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Abstract: The lightweight concrete is preferred over regular density concrete as it which reduces the dead 

load of the structure due to its lower density. The reduction in dead load of the structure, resulting in a 

considerable decrease in the size of structural elements and reinforcements; thereby, the building's cost can 

be reduced. The lightweight concrete is achieved through natural lightweight aggregates, artificial 

lightweight aggregates, coconut shells, oil palm shells, aeration in concrete, etc.  The mechanical properties 

like compressive strength, tensile strength, density depend upon lightweight aggregate, fine aggregate, 

super-plasticizer, cement content, water-cement ratio, etc. The mechanical properties can also be predicted 

using artificial intelligence from the existing data. This research aims to predict lightweight concrete's 

mechanical properties using MRA and ANN accurately. 
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1. Introduction: 

Lightweight aggregate concrete (LWAC) is a kind of concrete which has a low unit weight when 

balanced to that of normal weight aggregate concrete (NWAC). The low mass density of it has one of 

the big favors correlated with truncated self-weight of structures & is also enacted in long-span 

bridges and high-rise buildings. Also, the, structural LWAC, with a strength that is akin to NWAC, 

enables the limiting of construction outlay as it entails less reinforcement, minuscule assisting deck 

members, beams, & piers, & less earth tremor ruinous, the viable ease of LWAC is the haulage cost 

stockpile achieved by outstrip the upheave skillfulness in the construction field and lowering shipping 

cost, compared to conventional NWAC products.  

 

LWAC has the same concrete components as conventional NWAC with a partial or complete 

substitute of normal weight aggregate (NWA) with lightweight aggregate (LWA). The LWAs have an 

inherently great porosity, contributing in low density, low strength, and deformable particles.  LWAs 

generally has a density lower than 1920 kg/m3. A lower density of LWAC can be achieved by using a 

heftier lump of porous LWA,    trickle-down abject mechanical performance.  Compressive strength of 

LWAC relay on not only the content of LWAs, but also on other factors. Hence, these experimental 

studies shows that the properties & amount                      of LWAs influenced the mechanical behavior of LWAC. the 

mix proportions of        LWAC are also the key parameters incite the capacity of LWAC, such as water-to-

cement ratio (w/c) & mass of aggregate, water, & binders including cement, fly ash, & silica fume. The 

intricate relationship between concrete constituents & properties of cement-based construction materials, 

researchers have employed artificial neural networks (ANN). In the field of construction materials, 

ANN methods were applied for creating concrete properties, including mechanical, fluidity, & 
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durability in concrete components-related information as input parameters. This study gives a 

prediction model created on ANN and MRA based on mechanical characteristics of LWAC, which 

enable us to produce high-quality LWAC, satisfying the target performance.  

Detailed & extensive data on the mix proportions & the mechanical behavior of LWAC are taken 

from literature. The vast amount of data allows to enhance the reliability and accuracy of the prediction 

model. The prediction model is evaluated and compared to the results obtained from the commonly 

used statistical models. 

 

2. Prediction Modeling and Testing: 

Depending on the input parameter & target values, the output was effectuated through MRA and 

ANN, output values were equated with target (actual) values. Types of fibers and its respective 

literature source are presented in Table 1. Active compressive strength (3 days) data set has 64 

columns and 3916 rows (64 × 3916) of input data and 1 column and 3916 rows (1 × 3916) of target 

data. Active compressive strength (7 days) data set has 64 columns and 3916 rows (64 × 3916) of 

input data and 1 column and 3916 rows (1 × 3916) of target data. Active compressive strength (14 

days) data set has 64 columns and 3916 rows (64 × 3916) of input data and 1 column and 3916 rows 

(1 × 3916) of target data. Active compressive strength (28 days) data set has 64 columns and 3916 

rows (64 × 3916) of input data and 1 column and 3916 rows (1 × 3916) of target data. Active split 

tensile strength data set has 5 columns and 1328 rows (64 ×1322) of input data and 1 column and 119 

rows (1 × 1322) of target data. Active Density data set has 64 columns and 2872 rows (64 ×2872) of 

input data and 1 column and 2872 rows (1 × 2872) of target data. Target data for density, compressive 

strength and split tensile strength were used in both the MRA and ANN model as separate target in 

this study.  

