Sci. Nat. Univ. Purk. Brun, 8 (10) (1980), 399-410.
- [5] J. Khampakdee and RNDR JOSEF, SLAPAL. Semi open sets in closure spaces. PhD thesis, Ph. D. thesis, Bruno University, (2009).
- [6] C. Boonpok, & J. Khampakdee, Between closed sets and generalized closed sets in closure spaces. Acta Mathematica Universitatis Ostraviensis, 16(1), (2008). 3-14.
- [7] N. Levine, Generalized closed sets in topology, Rendiconti del Circolo Matematico di Palermo, V 01. 19 (1970), 89-96.
- [8] A. Rieser, Cech Closure Spaces, A Framework for Discrete Homotopy, arXiv preprint arXiv,1708.09558. (2017).