
Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 7395-7407

 Research Article

7395

DDLS: Distributed Deep Learning Systems: A Review

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3

Ahmed Alkhayyat4 Hanan M. Shukur5

1Duhok Polytechnic University,

 Duhok, Kurdistan Region, Iraq.

najdavan.kako@dpu.edu.krd
2Duhok Polytechnic University,

Duhok, Kurdistan Region, Iraq.

subhi.rafeeq@dpu.edu.krd
3Duhok Polytechnic University,

 Duhok, Kurdistan Region, Iraq.

mohammed.abdulrazaq@dpu.edu.krd
4Islamic University,

 Najaf, Iraq.

ahmed.hussien795@gmail.com
5Al-Kitab University,

 Kirkuk, Iraq.

hanan.m.shukur@uoalkitab.edu.iq

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021

Abstract: The clustered deep learning systems practice deep neural model networks with a cluster pooled resources aid.

Distributed profound learning systems engineers should make multiple choices to process their diverse workloads successfully in

their selected environment. Combined with the cluster bandwidth constraints, the abundance of GPU-based deep learning, the

ever-greater size of data sets, and deep neural network models would entail developing high-quality models by distributed,

profound learning systems designers. Because of their extensive lists of features and architectural deviations, it is not easy to

compare distributed deep learning systems side by side. By examining the overall properties of deep learning models and how

these workloads can be expanded into a cluster to carry out collective algorithm testing, the fundamental principles at work are

shed when training a deep neural network in an isolated machinery cluster. Different techniques been addressed which are used

by today's distributed deep learning systems and discuss their consequences. In order to conceptualize and compare deep-level

structures, different methods have been developed by previous works to deep-level systems spread DDLS. Indeed, this paper

addressed them to be more clearance for the readers.

Keyword: Machine learning, deep learning, distributed systems, gradient descent, big data.

1. Introduction

In recent years, Deep Learning (DL) has made significant progress. In the different fields, DL tools have been

used by scientists and engineers to solve their problems, including computer vision (He et al., 2016), natural

language processing (Vaswani et al., 2017), voice recognition (Amodei et al., 2016), etc. In DL, an increase in

training data sizes usually improves model efficiency (e.g., classification accuracy) (Brownlee, 2019). However, the

training method of DL is very computational and thus time-consuming, given the increased data size and model

complexity. They are training a ResNet-50 model (in 90 epochs) with the new Nvidia Tesla V100 GPU on the

ImageNet data sets, for example (Russakovsky et al., 2015; You et al., 2019). Takes about two days. Generally, one

must adjust certain hyper-parameters to reach satisfactory efficiency, which takes much more time. The computer

power of a single accelerator can be used entirely utilizing highly tailored program installation to reduce the training

time(Wang et al., 2019).

In addition, the most impressive effect is the miniaturization of computer systems with the maybe smartphones

alongside the creation of increasingly efficient and connected machine (P. Y. Abdullah et al., 2020; Alzakholi et al.,

2020). This machines are all full-service computers packed with sensors, a lot of memory and a powerful CPU.

mailto:najdavan.kako@dpu.edu.krd
mailto:subhi.rafeeq@dpu.edu.krd
mailto:mohammed.abdulrazaq@dpu.edu.krd
mailto:ahmed.hussien795@gmail.com
mailto:hanan.m.shukur@uoalkitab.edu.iq

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7396

Naturally, they are often networked (Haji, Ahmad, et al., 2020; Shukur et al., 2020). In the same line plug machines

are making their way to the market as well as other so-called microcomputers (Salih et al., 2020). These small

computers are often connected directly to a desktop and provide near-desktop output, often in the size of a power

adaptor (Z. S. Ageed et al., 2020). As a result, it is now not only possible, but also easy to build a computer

infrastructure that consists of a large or small networked computer (Z. Ageed et al., 2020). In general, these

machines are globally scattered and thus usually a distributed structure is said to be forming (Yazdeen et al., 2021).

The size of a distributed system can range from a few devices to millions. The network may be wired, wireless or a

hybrid of the two (Mohammed et al., 2021; M. M. Sadeeq et al., 2021). In addition, distributed networks are also

very complex in that computers can enter and leave with almost continually evolving topology and output of the

underlying network (Ageed, Zeebaree, Sadeeq, Kak, Yahia, et al., 2021).

Different descriptions for distributed systems, none of them acceptable or in accordance with any other systems

have been given in literature (Haji, Zeebaree, et al., 2020; Ibrahim, 2021). It is enough to give us a loose

characterization for our purposes: A distributed system is a set of self-contained computational components that are

a cohesive system for its users (Abdulrahman et al., 2021). Two characteristics are described in this description of

distributed systems. The first is that a distributed system is a set of computer components, each of which may act

separately (Kareem et al., 2021; Subhi RM Zeebaree, 2020). A processing element that we usually call a node could

be a hardware system or a process of the program (Ageed, Zeebaree, Sadeeq, Kak, Rashid, et al., 2021). A second

thing is that consumers (whether they are humans or applications) feel that they have a single device to work with

(Ageed, Zeebaree, Sadeeq, Abdulrazzaq, et al., 2021). This implies that the autonomous nodes must work together

in one direction or another (Abdulqadir et al., 2021). The development of distributed networks is central to how this

relationship will be established (Jijo et al., 2021). Please note that we make no claims about the node form. They

can, in theory, range from high-performance mainframe computers to small devices in sensor networks even within

a single system (Rashid et al., 2018; Rashid et al., 2019).