Table 1: Range of parameters in data base for prediction model 

 

S. 

No. 

Type Type of Material Material Unit Content Range 

1. 

INPUT 
OTHER 

PARAMETERS 

Cement Kg/m3 0 to 815 

2. NWA Kg/m3 0 to 1296 

3. Fine aggregate (Natural 

Sand) 

Kg/m3 0 to 1600 

4. Fine aggregate (M-

sand) 

Kg/m3 0 to 659.5 

5. Water Kg/m3 37.5 to 323 

6. W/B ratio - 0.1 to 2.18  

7. GGBS Kg/m3 0 to 180 

8. Phosphogypsum Kg/m3 38.2 

9. Crushed Ceramic Kg/m3 0 to 45 

10. Fly ash cenosphere Kg/m3 0 to 203 

11. Recycled aggregate Kg/m3 0 to 334.74 

12. Self-Compacting Agent % 0 to 1.2 

13. Pulverized fuel ash Kg/m3 0 to 138 

14. Nano palm oil fuel ash Kg/m3 0 to 150 
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15. Silica fume Kg/m3 0 to 180 

16. Lime stone powder Kg/m3 0 to 150 

17. Steel fiber Kg/m3 0 to 39 

18. Carbon fiber % 0 to 1.5 

19. Acrylic polymer % 0 to 10 

20. Long Polypropylene 

fibre 

Kg/m3 0 to 12 

21. Long Polyolefin fibre % 0 to 9 

22. Short Polyolefin fibre % 0 to 2 

23. Poly vinyl Chloride 

Granules 

Kg/m3 0 to 135 

24. Metakaolin Kg/m3 0 to 102 

25. Mineral Admixture Kg/m3 0 to 200 

26. Rice husk ash Kg/m3 0 to 112.5 

27. Fly Ash Kg/m3 0 to 300 

28. Air entraining agent Kg/m3 0 to 2.73 

29. Alcofine Kg/m3 0 to 59.1 

30. Glass powder Kg/m3 0 to 1610 

31. Egg Shell powder Kg/m3 0 to 90 

32. Viscosity modifier % 0 to 1.65 

33. Superplasticizer Kg/m3 0 to 30.6 

34. HCL % 0 to 5 

35. MgSO4 % 0 to 5 

36. NaCl % 0 to 5 

37. Temperature of Curing °C 

 

18 to 1000 

38. 

LIGHT WEIGHT 

AGGREGATES 

Cinder Kg/m3 0 to 1119 

39. LECA Kg/m3 0 to 1119 

40. Recycled LECA Kg/m3 0 to 350 

41. Lava or tuff LWA Kg/m3 0 to 1060 

42. Expanded Clay Kg/m3 0 to 1152 

43. Bagacina Aggregate Kg/m3 0 to 946 

44. Flashag Kg/m3 0 to 766 

45. Lytag Kg/m3 0 to 1270 

46. Litcon Kg/m3 0 to 647 

47. Crushed Animal Bone Kg/m3 0 to 421 

48. Apricot Shell Kg/m3 0 to 421 
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49. Argex Kg/m3 0 to 592 

50. Car fluff Kg/m3 0 to 468 

51. Coal Gangue Aggregate Kg/m3 0 to 1005 

52. Arlita Kg/m3 0 to 643 

53. Procelinite Kg/m3 0 to 510 

54. Paraffin impregnated 

LA 

Kg/m3 0 to 488 

55. PUR Foam Kg/m3 0 to 20.1 

56. Expanded Shale Kg/m3 0 to 879 

57. Expanded Polystyrene 

(EPS) 

Kg/m3 0 to 1920 

58. Sintered Fly ash 

Aggregate 

Kg/m3 0 to 975 

59. Styrofoam Kg/m3 0 to 992 

60. Expanded waste glass Kg/m3 0 to 580 

61. Scoria Kg/m3 0 to 1290 

62. Waste Plastic Kg/m3 0 to 246 

63. Furnace Bottom ash Kg/m3 0 to 1835 

64. Zeolite Kg/m3 0 to 550 

65. Diatomite Kg/m3 0 to 607 

66. Pumice Kg/m3 0 to 1000 

67. Rubber Powder Kg/m3 0 to 88.9 

68. Autoclaved Aerated 

Concrete 

Kg/m3 0 to 389 

69. Expanded Perlite 

Aggregate 

Kg/m3 0 to 319 

70. Oil Palm Boiler Clinker Kg/m3 0 to 377 

71. Cold Bonded Pelletized Kg/m3 0 to 634  

72. Palm Kernel Shells Kg/m3 0 to 576.9 

 

