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ABSTRACT 

This article revealed an interesting issue on vibrational internal energy and Helmholtz free energy of metals. The 

relationship existing between the lateral strain and axial strain was taking into consideration during computation. 

Vibrational internal energy and Helmholtz free energy of metals was computed and studied based on the theory of 

free electron approximation using the knowledge of thermodynamic potentials. Computed and theoretically obtained 

experimental valueof vibrational internal energy and Helmholtz free energy of metals agreed quite well with each 

other.Vibrational internal energy of metals increases as temperature increasesdue to change in atomic configuration 

mode and valence electron exchange between ions in metals.Increase in vibrational internal energy of metals as 

strain increases can be caused by weak electron cohesion and uncertainties regarding the behavior of valence 

electrons, atomic size, atomic configuration and bonding interaction between the electron in metals. Result obtained 

for free energy of metals is negative throughout which indicate that there is a better binding between electron in 

metals. Free energy of metals decreases as temperature increases due to reduction in atomic interaction and bond 

strength between the interacting electron in metals. Free energy of metals decreases as strain increases. 

Keywords: Vibrational energy, free energy, strain/deformation, tensile strength, Fermi energy, free electron 

approximation, thermodynamic potential. 

INTRODUCTION 

Metals occupy a special position in the study of solids,metals play a prominent role in theory of solids and has 

proved to be one of great fundamental states of matter (Kakani and Kakani, 2004).  Metals are excellent conductors 

of heat and electricity, metals are ductile and malleable (Kittel, 1976). The challenge of accounting for metallic 

features and properties providestarting impetus to modern theory of solids (Animalu, 1977).With thermodynamics, 

one is able to control the structure of solid material without knowing the atomic details of the crystals(Rogalski and 

Palmer, 2000). The knowledge of both classical thermodynamics and statistical mechanics represents a powerful 

combination in the study of crystalsstructures (Kakani and Kakani, 2004).Free energy is an extensive property of 

solid and its magnitude depends on the amount of substance in thermodynamic state (Ashcroft and Mermin, 1976). 

Free energy has dimensions of energy and its value is determined by state of the system. Free energy is used to 

determine how system change and work produce (Madelung, 1995). Thermodynamic potentials H, F and G defined 

in terms of U and TS has thermal properties of free electron gas regarded as temperature independent at normal 

temperature range (Pillai, 2010).Metals are deformed when subject to an applied mechanical stress. Stress is a 

measure of applied mechanical force normalized to take into account cross sectional area. Strain represents the 

amount of deformation induced by stress (Kakani and Kakani, 2004). Poisson’s ratio is an important elastic constant 

and its value is different for different materials. Poisson’s ratio describesthe relationship existing between lateral 
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strain and axial strain (Elliott, 1997).Before now, a lot of theoretical model has been developed by researchers to 

study and investigatethe characteristic properties of solids in a qualitative and quantitative way and brilliant 

successes have been recorded.Tyson and Miller, (1977), derived a semi-theoretical equation which expresses solid-

vapor surface free energy as a function of liquid surface tension and solid-liquid interfacial free energy. He obtained 

a solid-liquid energy which gives accurate estimate of solid surface energy at melting temperature for large number 

of elements with dependable liquid surface tension. This result agrees quite well with available experimental values 

when compared. Ahmed (2018), investigate the surface free energy of metallic nanoparticles in bulk material using a 

theoretical model that involves specific term for computing cohesive energy of nanoparticle. The results obtained 

revealed that surface energy is appropriate for spherical nanoparticle with realistic shape of nanoparticle. The 

surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, palladium and alkali metallic 

nanoparticles is prominent in nanoscale size, and it decreases with reduction of nanoparticle size. A decrease in 

surface energy is found by moving from bulk to atom. This result is consistent with other reported data. Aziz and 