Disseminated training (Brown, 2015) is becoming very common, however, to accelerate the training process

with many processors such as CPUs (You et al., 2018), GPUs, and Google TPUs (Lin et al., 2017). Many processors

working with each task intuitively will minimize the overall training time, but coordination costs between processors

usually limit the scalability of systems (Ioffe et al., 2015).

Much worse, multiple transformers could attain lower efficiency compared to a single processor by installing

high-speed calculators (for instance, Nvidia V100 GPUs) with low-speed interconnections (for example, a 1/10

Gbps Ethernet) to train a deep model (for example, the calculated to communicate ratio is low) (S. M. S. A.

Abdullah et al., 2021). Therefore, data communication in the distributed training of deep models should be designed

to maximize the computational resources of distributed clusters (M. A. Sadeeq et al., 2021). The examination parts

can be as follows:

Different distributed deep learning techniques are extensively studied, providing readers with motivations and

principles underlying different design decisions and their effect on model training.

Some distributed deep learning systems vary markedly; others just slightly. In this area, we review a selection of

major works (both science and commercial) and organize them depending on this review.

We separate our review-based methodology from related works in Section 2. The main components at work in a

DDLS are addressed, rather than addressing different current DDLS in Section 3, clarifying how they connect, and

including some advice on selecting an effective technique. We summarize our review for future studies in Section 4.

2. Literature Review

Several separate current works have been compared to distributed deep learning systems. A sequential review of

recent advancements in deep learning, with several improvements in DDLS, is given (Saeed et al., 2021). This

review, opposed to this approach, focuses exclusively on the distributed issue domain and is arranged by subject

rather than chronologically (Obaid et al., 2020; K. Zhang et al., 2017). Demonstrate how complex deployment

choices impact the preparation and bandwidth of networks in several distributed networks(Dino et al., 2020). More

honest is our review. The principles that support the multiple training approaches been understood widely used in

distributed deep learning and inevitably contribute to variations in application choices. We are therefore looking for

a wider variety of explaining parallel and distributed deep learning algorithms that have recently been released (Ben-

Nun & Hoefler, 2019), which begins with a tutorial on general concepts such as backpropagation, model

architectures, and supervised learning algorithms, beforehand turning to parallel and distributed training related to

DDLS: Distributed Deep Learning Systems: A Review

7397

architecture search and hyper-parameter. We believe that the researcher accepts the basics of deep learning and its

best approaches in a cluster framework to train DL models (Subhi R Zeebaree et al., 2020). Therefore, it provides

additional evidence on approaches for distributed training rather than relying on the scope (D. Q. Zeebaree et al.,

2017). The review-based approach attempts to organize and separate the problem domain offers an in-depth

overview of the multiple implementation options for distributed deep learning systems training and discusses the

intuitions that underpin them (here, the differentiation in the workings of centralized optimization and decentralized

optimization under different scheduling administrations) is compromised. In addition, we also present subjects and

highlight recent studies that have not been adequately discussed but are of high interest to practitioners

(asynchronous systems and their impact of staleness and reduction). Also, for the distributed and reproducible

benchmarking system for deep learning, a software infrastructure was introduced to utilize the most powerful

supercomputers for extreme-scale workloads (Ben-Nun, Besta, et al., 2019; Gao et al., 2019; Mattson et al., 2019).

There are similar works to distributed deep learning in another field of study. However, it was illustrated

differently, such as neurocomputing (Najdavan A Kako, 2013), security (Najdavan A Kako, 2018; Najdavan

Abduljawad Kako et al., 2020), parallel distributed processing in cloud computing (Subhi RM Zeebaree, 2020), and

other artificial intelligence (Abdulazeez et al., 2021; Sadeeq et al., 2017; Subhi R Zeebaree et al., 2020).

Our goal is to provide an overview of a variety of distributed deep learning systems concepts and methods. To do

this, an analysis been built by integrating the fundamental features that have a significant effect on how DDLS

works. Real DDLS may be viewed as specializations of more general terms through recognizing the intuitions and

values underpinning these characteristics. These ideas will be discussed with the limits of distributed atmospheres in

mind. The implementation of our review gives an unhindered view of current works in this area and requires

observations to be made based on basic design choices. In addition, quite recently, distributed deep learning has

appeared. Several terms and divisions of the problem domain are used in current literature in this area. The review

attempts to unify the definitions so that such phenomena can be precisely related to particular features or design

choices. the review is divided into four parts:

1) Data-model parallelism.

 2) Centralized versus decentralized optimization.

3) Synchronous versus asynchronous scheduling.

4) The exchanging parameters communication pattern.