 

2.1 Artificial Neural Network (ANN):  

Prediction model done is through MATLAB with two hidden layers, (10 and 15 neurons) in every 

hidden layer & one output layer with dependent variable as density, compressive strength and split 

tensile strength. Along with all the data, approximately 70%, 15%, &15% has been scrutinized for 

training, testing, &validation. The Levenberg– Marquardt (LM) algorithm is utilized for training due 

to its robustness & speed. Layered feed-forward networks have been practiced in this algorithm, in 

which the neurons are grouped in layers. Here, signals are sent forward & errors are propagated 

backwards. 
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Figure 1: Neural Network with 10 neurons 

 
Figure 2: Neural Network with 15 neurons 

2.2 Multiple Regression Analysis (MRA):  

In this study, the linear-type MRA modeling is done using MS excel. Coefficients of regression are 

evaluated by considering 95% confidence level, the error tolerance level is restricted to utmost of 5%. 

For a given input variable, the probability value is considered to be significant, only if it is less than 

0.05. *From MRA, the backing coefficients presented in Table () were found and substituted in linear 

multiple regression equation (equation (1)): 

 

                             O = I+C1X1+C2X2+ C3X3………………+ CnXn                             (1) 

2.3 Statistical Test:  

The prediction model is done with MRA and ANN and the analysis is done regression analysis where 

the coefficient of determination (R2) where the accuracy is checked with the values which gives us the 

validation of the model which is being created by various prediction modeling. This coefficient 

generally checks the difference or the amount of deviation from one value to the other value. Here the 

coefficient of determination is used for checking the deviation of the predicted value from the original 

value. The range of the R2 varies from 0 to 1 (i.e., 0 to 100 %). (R2) determination is give in equation 

(2), precision of the predictions of a network was appraised by RMSE difference, between the 

experimented and the predicted values. 

                                         Sum of Squares of Residuals  

                    R2 =       1 -                                                                                                                                    

(2) 

                                         Sum of Squares of Predicted Values, 

 

In this study, the models were prepared to predict the mechanical behavior (mechanical strength) of 

LWAC based on input parameters, & four methods were used, ANN, MRA, Orange & Anaconda, 

prediction models are validated R2  & RMSE & are consolidated in Table. 

To determine compressive strength of various days based on the parameter having various types of 



Predictive study on Mechanical strength of Lightweight concrete using MRA and ANN  
 

7779 

inputs, by using ANN and MRA. The validation of the model is made with coefficient of regression 

(R2) shown in table 1.  

 

3. Results and Discussion: 

Table 2: MRA Coefficients 

MRA 

Coefficient

s 

Coefficients 

for 

Compressiv

e strength (3 

days) 

Coefficients 

for 

Compressiv

e strength (7 

days) 

Coefficients 

for 

Compressiv

e strength 

(14 days) 

Coefficients 

for 

Compressiv

e strength 

(28 days) 