Patrice (2006), calculate some thermodynamic properties using molecular simulation. Result obtained agree quite 

well with experimental thermodynamic binding properties. A novel method for computing entropy changes from a 

molecular dynamics’ simulation is demonstrated and expression for free energy, entropy and enthalpy in ensemble 

was establish using Free Energy Perturbation (FEP) formalism. The change in thermodynamic properties association 

of inorganic cations with a macrocycle of biological interest is illustrated. Lynden-Bell et. al. (1993), Investigated 

the variation in Landau free energy while melting platinum at different temperatures using computer simulation with 

model potential. He applied a biasing potential in a Monte Carlo simulation with umbrella sampling technique. The 

results obtained from Landau free energy curves gives accurate values of the difference in free energies between 

solid and liquid phases, thermodynamic melting point and metastability limit of crystalline phase. There was no 

evidence for nucleation of a metastable body-centered-cubic phase due to existence of local icosahedral order in 

metallic liquid phase. Adesakin et. al (2019) develop a model for computing current density, drift velocity and 

electron mobility of metals based on free electron theory. The results obtained for variation of this properties of 

metals with electron density parameter are in agreement with experimental value. Current density of metals reduces 

as deformation rises while the drift velocity and electron mobility rise as deformation increases. In this study, 

vibrational internal energy and Helmholtz free energy of metalswas computed and studied based on theory of free 

electron theory approximation using the knowledge of thermodynamic potential.  

Computational methods  

The total vibrational internal energy which is the internal energy is obtain by summing over all normal modes. 

Considering a continuous distribution of frequencies 𝑁(𝜔) since the normal frequencies lie close together to replace 

the sum by integral 

𝑈 = ∫ 𝐸(𝜔)𝑁(𝜔)𝑑𝜔
𝜔𝑚𝑎𝑥

0
= ∫

ℏ𝜔

𝑒𝑥𝑝(ℏ𝜔
𝑘𝐵𝑇⁄ )−1

𝜔𝑚𝑎𝑥

0
𝑁(𝜔)𝑑𝜔      (1) 

where  𝐸(𝜔) is the mean energy expressed in the form 

〈𝐸𝑘〉 = ∑ 𝐸𝑘𝑝(𝑛𝑘) =
∑ 𝐸𝑘𝑒𝑥𝑝(

−𝐸𝑘
𝑘𝐵𝑇⁄ )∞

𝑛𝑘=0

∑ 𝑒𝑥𝑝(
−𝐸𝑘

𝑘𝐵𝑇⁄ )∞
𝑛𝑘=0

∞
𝑛𝑘=0 =

∑ 𝑛𝑘ℏ𝜔𝑘𝑒𝑥𝑝(
−𝑛𝑘ℏ𝜔𝑘

𝑘𝐵𝑇⁄ )∞
𝑛𝑘=0

∑ 𝑒𝑥𝑝(
−𝑛𝑘ℏ𝜔𝑘

𝑘𝐵𝑇⁄ )∞
𝑛𝑘=0

+
1

2
ℏ𝜔𝑘   (2) 

setting 𝑥 = 𝑒𝑥𝑝 (
−ℏ𝜔𝑘

𝑘𝐵𝑇⁄ )in equation (2) the equation becomes 

〈𝐸𝑘〉 = [
∑ 𝑛𝑘𝑥𝑛𝑘∞

𝑛𝑘=0

∑ 𝑥𝑛𝑘∞
𝑛𝑘=0

+
1

2
] ℏ𝜔𝑘 = [
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𝑛𝑘=0

∑ 𝑥𝑛𝑘∞
𝑛𝑘=0

+
1

2
] ℏ𝜔𝑘 = (

𝑥

1 − 𝑥
+

1

2
) ℏ𝜔𝑘 = 
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(
1

𝑒𝑥𝑝(
ℏ𝜔𝑘

𝑘𝐵𝑇⁄ )−1
+

1

2
) ℏ𝜔𝑘 = 𝐸(𝜔𝑘)        (3) 

where use has been made of the identity 

∑ 𝑛𝑘𝑥𝑛𝑘−1 =
𝑑

𝑑𝑥

∞
𝑛𝑘=0 ∑ 𝑥𝑛𝑘∞

𝑛𝑘=0 =
𝑑

𝑑𝑥
(

1

1−𝑥
) =

1

(1−𝑥)2       (4) 

and 𝑁(𝜔)𝑑𝜔 is the number of oscillators with frequencies in the range between 𝜔 and 𝜔 + 𝑑𝜔, 𝜔𝑚𝑎𝑥  is the highest 

frequency of any normal mode. The lattice heat capacity is express as  

𝑐𝑣 = (
𝜕𝑈

𝜕𝑇
)