A. Data-model parallelism

In both data parallelism and model parallelism, some constraints apply. For data parallelism, if there are so many

processing nodes, there is a need to reduce the learning rate to ensure a smooth training phase. For model parallelism,
if there are so many nodes, the network efficiency would be significantly reduced for the sake of connectivity cost.
With many neuron operations, model parallelism could achieve good efficiency, and data-parallel is successful with
many weights. In CNNs, the convolution layer includes around 90 percent of the computation and 5 percent of the
parameters.

In comparison, 95 percent of the parameters and five percent-10 percent of the computation are found in the
complete linked layer. Therefore, by utilizing data parallelism for the convolution layer and model parallelism for a
completely linked layer, it can be parallelized the CNNs in data model mode (Buyya et al., 2016). The two
parallelisms are:

Model Parallelism (MP): Parallelism of the model means the responsibility of a computer node by training the
same data sample for parts of the model. The model is split into many components, and each computer node, like
GPU, has a single part of it. The correspondence takes place between computer nodes where a neuron input is from
the other computer node output. Parallel model performance is often smaller than parallel data since the parallel
model's connectivity costs are much greater than parallel data.

Data Parallelism (DP): It is possible to apply data parallelism easily and is thus the most frequently used multi-
GPU architectural technique.

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7398

Figure 1: Deep learning models and their data flow cycles during training

Parallel data means that all GPUs use the same model for traveling on different data sub-sets. There is no

synchronization between GPUs in parallel data transmission as each GPU has a complete model reproduction,

including its deep network configuration and parameters. Nevertheless, the parameter gradients computed from

various GPUs in BP must be synchronized.

B. Centralized versus Decentralized Optimization

Deep learning models and their data flow cycles during training illustrated in figure 1. It is possible to break the

training procedure into two separate cycles. By applying the BP algorithm on small batches taken from outcomes,

the method calculates per-parameter grounded on the existing model. To evaluate model parameter changes, the

optimization period absorbs these gradients. Although this can sound like a bidirectional reliance, it is necessary to

remember that the model cycle may turn out several predictions to improve gradient outputs provided a collection of

parameters. At the same time, the optimizer requires modified gradients to advance. There are two significant forms

to map this implementation model onto a cluster of independent machines:

1) Centralized optimization: On a central machine, the optimization step is carried out, whereas the gradient

processing code is repeated on the residual cluster nodes.

2) Decentralized optimization: In each cluster node, all cycles are repeated, and some synchronization is

understood that enables the different optimizers to work helpfully.

C. Synchronous versus Asynchronous Scheduling

It is even necessary to classify DDLS through synchronous, asynchronous, and restricted asynchronous

structures. Computations for all workers arise concurrently in bulk synchronous (or merely synchronous) structures.

Global obstacles to convergence mean that specific worker nodes cannot proceed before the remaining workers enter

a similar state. Asynchronous systems yield a more passive attitude to coordinating collective preparation and stop

sidestepping workers' execution to please other workers. In other terms, synchronous systems accomplish successful

collective training by eliminating variation in development between workers at the cost of a probable under-usage of

resources. In contrast, asynchronous systems encourage a high use of hardware for more training and variation

between workers as a controllable side effect that can also be beneficial in some circumstances.

Layer 1

Layer 2

Layer n

Parameters

Parameter
Gradients

Optimizer

Ground Truth
Prediction Error

Small Batch

Parameter
Updates

2
nd

 order

mome

ntum

Learni

ng

rate, ...
1

st
 order

mome

ntum

Loss Function

...

DDLS: Distributed Deep Learning Systems: A Review

7399

Figure 1: The top is the flow of data in a synchronous DDLS, and the bottom path is minimizing the application of

the parameter server and worker programs.

Bounded asynchronous structures define a blended approach of these two archetypes. They run similar to unified

asynchronous networks but implement laws to satisfy worker advancing at different rates. Therefore, workers work

asynchronously concerning each other, but only under those boundaries (W. Dai et al., 2015). Their conversation is

separated accordingly because of the various motivations and consequences of creating a hyper propagation model

of synchronous or asynchronous modes of service with centralized and decentralized.

Centralized Synchronous Systems CSS: The training of those systems is divided amongst the gradient

computation and the parameter servers. Suppose such a method shows the asynchronous mode of process. In that

case, training cannot continue even a complete exchange of parameters among the server of parameters and its

worker because the server of parameters relies on the gradient feedback to the new version of the model (J. J. Dai et

al., 2019; Feng et al., 2016; Iandola et al., 2016). In exchange, the workers depend on the revised model to further

examine the loss function. Thus, the cluster as an entire transition cyclically among phases of unified synchronous

DDLS, during which all workers execute the same operation (Tandon et al., 2017).

Decentralized Synchronous Systems DSS: in synchronous distributed deep learning systems, which focus on

clustered optimization, independently perform model training in individual worker and thus do not swap parameters

for more model training, but rather propagate with the rest of the cluster the independent results of each worker to be

able to rate descent trajectories with reasonable accuracy. They thus work in stages separated by global barriers to

synchronization.