Coefficient

s for 

Density 

Coefficients 

for Split 

Tensile 

Strength 

I 2.38032 3.55308 6.02121 6.6576 1043.08 -0.619083 

C1 0.045053 0.058579 0.061135 0.067849 0.949322 0.00593425 

C2 0.000166 -0.00032 0.000244 0.000154 0.500255 5.64E-05 

C3 

0.000132 -0.00031 -0.00051 -0.00056 0.386419 

0.00089578

9 

C4 0.032119 0.043997 0.046736 0.051433 -0.212995 0.00305804 

C5 

0.002141 0.002765 0.003566 0.003928 0.561009 

0.00064886

2 

C6 0.018629 0.020828 0.019795 0.021919 0.107203 0.00259332 

C7 0.013255 0.017739 0.019545 0.021637 0.25494 0.00135205 

C8 0.025377 0.01594 0.037992 0.042464 0.550185 0.00253718 

C9 0.00917 0.012888 0.01388 0.015329 0.363469 0.00207721 

C10 0.007919 0.013115 0.0116 0.012722 0.258853 6.63E-15 

C11 -0.00988 -0.01563 -0.01454 -0.01626 0.00395855 -7.28E-15 

C12 -0.02937 -0.03496 -0.02924 -0.03283 0.121341 -0.00468068 

C13 0.006064 0.002505 -0.00099 -0.00117 0.376568 2.12E-03 

C14 0.005817 0.007737 0.00743 0.008001 8.89E-11 -5.23E-15 

C15 0.005604 0.008271 0.008659 0.009538 4.94E-11 3.79E-15 

C16 0.040866 0.050252 0.052217 0.057977 1.03544 0.00276373 

C17 -0.00842 -0.01376 -0.01343 -0.01419 0.661361 1.76E-03 

C18 -0.0063 -0.0075 -0.00857 -0.00978 -1.08E-10 -2.39E-15 

C19 0.017669 0.027354 0.027243 0.030255 -3.13353 3.60E-15 

C20 

0.010056 0.01177 0.014957 0.016641 0.371877 

0.00084443

3 

C21 -0.01258 -0.01673 -0.01927 -0.0214 -0.298007 -0.00113517 

C22 0.010354 0.013947 0.015109 0.016907 0.476244 1.28E-03 

C23 0.003949 -0.00635 0.005952 0.006487 -0.0324178 9.02E-17 

C24 -0.00449 -0.00657 -0.00794 -0.00844 -1.7652 0.00238174 

C25 0.006525 0.007266 0.008882 0.00986 0.829088 0.00166167 

C26 -0.0357 -0.04426 -0.05477 -0.06164 2.29005 0.0042848 

C27 -0.00194 -0.00225 -0.00241 -0.00269 0.197301 1.05E-03 

C28 -0.00329 -0.00521 -0.00759 -0.00847 9.58E-12 -3.47E-05 

C29 -0.02471 -0.03059 -0.0366 -0.04072 -0.863844 -0.00373247 

C30 -0.00098 -0.00287 -0.0026 -0.00291 0.0245589 0.00151616 
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C31 -0.01155 -0.01433 -0.01673 -0.01868 -0.529784 -6.72E-03 