𝑣
= ∫ 𝑘𝐵 (

ℏ𝜔

𝑘𝐵𝑇
)

2𝜔𝑚𝑎𝑥

0

𝑒𝑥𝑝(ℏ𝜔
𝑘𝐵𝑇⁄ )

(𝑒𝑥𝑝(ℏ𝜔
𝑘𝐵𝑇⁄ )−1)

2 𝑁(𝜔)𝑑𝜔 = 
𝜋2

2
𝑁𝐾𝐵 (

𝑇

𝑇𝐹
)    (5) 

It is common practice to drop the zero-point energy in equation (1) as it has no contribution to the heat capacity. The 

frequency distribution function for linear monatomic lattice with a cut-off frequency 𝜔𝑚𝑎𝑥  is obtained as 

𝑁(𝜔) =
2𝑁

𝜋⁄

(𝜔𝑚𝑎𝑥
2 −𝜔2)

1
2⁄
          (6) 

Substituting equation (6) into equation (1) we obtain 

𝑈 =
2𝑁ℏ

𝜋
∫

𝜔𝑑𝜔

(𝑒𝑥𝑝(ℏ𝜔
𝑘𝐵𝑇⁄ )−1)(𝜔𝑚𝑎𝑥

2 −𝜔2)
1

2⁄

𝜔𝑚𝑎𝑥

0
        (7) 

At low temperatures (ℏ𝜔 ≪ 𝑘𝐵𝑇), assuming the highest frequency modes are effectively frozen, such that 
𝜔𝑚𝑎𝑥

𝜔⁄ ≫ 1, hence 

𝑈 =
2𝑁ℏ

𝜋
∫

𝑑𝜔

(exp (ℏ𝜔
𝑘𝐵𝑇⁄ )−1)[(

𝜔𝑚𝑎𝑥
𝜔⁄ )

2
−1]

1
2⁄

=
2𝑁ℏ

𝜋𝜔𝑚𝑎𝑥
∫

𝜔𝑑𝜔

(𝑒𝑥𝑝(ℏ𝜔
𝑘𝐵𝑇⁄ )−1)

𝜔𝑚𝑎𝑥

0

𝜔𝑚𝑎𝑥

0
    (8) 

Setting 𝑥 = ℏ𝜔
𝑘𝐵𝑇⁄  and 𝜃𝐷 =

ℏ𝜔𝑚𝑎𝑥
𝑘𝐵𝑇⁄ , then 

𝑈 =
2𝑁𝑘𝐵𝑇2

𝜋𝜃𝐷
∫

𝑥𝑑𝑥

𝑒𝑥𝑝(𝑥)−1

𝜃𝐷
𝑇⁄

0
=

𝜋𝑁𝑘𝐵

3𝜃𝐷
𝑇2        (9) 

where T is temperature,𝑘𝐵 is the Boltzmann constant, 𝑁is the number of particles and 𝜃𝐷 is Debye temperature 

obtained as 

𝜃𝐷 =
ℏ𝛾

𝐾𝐵
(6𝜋2 𝑁

𝑉
)

1

3  =
ℏ𝛾

𝐾𝐵
(6𝜋2𝜂)

1

3       (10) 

where, 𝛾 is the average sound velocity and the ratio 
𝑁

𝑉
= 𝜂 is the electronic concentration. 

The entropy of the free electron gas is obtained using the relation 

𝑆 = ∫
𝐶𝑣

𝑇

𝑇

0
𝑑𝑇           (11) 
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Substituting the electronic heat capacity in equation (5) into equation (11), the entropy of the free electron gas is 

obtainedas 

𝑆 =  ∫
1

𝑇

𝜋2

2
𝑁𝑘𝐵 (

𝑇

𝑇𝐹
) 𝑑𝑇

𝑇

0
=

𝜋2

2
N𝐾𝐵 (

𝑇

𝑇𝐹
)        (12) 

Evaluating the integral in equation (12) we have 

𝑆 =
𝜋2

2
N𝐾𝐵 (

𝑇

𝑇𝐹
)           (13) 