Centralized Asynchronous Systems CAS: Distributed deep learning systems of those systems, each worker, once

a small batch has been processed, a parameter server operates alone, while still sharing its gradients with the server

(Abadi et al., 2016; Keskar et al., 2016). The parameter server enthusiastically inserts obtained gradients into the

optimization algorithm to train the model instead of waiting for other workers to enter the same condition. Thus,

each modification of the global model is only based on a single worker's gradient data (Chen et al., 2015). This is

close to the processes of willing aggregation. However, instead of removing all residual workers' outcomes and

wasting the computational capital expended, each worker can merely continue to use its nearby cached old version

of the model parameters (Dean et al., 2012; Zhao et al., 2019).

Bounded Asynchronous Systems BAS: In practice, the equal scheduling inferred in our study is impractical since

faster computers will be pushed back by the slowest computer, which is precisely the condition that asynchronous

systems strive and prevent. However, when sharing criteria, not implementing any order transfers some harm.

Gradients from severely eclipsed workers will confuse the optimizer of the parameter server, which can set back

testing or even ruin model training.

Decentralized Asynchronous Systems DAS: Dissimilar in DAS, where model training of all workers sometimes

ceases to re-parameterize the local models at a global synchronization barrier, workers behave independently in

DAS and begin to discover the loss function of this model that is disconnected from the current state of the server

(Feyzmahdavian et al., 2016; S. Zhang, 2016). Consequently, upon completing a parameter swap with the server

node, the worker cannot substitute their model parameters. Alternatively, they need to combine the respective

asynchronously collected results. The Preference form for combining server (𝑤)̃ and worker models (𝑤𝑖) in such a

setting is to apply linear interpolation (Kim et al., 2016; Lian et al., 2015).

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7400

D. Parameters Communication Pattern

Different machine performs each function in the cluster. However, computing programs running on one

computer, different machines, or distributed over several machines are worker, parameter servers, and server nodes.

Distributing the worker function is model parallelism. The concentration focused on communication patterns used

by parallel data distributed deep learning systems to coordinate the transfers of clusters and accelerate parameters.

Communication patterns in centralized systems: Having the parameter server task based on a single

computer, irrespective of the training process, vastly simplifies the system design since whole model training is

organized in one program. Besides, it is simple to configure, monitor, and debug such systems. This might, however,

render the parameter server a bottleneck.

Communication patterns in decentralized systems: Discrete training phases of loops assume the

coordination demand of each clustered worker per local measurement stage. In this way, decentralized networks

usually maintain better use of computer hardware, even with minimal network capacity, making it easier to train

massive models despite bandwidth restrictions. Scaling to greater cluster sizes, however, will also cause the server

node to become a bottleneck. In decentralized systems, it is possible to break the server's position to decrease

coordination costs, as in centralized systems. However, autonomous DDLS provide several choices for arranging

parameter transfers since each system is a self-contained autonomous trainer.

3. Evaluation

Many of the distributed deep learning practices are focused on the promising results obtained by Google's large-

scale image classification (Y. Zhang et al., 2020) utilizing clusters of huge nodes of CPU using Disbelief. A

centralized asynchronous distributed deep learning system with multiparameter server support (Dean et al., 2012).

Several distributed deep learning systems have been suggested for expanding the Disbelief approach. For example,

the imposition of delay limits to monitor the staleness of asynchronous workers has increased the convergence pace

(Xing et al., 2015). In order to create multiple parallelisms and integrate with a general ML model, the emphasis was

on formalizing the processing of DL workloads. A related approach was taken by transferring gradient processing

measures for certain neural network layers into the parameter servers (Chilimbi et al., 2014).

Furthermore, in a PAXOS cluster, they arrange the parameter servers to achieve high availability. The current

descendants of Disbelief implement new ideas such as specifying stand-by staff, improving model partitioning

utilizing auto-tuning models, and reducing expansion by enabling parameter servers to be organized hierarchically

(Abadi et al., 2016; Chen et al., 2015). Systems in deep learning with COTS HPC (Goyal et al., 2017) and Fire Caffe

on compute clusters are reduced distributed deep learning systems operations that obtain convinced concepts from

Disbelief. However, it has been used in supercomputer environments, particularly HPC and GPU, where they have

proven to be an ideal tool for many specific applications in terms of performance. By integrating unified

synchronous parallel data in model training on top of Apache Spark, a simple convergence of data analysis

platforms and the hardware environment was used. They use specialized communication fashions to incorporate a

parameters distribution registry to meet the everyday communication needs of such systems. The deep learning with

Python data-parallel optimizer follows a similar method but introduces a traditional interface to use collective

connectivity primitives to perform synchronous model training. Either one or more worker’s function as the server

parameter server. The majority of distributed deep learning systems that depend on decentralized optimization stem

from training deep networks in Spark (You et al., 2019). This decentralized synchronous distributed deep learning

system replicates Caffe-solvers to conduct training in commodity cluster environments using the map-reduce API of

Apache Spark. This technique has achieved widespread acceptance as part of the popular Java distributed deep

learning systems. This technique also sees the constraint on synchronous execution as a significant downside. A

worker that attempts to improve upon training DNN in Spark (distributed deep learning training models) (Lin et al.,

2017). Extending the simple Spark-based approach to quasi-asynchronous training by overlapping computation and

connectivity and extrapolating the recently found descent route to deal with staleness, and DL with elastic averaging

SGD, that preserves the principle of small isolated phases of training but implements entirely asynchronous

scheduling. If the cluster gets bigger, having one server node will reach deadlock (Lian et al., 2017). Also, many

approaches are used to scale out the decentralized optimization (Blot et al., 2016; Huang et al., 2018; S. Zhang,

DDLS: Distributed Deep Learning Systems: A Review

7401

2016). Table 1 displays all systems for DDL, and Table 2 can support researchers to find the choice when applying

or selecting a distributed deep learning system.