C32 0.015648 0.014012 0.02524 0.02778 -8.20E-12 -1.12E-15 

C33 0.013516 0.01802 0.020299 0.022475 -0.528651 -0.00589151 

C34 0.010673 0.012461 0.012505 0.013527 0.445427 0.00112109 

C35 

0.005993 0.008256 0.008685 0.009512 0.464691 

0.00050896

2 

C36 -0.00744 -0.01019 -0.01192 -0.0129 0.0955172 -0.00049035 

C37 

0.005021 0.005633 0.006539 0.007306 0.633706 

0.00081739

7 

C38 0.001394 0.001252 0.001796 0.002116 0.404644 0.00105833 

C39 -0.02834 -0.03521 -0.03819 -0.04197 -0.0644694 -0.00108362 

C40 0.85582 0.95742 0.581363 0.622925 -86.6435 0.339186 

C41 0.028164 0.031083 0.031279 0.035099 0.5785 0.00623413 

C42 0.029433 -0.11661 0.065899 0.067589 6.52045 0.00337422 

C43 0.008242 0.010409 0.012887 0.014469 0.312472 0.00201079 

C44 -0.00628 -0.00952 -0.0118 -0.01321 -0.295232 8.22E-02 

C45 -0.0354 -0.04825 -0.05372 -0.06069 2.03E-11 -4.23E-16 

C46 0.006207 0.014797 0.010844 0.012298 1.29311 8.02E-04 

C47 -11.6904 -14.8111 -16.8068 -18.7674 1.68E-11 8.15E-17 

C48 0.094337 0.126536 0.138194 0.153367 0.584081 2.31E-03 

C49 0.074514 0.108618 0.12141 0.134903 0.0322259 8.26E-16 

C50 0.060584 0.067604 0.081497 0.088151 -0.949852 0.0055876 

C51 

0.00255 0.003282 0.004305 0.005225 0.278889 

0.00052738

1 

C52 0.049276 0.070024 0.082441 0.090823 0.855489 0.0200675 

C53 2.53413 3.9014 4.02435 4.76044 -97.3244 0.0402886 

C54 -1.40316 -1.98531 -2.2921 -2.36887 -355.706 -0.135955 

C55 -0.98352 -1.09846 -1.38175 -1.54683 -0.288068 -0.0052128 

C56 0.520374 2.38635 1.40609 1.2306 -186.678 0.521851 

C57 -55.7382 -76.2212 -87.5386 -97.6039 -3231.89 0 

C58 -0.00287 -0.00118 -0.00351 -0.00467 -1.79762 0 

C59 

0.168384 0.205624 0.174972 0.193376 0.575862 

0.00099540

4 

C60 0.082083 0.10913 0.118606 0.132048 -9.09E-13 0 

C61 0.032157 0.031562 0.04653 0.056991 0.253914 0.00601884 

C62 0.030874 0.041114 0.044818 0.049362 0.371824 0.00191702 

C63 -0.10382 -0.19761 -0.25577 -0.2869 -30.1543 -0.00072990 

C64 0.022219 -0.33514 0.05833 0.061312 -0.856159 0 

C65 0.010267 0.014832 0.015409 0.017255 0.426899 0.00296507 

C66 0.042164 0.053876 0.056989 0.061443 1.68015 0.0057291 

C67 -1.03437 -1.21501 -0.89835 -1.03408 -22.414 0.339932 

C68 -0.11549 -0.10689 -0.12224 -0.13553 -5.04692 0.00584847 

C69 0.405153 0.773858 0.706565 0.77447 0 0 
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C70 1.12059 1.72778 1.77973 1.96687 0 0 

C71 1.29891 1.96554 2.04721 2.26407 0 0 

C72 -0.00884 -0.0103 -0.01242 -0.01389 0.0212851 -0.00289578 

 

Table 2: R2 values 

Sr. 

No. 

Predicted Parameters MRA ANN (10 Neurons) ANN (15 neurons) 

  R2 RMSE R2 RMSE R2 RMSE 

1. Compressive strength (3 

days) 

0.4753 7.9 0.8234 4.59883 0.825 4.58367 

2. Compressive strength (7 

days) 

0.4878 9.958 0.8009 6.223 0.8292 5.7606 

3. Compressive strength (14 

days) 

0.4969 10.715 0.8087 6.6396 0.8422 6.0026 

4. Compressive strength (28 

days) 

0.4969 11.877 0.8326 6.88715 0.8498 7.49254 

5. Density 0.6315 250.599 0.7842 190.9408 

 

0.7955 186.3410 

6. Split tensile strength 0.4076 1.276 0.7241 0.88253 0.7383 0.8834 

 

 

The prediction of ANN and MRA for compressive strength of 3 days is shown in Fig 1, 2 and 3 where 

the R2 predictions are shown. It has been found out that prediction for MRA is 0.5474, ANN (10 

neurons) is 0.854 whereas on the other side for ANN (15 neurons) it is 0.8698. On the basis of these 

results, we can easily say that ANN (15 neurons) has more accuracy and can be used for prediction 

model. The efficiency of prediction model is totally depending on the accuracy of the output. In MRA  

the lower value of coefficient of regression only depicts that there will be more errors occur as 

compared to ANN model. So, we cannot use MRA model here for prediction of compressive strength 

of light weight concrete. Only ANN model can be taken into consideration for output. 

 

 
 

Figure 3: Target vs. MRA (3 days) compressive strength 
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Figure 4: Target vs. ANN (10 neurons) (3 days) compressive strength 

 
Figure 5: Target vs. ANN (15 neurons) (3 days) compressive strength 

For Fig 4, 5 and 6, the compressive strength of 7 days is used for the prediction which has the MRA 

and ANN analysis respectively here it also shows that the ANN model is better for the prediction as its 

error limit is less and it will give a proper prediction. 