Multiplying equation (13) by T, hence 

TS =
𝜋2

2
𝑁𝐾𝐵𝑇𝐹 (

𝑇

𝑇𝐹
)

2

          (14) 

The Helmholtz free energy is given by 

𝐹 = 𝑈 − 𝑇𝑆           (15) 

Putting equation (9) and (14) into equation (15) we obtain 

𝐹 =
𝜋𝑁𝑘𝐵

3𝜃𝐷
𝑇2 −

𝜋2

2
𝑁𝐾𝐵𝑇𝐹 (

𝑇

𝑇𝐹
)

2

 = 𝜋𝑁𝑘𝐵 𝑇2 (
1

3𝜃𝐷
−

𝜋

2𝑇𝐹
)      (16) 

where N is electron density of state,𝑘𝐵  is Boltzmann constant, T is temperatureand 𝑇𝐹  is Fermi temperature. In this 

article, vibrational internal energyand Helmholtz free energy of metals were computed using equation (9)and (16) 

and how vibrational internal energy and Helmholtz free energy of metals changes with linearly applied strain is 

examined. 

 

RESULTS AND DISCUSSION 

Figure 1 shows variation of vibrational internal energy with electron density parameter for metals from different 

groups and periods. Both computed and theoretically obtained experimental value agree quite well with each other. 

Figure 1 revealed that vibrational internal energy of metals depends on ratio of valence electrons to their number of 

atoms as most of the metals whose vibrational internal energy were computed have their mobile electron 

concentrated in high density region than low density region. The trend demonstrated by metals in figure 1 also 

indicates that the higher the electronic structure in metal the higher the vibrational internal energy. Figure 2 shows 

variation of vibrational internal energy at different temperature with electron density parameter. In figure 2, 

vibrational internal energy of metals rises as temperature increases. This could be due to change in atomic 

configuration mode and valence electron exchange between ions in metals.Figure 3 shows variation of vibrational 

internal energy with strain for metals belonging to different elemental group and period.In figure 3, vibrational 

internal energy of metals rises as strain increases. This increase is caused by increase in lattice vibration,and electron 

disorder in metals. In figure 3, increase in vibrational internal energy of metals as strain increases can be caused by 

weak electron cohesion and uncertainties regarding the behavior of valence electrons, atomic size, atomic 

configuration and bonding interaction between the electron in metals.Figure 4 shows variation of free energy with 

electron density parameters for metals belonging to different groups and periods. There is agreement between 

computed and theoretically obtained experimental value. Result obtained for free energy of metals is negative 

throughout which seems to suggest a favorable and spontaneous electron reaction. Negative value of free energy of 

metals obtained in this work also indicate that there is a better binding between electron in metals andalso indicate 

that metals have free mobile electron in them which liberates energy that can be harnessed to do usefulwork. Result 

obtained in figure 4 revealed that free energy of metals decreases as electron density parameter of metals increases. 
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This shows that the higher the density of valence electron in metal the higher the free energy of metals and the lower 

the density of valence electron in metal the lower the free energy of metals. Furthermore, the trend display by metals 

in figure 4 also revealed that free energy of metals is highly dependent on electronic concentration. Figure 5 shows 

variation of free energy of metals at different temperature with electron density parameter for monovalent, divalent, 

trivalent and polyvalent metals. The trend display by metals in figure 5 revealed that free energy of metals decreases 

as temperature increases. This seems to suggest that as temperature increases the atomic interaction and bond 

strength between interacting electron in metals reduces which their-by forces the free energy of metals to decrease as 

temperature increases. Figure 6 shows variation of free energy with strain for metals belonging to different groups 

and periods. Also, reduction if free energy as strain increases can be due to reduction in atomic packing and electron 

affinity in metals. In figure 6, strain seems not to be having much effect on free energy of Fe, Cr, Ag and Cu as these 

could be due to their electronicnature, ionization energyand crystalline structure.The trend display by free energy in 

figure 4, 5 and 6 define Helmholtz free energy as F=U-TS which means that F can only decrease and can only move 

to lower and lower values. 
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Figure 1: Variationof Vibrational Energywith Electron Density Parameterfor some Metals 
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Figure 2: Variationof Vibrational Energyat Different Temperaturewith Electron Density Parameterfor some 

Metals 
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Figure 3: Variationof Vibrational Energywith Strainforsome Metals 
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Figure 4: Variationof Free Energywith Electron Density Parameterforsome Metals 
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Figure 5: Variationof Free Energyat Different Temperaturewith Electron Density Parameterfor some Metals 
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Figure 6: VariationofFree Energywith Strainforsome Metals 

Table 1: Vibrational Energy and Helmholtz Free Energy of unstrained Metals. 