TABLE 1: Comparison and overview for different distributed deep learning systems.

DDLS Name

(a-z)

Parallelism

(Model / Data)
Optimization Scheduling

Parameter

Exchange
Topology

Achieved Objective and

Significant Results

BigDL (J. J.

Dai et al.,

2019)

DP central synchronous scatter-red.

DPS

(always

𝑘 = 𝑛)

For 1/n of the model, each

worker works as a parameter

server. Via the Spark block

manager, distributed

parameter exchanges are

carried out.

CaffeOnSpark

(Feng et al.,

2016)

DP central synchronous scatter-red.

DPS

(always

𝑘 = 𝑛)

Exchange of parameters by

RDMA using repetitive MPI

function invocations. There

are available equivalent

implementations for

CAFFE2 and CHAINER.

COTS HPC

(Coates et al.,

2013)

MP central synchronous –
Dist. array

abstraction

Model clusters divided

along tensor dimensions &

spread among the cluster.

The access may be fine-

grained with a low-level

array definition.

D-PSGD

(Lian et al.,

2017)

DP decentral synchronous 2:1 reduce
closed

ring

Each node only

communicates parameters

with its neighboring nodes

on the ring.

DistBelief

(Dean et al.,

2012)

MP and DP central asynchronous ad hoc DPS

Dedicated parameter server

nodes spread by model

divisions

EASGD (S.

Zhang et al.,

2014)

DP decentral asynchronous ad hoc
single

server

Active variation of hyper-

parameters can accelerate

training (Decentralized

asynchronous system)

FireCaffe

(Iandola et al.,

2016)

DP central synchronous
binomial

tree
SPS

centralized synchronous

system in a simple manner

GoSGD (Blot

et al., 2016)
DP decentral

soft-bounded

asynchronous
ad hoc P2P mesh

There is no dedicated server

node, and when two workers

realized via a sum-weighted

randomized gossip protocol,

the parameter will exchange

MPCA-SGD

(Lin et al.,
DP decentral soft-bounded binomial

dedicated

server

Model and data may be

modified separately.

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7402

2017) asynchronous tree node Punishment is a component

of the loss function in the

model. The extrapolation

mechanism is used to reduce

the staleness impact.

MXNet (Chen

et al., 2015)
MP and DP central

bounded

asynchronous

scatter-

reduce

async.: ad

hoc

DPS

(default

𝑘 = 𝑛)

Supports numerous

technical parameter server

configurations in

comparison to hierarchical

multi-stage proxy servers.

Parameter

Server (W.

Dai et al.,

2015)

MP and DP central
bounded

asynchronous

reduce

async.: ad

hoc

DPS

Model partitions

propagation through

parameter groups is

redundant. Model

parallelism enables to

organize workers in groups,

and one worker can act as a

proxy server per group.

Petuum (Xing

et al., 2015)
MP and DP central

bounded

asynchronous

ad hoc

with

eager

scatter

DPS

Uses pause bounds for the

first time to regulate

staleness. The prompt

distribution of model

parameters further decreases

model variance.

Project Adam

(Chilimbi et

al., 2014)

MP and DP central asynchronous ad hoc DPS

It has a dedicated parameter

server group that is operated

as a PAXOS cluster. Hybrid

parallelism takes advantage

of gradient computing by

transforming computation

into GPUs.

PyTorch

(Paszke et al.,

2019)

MP and DP central synchronous all-reduce

SPS or

replicated

PS

Capabilities of model

parallelism in version 1.4

can just use either

synchronous data-

parallelism or model

parallelism.

SparkNet

(Moritz et al.,

2015)

DP decentral synchronous reduce

dedicated

server

node

Decentralized synchronous

implementation is

understood using Spark

map-cut. Production grade

reimplementation is existing

in deeplearning4J.

TensorFlow

(Abadi et al.,

2016)

MP and DP central
bounded

asynchronous

scatter/all-

red.

async.: ad

DPS

(default

Technologies supporting

single and multiparameter

servers and all-reduce-

DDLS: Distributed Deep Learning Systems: A Review

7403

hoc 𝑘 = 𝑛) related methods are studied.

TreeEASGD

(Langer et al.,

2020)

DP decentral
bounded

asynchronous
ad hoc tree

The nodes of the tree are

workers. Workers on

immediate up and

downstream neighbors can

only exchanges parameters

 Data Parallelism (DP); Model Parallelism (MP); Distributed Parameter Server (DSP)

TABLE 2: Criteria for choosing a distributed deep learning system approach.