 

 
Figure 6: Target vs. MRA (7 days) compressive strength 
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Figure 7: Target vs. ANN (10 Neurons) (7 days) compressive strength 

 
 

Figure 8: Target vs. ANN (15 Neurons) (7 days) compressive strength 

For Fig. 7,8 and 9, the compressive strength of 14 days is used for the prediction with MRA and 

ANN    model and it shows that the ANN has the R2 value of 0.8188 for 10 neurons, 0.7948 for 15 

neurons and for MRA has the R2 value of 0.5433 so the ANN model is the best for prediction. 
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Figure 9: Target vs. MRA (14 days) compressive strength 

 
 

Figure 10: Target vs. ANN (10 Neurons) (14 days) compressive strength 
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Figure 11: Target vs. ANN (15 Neurons) (14 days) compressive strength 

 

For Fig. 10,11 and 12, compressive strength of 28 days is used for the prediction which has the MRA 

and ANN analysis respectively here it also shows that the ANN model is better for the prediction as its 

error limit is less and it will give a proper prediction. 

 

 

 
 

Figure 12: Target vs. MRA (28 days) compressive strength 
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Figure 13: Target vs. ANN (10 Neurons) (28 days) compressive strength 

 

 
 

Figure 24: Target vs. ANN (15 Neurons) (28 days) compressive strength 

 

For Fig. 13,14 and 15, density of concrete is used for the prediction which has the MRA and ANN 

analysis respectively 
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Figure 35: Target vs. MRA Density 

 

 
 

Figure 46: Target vs. ANN (10 Neurons) Density 
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Figure 57: Target vs. ANN (15 Neurons) Density 

For Fig. 16,17 and 18, Split Tensile strength is used for the prediction which has the MRA and ANN 

analysis respectively. 

 

 
 

Figure 68: Target vs. MRA (28 days) Split Tensile Strength 
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Figure 79: Target vs. ANN (10 Neurons) Split Tensile Strength 

 
 

Figure 20: Target vs. ANN (15 Neurons) Split Tensile Strength 

4. Conclusion: 

This study portraits a MRA & ANN-based prediction model for the mechanical, split tensile strength 

& density of LWAC. The whole prediction is given by R2 value. This study probes the doability of 

modelling a predictive analysis through earlier study data, transfiguring the unstructured factors to 

possible structured parameters & using those in creating the MRA model &ANN model. Also, the  

efficacy of these models is trailed using statistical tools such as R2 and RMSE. The result shows that  

 

1. For 3 days compressive strength, ANN model (15neurons) gives the maximum R2 value of 0.8675 

when compared to ANN (10neurons) & MRA has a R2 value 0.4753 with RMSE of 7.9. 

2. For 7 days compressive strength, ANN model (15neurons) gives the maximum R2 value of 0.82929 

when compared to ANN (10neurons) & MRA has a R2 value 0.4878with RMSE of 9.958. 

R² = 0.7241

0

5

10

15

20

25

0 5 10 15 20 25 30

A
N

N
 P

R
ED

IC
TE

D
 

SP
LI

T 
TE

N
SI

LE
 S

TR
EN

G
TH

(M
P

A
)

TARGET SPLIT TENSILE STRENGTH (MPA)

MAT 10

R² = 0.7183

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

A
N

N
 P

R
ED

IC
TE

D
 

SP
LI

T 
TE

N
SI

LE
 S

TR
EN

G
TH

(M
P

A
)

TARGET SPLIT TENSILE STRENGTH (MPA)

MAT 15



R. Pranamika1, Dr. M. Senthil Pandian2
, Prof.K. Karthikeyan3 

7790 

3. For 14 days compressive strength, ANN model (15neurons) gives the maximum R2 value of 0.8422 

when compared to ANN (10neurons) & MRA has a R2 value 0.4969 with RMSE of 10.715. 

4. For 28 days compressive strength, ANN model (15 neurons) gives the maximum R2 value of 0.8498 

when compared to ANN (10 neurons) & MRA has a R2 value 0.4969 with RMSE of 11.877. 

5. For split tensile strength, ANN model (15 neurons) gives the maximum R2 value of 0.7383 when 

compared to ANN (10 neurons) & MRA has a R2 value 0.4076 with RMSE of 1.276. 

6. For density, ANN model (15 neurons) gives the maximum R2 value of 0.7955 when compared to ANN 

(10 neurons) & MRA has a R2 value 0.6315with RMSE of 250.599. 
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