Metals Electron 

Density 

Parameter 

rs(a.u) 

Exp. Vibrational 

Energy (Hartree) 

Computed 

Vibrational 

Energy (Hartree 

Exp. Helmholtz 

Free Energy 

(Hartree) 

Computed 

Helmholtz Free 

Energy (Hartree) 

K 4.96 190341 194087 -5.513E06 -5.736E06 

Cu 2.67 104753 104478 -1.623E06 -1.614E06 

Ag 3.02 118378 118174 -2.088E06 -2.080E06 

Be 1.87 73699.8 73173.9 -781467 -769834 

Mg 2.65 103789 103696 -1.592E06 -1.589E06 

Cr 1.86 - 72782.5 - -761234 

Fe 2.12 83181.0 82956.5 -1.006E06 -1.001E06 

Ni 2.07 - 81000.0 - -951951 

Zn 2.31 83560.8 90391.3 -1.016E06 -1.196E06 

Cd 2.59 101454 101348 -519E06 -1.516E06 

Al 2.07 81261.3 81000.0 -958363 -951951 

Bi 2.25 88078.4 88043.5 -1.133E06 -1.132E06 
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Ti 1.92 - 75130.4 - -813555 

Y 2.61 - 102130 - -1.540E06 

Sn 2.22 87503.1 86869.6 -1.118E06 -1.101E06 

Pb 2.30 90538.3 90000.0 -1.200E06 -1.185E06 

Mo 1.61 - 63000.0 - -561907 

W 1.62 - 63391.3 - -569302 

Au 2.39 118056 93521.7 -2.076E06 -1.283E06 

Pt 2.00 - 78260.9 - -886016 

Ta 2.84 - 111522 - -1.846E06 

  

Table 2: Vibrational Energy of Deformed Metals 

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 22387.0 23151.7       23868.3         24543.7    25183.3         25791.6        26372.0          26927.7      27460.9        

Cu 2.67 12051.0         12462.7         12848.5         13212.0         13556.3         13883.8         14196.3        14495.3         14782.4         

Ag 3.02 13635.1         14096.4         1489.26         15161.3         15333.4   15703.7         16057.2         16395.5       16720.1        

Be 1.87 8440.26         8728.57         8998.74     9253.39         9494.52         9723.87         9942.70         10152.2         10353.2         

Mg 2.65 11960.8         12369.3         12752.2         13113.1         13454.8         13779.8        14089.9         14386.7         14671.7         

Cr 1.86 8395.13  8681.87        8950.61         9203.87      9443.74         9671.87         9889.52         10097.9         10297.8         

Fe 2.12 9568.65        9895.48        10201.8         10490.4         10763.9         11023.6         11271.9         11509.4       11737.3        

Ni 2.07 9342.96         9661.87         9961.17        10243.0         10510.0        10763.8         11006.1        11238.0         11460.5         

Zn 2.31 10426.2         10782.3         11116.1        11430.7        11728.5         12011.8         12282.1        12540.9         12789.3         

Cd 2.59 11690.0         12089.3         12463.5        12816.2        13150.2        13467.8         13770.9         14061.0         14339.5         

Al 2.07 9342.96         9662.09         9961.17        10243.0         10510.0         10763.8         11006.1         11238.0         11460.5         

Bi 2.25 10155.4         10502.3        10827.3         11133.7        11423.9        11696.3        11963.1         12215.0         12457.0         

Ti 1.92 8665.91         8962.13        9239.35      9500.78  9748.39         9983.83         10208.5         10423.7         10630.0         

Y 2.61 11780.3         12182.7       12559.7     12915.1         13251.7       13571.8      13877.2        14169.6         14450.2     
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Sn 2.22 10020.0         10362.3         10683.0         10985.3         11271.6         11543.8         11803.6         12052.3         12291.0         