 RLBD RBM opt LR COCC CAHP RSOI ERB

Model Parallelism ✓ higher 1+ 3+ 1+ trivial

Model Parallelism and mini-batch

pipelining

 ✓ lower 2+ 4+ 2+ medium

Data Parallelism, central and sync. higher 1+ 1+ 1+ easy

Data Parallelism, central and async. ✓ lower 3+ 2+ 3+ hard

Data Parallelism, decentral, and sync. ✓ likely

lower

1+ 2+ 2+ easy

4. Conclusion & Future Work

In this review, we discussed different theoretical and functional aspects that may emerge in the training of DL

models in a cluster and presented reasonable surmises that enable thinking about how different methods use the tools

available to the association. The underlying concepts of architecture that have a guiding effect were structured. Our

review defines a simple scheme that enables the main sources of distributed deep learning to be separated. In order

to obtain a compact description, we then extended this analysis to classify a set of distributed deep learning systems

irrespective of application-specific particularities. Some possible fields of future study related that may be an

important part of the study for the IoT or vehicle applications to use P2P model sharing combined with decentralized

optimization strategies, as suggested by (Blot et al., 2016).

The majority of work in distributed deep learning is restricted to optimal research scenarios. The condition is

typically more complicated in real cluster configurations because of overlapping workloads. For certain clinicians, a

systematic study of multiple distributed methods in real-life situations will be useful. Lin et al. (Lin et al., 2017)

proved that the clusters are mostly not substituted but rather expanded as investment commodities. A largely un-

tackled innovation challenge is the successful realization of distributed instruction in heterogeneous setups.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: A system for

large-scale machine learning. Paper presented at the 12th {USENIX} symposium on operating systems

design and implementation ({OSDI} 16).

2. Abdulazeez, A. M., Hajy, D. M., Zeebaree, D. Q., & Zebari, D. A. (2021). Robust watermarking scheme

based LWT and SVD using artificial bee colony optimization. Indonesian Journal of Electrical

Engineering and Computer Science, 21(2), 1218-1229.

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7404

3. Abdullah, P. Y., Zeebaree, S. R., Jacksi, K., & Zeabri, R. R. (2020). An hrm system for small and medium

enterprises (sme) s based on cloud computing technology. International Journal of Research-

GRANTHAALAYAH, 8(8), 56-64.

4. Abdullah, S. M. S. A., Ameen, S. Y. A., Sadeeq, M. A., & Zeebaree, S. (2021). Multimodal emotion

recognition using deep learning. Journal of Applied Science and Technology Trends, 2(02), 52-58.

5. Abdulqadir, H. R., Zeebaree, S. R., Shukur, H. M., Sadeeq, M. M., Salim, B. W., Salih, A. A., et al. (2021).

A Study of Moving from Cloud Computing to Fog Computing. Qubahan Academic Journal, 1(2), 60-70.

6. Abdulrahman, L. M., Zeebaree, S. R., Kak, S. F., Sadeeq, M. A., Adel, A.-Z., Salim, B. W., et al. (2021). A

state of art for smart gateways issues and modification. Asian Journal of Research in Computer Science, 1-

13.

7. Ageed, Z., Mahmood, M. R., Sadeeq, M., Abdulrazzaq, M. B., & Dino, H. (2020). Cloud computing

resources impacts on heavy-load parallel processing approaches. IOSR Journal of Computer Engineering

(IOSR-JCE), 22(3), 30-41.

8. Ageed, Z. S., Ibrahim, R. K., & Sadeeq, M. A. (2020). Unified Ontology Implementation of Cloud

Computing for Distributed Systems. Current Journal of Applied Science and Technology, 82-97.

9. Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. A., Abdulrazzaq, M. B., Salim, B. W., Salih, A. A., et al. (2021).

A State of Art Survey for Intelligent Energy Monitoring Systems. Asian Journal of Research in Computer

Science, 46-61.

10. Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Rashid, Z. N., Salih, A. A., et al. (2021). A

Survey of Data Mining Implementation in Smart City Applications. Qubahan Academic Journal, 1(2), 91-

99.

11. Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Yahia, H. S., Mahmood, M. R., et al. (2021).

Comprehensive survey of big data mining approaches in cloud systems. Qubahan Academic Journal, 1(2),

29-38.

12. Alzakholi, O., Shukur, H., Zebari, R., Abas, S., & Sadeeq, M. (2020). Comparison among cloud

technologies and cloud performance. Journal of Applied Science and Technology Trends, 1(2), 40-47.

13. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., et al. (2016). Deep

speech 2: End-to-end speech recognition in english and mandarin. Paper presented at the International

conference on machine learning.

14. Ben-Nun, T., Besta, M., Huber, S., Ziogas, A. N., Peter, D., & Hoefler, T. (2019). A modular

benchmarking infrastructure for high-performance and reproducible deep learning. Paper presented at the

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

15. Ben-Nun, T., & Hoefler, T. (2019). Demystifying parallel and distributed deep learning: An in-depth

concurrency analysis. ACM Computing Surveys (CSUR), 52(4), 1-43.

16. Blot, M., Picard, D., Cord, M., & Thome, N. (2016). Gossip training for deep learning. arXiv preprint

arXiv:1611.09726.

17. Brown, L. (2015). Gpu accelerated deep learning with cudnn. GTC.

18. Brownlee, J. (2019). Impact of dataset size on deep learning model skill and performance estimates.

Machine Learning Mastery, 6.

19. Buyya, R., Calheiros, R. N., & Dastjerdi, A. V. (2016). Big data: principles and paradigms: Morgan

Kaufmann.

20. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., et al. (2015). Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274.

21. Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project adam: Building an efficient and

scalable deep learning training system. Paper presented at the 11th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 14).

22. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., & Andrew, N. (2013). Deep learning with COTS

HPC systems. Paper presented at the International conference on machine learning.

23. Dai, J. J., Wang, Y., Qiu, X., Ding, D., Zhang, Y., Wang, Y., et al. (2019). Bigdl: A distributed deep

learning framework for big data. Paper presented at the Proceedings of the ACM Symposium on Cloud

Computing.

24. Dai, W., Kumar, A., Wei, J., Ho, Q., Gibson, G., & Xing, E. (2015). High-performance distributed ML at

scale through parameter server consistency models. Paper presented at the Proceedings of the AAAI

Conference on Artificial Intelligence.

25. Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., et al. (2012). Large scale distributed

deep networks. Google Research.

DDLS: Distributed Deep Learning Systems: A Review

7405

26. Dino, H., Abdulrazzaq, M. B., Zeebaree, S. R., Sallow, A. B., Zebari, R. R., Shukur, H. M., et al. (2020).

Facial Expression Recognition based on Hybrid Feature Extraction Techniques with Different Classifiers.

TEST Engineering & Management, 83, 22319-22329.

27. Feng, A., Shi, J., & Jain, M. (2016). CaffeOnSpark open sourced for distributed deep learning on big data

clusters: Feb.

28. Feyzmahdavian, H. R., Aytekin, A., & Johansson, M. (2016). An asynchronous mini-batch algorithm for

regularized stochastic optimization. IEEE Transactions on Automatic Control, 61(12), 3740-3754.

29. Gao, W., Tang, F., Wang, L., Zhan, J., Lan, C., Luo, C., et al. (2019). AIBench: an industry standard

internet service AI benchmark suite. arXiv preprint arXiv:1908.08998.

30. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al. (2017). Accurate, large

minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

31. Haji, L. M., Ahmad, O. M., Zeebaree, S. R., Dino, H. I., Zebari, R. R., & Shukur, H. M. (2020). Impact of

cloud computing and internet of things on the future internet. Technology Reports of Kansai University,

62(5), 2179-2190.

32. Haji, L. M., Zeebaree, S., Ahmed, O. M., Sallow, A. B., Jacksi, K., & Zeabri, R. R. (2020). Dynamic

resource allocation for distributed systems and cloud computing. TEST Engineering & Management, 83,

22417-22426.

33. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper

presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.

34. Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X., Chen, D., et al. (2018). Gpipe: Efficient training

of giant neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965.

35. Iandola, F. N., Moskewicz, M. W., Ashraf, K., & Keutzer, K. (2016). Firecaffe: near-linear acceleration of

deep neural network training on compute clusters. Paper presented at the Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition.

36. Ibrahim, I. M. (2021). Task scheduling algorithms in cloud computing: A review. Turkish Journal of

Computer and Mathematics Education (TURCOMAT), 12(4), 1041-1053.

37. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. Paper presented at the International conference on machine learning.

38. Jijo, B. T., Zeebaree, S. R., Zebari, R. R., Sadeeq, M. A., Sallow, A. B., Mohsin, S., et al. (2021). A

Comprehensive Survey of 5G mm-Wave Technology Design Challenges. Asian Journal of Research in

Computer Science, 1-20.

39. Kako, N. A. (2013). An Investigation of the Coefficient of Variation Using the Colored Stochastic Hodgkin-

Huxley Equations. Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ).

40. Kako, N. A. (2018). Classical Cryptography for Kurdish Language. Paper presented at the 4th International

Engineering Conference on Developments in Civil & Computer Engineering Applications (IEC2018).

41. Kako, N. A., Sadeeq, H. T., & Abrahim, A. R. (2020). New symmetric key cipher capable of digraph to

single letter conversion utilizing binary system. Indonesian Journal of Electrical Engineering and

Computer Science, 18(2), 1028-1034.

42. Kareem, F. Q., Zeebaree, S. R., Dino, H. I., Sadeeq, M. A., Rashid, Z. N., Hasan, D. A., et al. (2021). A

survey of optical fiber communications: challenges and processing time influences. Asian Journal of

Research in Computer Science, 48-58.

43. Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch

training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836.

44. Kim, H., Park, J., Jang, J., & Yoon, S. (2016). Deepspark: Spark-based deep learning supporting

asynchronous updates and caffe compatibility. arXiv preprint arXiv:1602.08191, 3.

45. Langer, M., He, Z., Rahayu, W., & Xue, Y. (2020). Distributed training of deep learning models: A

taxonomic perspective. IEEE Transactions on Parallel and Distributed Systems, 31(12), 2802-2818.

46. Lian, X., Huang, Y., Li, Y., & Liu, J. (2015). Asynchronous parallel stochastic gradient for nonconvex

optimization. arXiv preprint arXiv:1506.08272.

47. Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., & Liu, J. (2017). Can decentralized algorithms

outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. arXiv

preprint arXiv:1705.09056.