Pb 2.30 10381.1 10735.7    11068.0         11381.2         11677.8        11959.8         12229.0         12486.6         12733.9         

Mo 1.61 7266.74        7514.96         7747.57         7966.83        8174.44         8371.87         8560.26         8740.61        8913.74         

W 1.62 7311.87         7561.65        7795.70         8016.30         8225.22        8423.87        8613.43         8794.91         8969.09         

Au 2.39 10787.3         11155.8        11501.0         11826.5         12134.7         12427.8         12707.5        12975.2         13232.2         

Pt 2.00 9027.00         9335.35        9624.30         9896.65        10154.6        10399.8        10633.9         10857.9         11073.0         

Ta 2.84 12818.3         13234.5         13666.5        14053.3        14419.5        14767.8         15100.1       15418.3        15723.6         

 

Table 3: Helmholtz Free Energy of Deformed Metals 

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 -687668 -736238 -783258 -828905 -873328 -916646 -958960 -1.0E+06 -1.04E+06 

Cu 2.67 -193718 -207603 -221051 -234111 -246824 -259226 -271345 -283201 -294822 

Ag 3.02 -249780 -267441 -1656.53 -310520 -317781 -333695 -349245 -364461 -379368 

Be 1.87 -92501.2 -99225.9 -105741 -112072 -118236 -124251 -130130 -135884 -141524 

Mg 2.65 -190737 -204412 -217656 -230519 -243041 -255254 -267189 -278868 -290312 

Cr 1.86 -91469.8 -98120.7 -104566 -110826 -116924 -122874 -128689 -134380 -139958 

Fe 2.12 -120164 -128850 -137265 -145439 -153399 -161157 -168752 -176179 -183458 

Ni 2.07 -114342 -122610 -130632 -138419 -146001 -153398 -160627 -167703 -174636 

Zn 2.31 -143600 -153945 -163965 -173699 -183175 -192420 -201453 -210295 -218959 

Cd 2.59 -181935 -194988 -207630 -219909 -231862 -243522 -254915 -266065 -276991 

Al 2.07 -114342 -122616 -130632 -138419 -146001 -153398 -160627 -167703 -174636 

Bi 2.25 -135973 -145780 -155277 -164504 -173487 -182139 -190815  -199190 -207409 

Ti 1.92 -97744.5 -104846 -111718 -118398 -124903 -131250 -137453 -143528 -149476 

Y 2.61 -184846 -198105 -210946 -223417 -235560 -247402 -258974 -270299 -281396 

Sn 2.22 -132239 -141780 -151023 -160001 -168741 -177269 -185603 -193760 -201752 

Pb 2.30 -142314 -152568 -162501 -172149 -181543 -190706 -199660 -208424 -217012 
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Mo 1.61 -67559.1 -72509.4 -77306.8 -81969.3 -86509.5 -90940.5 -95271.6 -99511.9 -103669 

W 1.62 -68446.2 -73460.2 -78318.6 -83040.2 -87638.7 -92125.9 -96512.2 -100807 -105016 

Au 2.39 -154090 -165178 -175915 -186347 -196502 -206408 -216087 -225561 -234845 

Pt 2.00 -106435 -114148 -121621 -128881 -135950 -142847 -149588  -156186 -162652 

Ta 2.84 -219986 -234929 -250963 -265764 -280171 -294225 -307956 -321393 -334558 

 

CONCLUSION 

In summary, this work clearly demonstrates the behavior of metallic vibrational internal energy and Helmholtz free 

energy as a function of electron density parameter and linearly applied strain/deformation. This study is based on 

theory of free electron approximation.Result obtained agree quite well with theoretically obtained experimental 

value.Vibrational internal energy of metals depends on electronic concentration and statistical structure factor. 

Vibrational internal energy of metals increases as temperature and strain/deformation increases. Vibrational internal 

energy of metals depends on ratio of valence electrons to their number of atoms. Free energy of metals is negative 

throughout which seems to suggest a favorable and spontaneous electron reaction. Free energy of metals decreases 

as temperature and strain/deformation increases. Reduction of free energy as strain increases can be due to reduction 

in atomic packing and electron affinity in metals.  
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