48. Lin, Y., Han, S., Mao, H., Wang, Y., & Dally, W. J. (2017). Deep gradient compression: Reducing the

communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887.

49. Mattson, P., Cheng, C., Coleman, C., Diamos, G., Micikevicius, P., Patterson, D., et al. (2019). Mlperf

training benchmark. arXiv preprint arXiv:1910.01500.

Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan
M. Shukur5

7406

50. Mohammed, C. M., & Zebaree, S. R. (2021). Sufficient comparison among cloud computing services: IaaS,

PaaS, and SaaS: A review. International Journal of Science and Business, 5(2), 17-30.

51. Moritz, P., Nishihara, R., Stoica, I., & Jordan, M. I. (2015). Sparknet: Training deep networks in spark.

arXiv preprint arXiv:1511.06051.

52. Obaid, K. B., Zeebaree, S., & Ahmed, O. M. (2020). Deep Learning Models Based on Image

Classification: A Review. International Journal of Science and Business, 4(11), 75-81.

53. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). Pytorch: An imperative

style, high-performance deep learning library. arXiv preprint arXiv:1912.01703.

54. Rashid, Z. N., Zebari, S. R., Sharif, K. H., & Jacksi, K. (2018). Distributed cloud computing and

distributed parallel computing: A review. Paper presented at the 2018 International Conference on

Advanced Science and Engineering (ICOASE).

55. Rashid, Z. N., Zeebaree, S. R., & Shengul, A. (2019). Design and analysis of proposed remote controlling

distributed parallel computing system over the cloud. Paper presented at the 2019 International Conference

on Advanced Science and Engineering (ICOASE).

56. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale

visual recognition challenge. International journal of computer vision, 115(3), 211-252.

57. Sadeeq, H., Abdulazeez, A., Kako, N., & Abrahim, A. (2017). A Novel Hybrid Bird Mating Optimizer with

Differential Evolution for Engineering Design Optimization Problems. Paper presented at the International

Conference of Reliable Information and Communication Technology.

58. Sadeeq, M. A., & Zeebaree, S. (2021). Energy management for internet of things via distributed systems.

Journal of Applied Science and Technology Trends, 2(02), 59-71.

59. Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D. M., Sami, A. S., & Zebari, R. R. (2021).

IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal,

1(2), 1-7.

60. Saeed, J., & Zeebaree, S. (2021). Skin Lesion Classification Based on Deep Convolutional Neural

Networks Architectures. Journal of Applied Science and Technology Trends, 2(01), 41-51.

61. Salih, A. A., Zeebaree, S. R., Abdulraheem, A. S., Zebari, R. R., Sadeeq, M. A., & Ahmed, O. M. (2020).

Evolution of Mobile Wireless Communication to 5G Revolution. Technology Reports of Kansai University,

62(5), 2139-2151.

62. Shukur, H., Zeebaree, S. R., Ahmed, A. J., Zebari, R. R., Ahmed, O., Tahir, B. S. A., et al. (2020). A State

of Art Survey for Concurrent Computation and Clustering of Parallel Computing for Distributed Systems.

Journal of Applied Science and Technology Trends, 1(4), 148-154.

63. Tandon, R., Lei, Q., Dimakis, A. G., & Karampatziakis, N. (2017). Gradient coding: Avoiding stragglers in

distributed learning. Paper presented at the International Conference on Machine Learning.

64. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all

you need. arXiv preprint arXiv:1706.03762.

65. Wang, Y., Wang, Q., Shi, S., He, X., Tang, Z., Zhao, K., et al. (2019). Benchmarking the performance and

power of AI accelerators for AI training. arXiv preprint arXiv:1909.06842.

66. Xing, E. P., Ho, Q., Dai, W., Kim, J. K., Wei, J., Lee, S., et al. (2015). Petuum: A new platform for

distributed machine learning on big data. IEEE Transactions on Big Data, 1(2), 49-67.

67. Yazdeen, A. A., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Ahmed, O. M., & Zebari, R. R. (2021). FPGA

implementations for data encryption and decryption via concurrent and parallel computation: A review.

Qubahan Academic Journal, 1(2), 8-16.

68. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., et al. (2019). Large batch optimization for

deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962.

69. You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., & Keutzer, K. (2018). Imagenet training in minutes. Paper

presented at the Proceedings of the 47th International Conference on Parallel Processing.

70. Zeebaree, D. Q., Haron, H., Abdulazeez, A. M., & Zeebaree, S. R. (2017). Combination of K-means

clustering with Genetic Algorithm: A review. International Journal of Applied Engineering Research,

12(24), 14238-14245.

71. Zeebaree, S. R. (2020). Remote Controlling Distributed Parallel Computing System over the Cloud

(RCDPCSC). Paper presented at the 2020 3rd International Conference on Engineering Technology and its

Applications (IICETA).

72. Zeebaree, S. R., Ahmed, O., & Obid, K. (2020). CSAERNet: An Efficient Deep Learning Architecture for

Image Classification. Paper presented at the 2020 3rd International Conference on Engineering Technology

and its Applications (IICETA).

DDLS: Distributed Deep Learning Systems: A Review

7407

73. Zhang, K., Alqahtani, S., & Demirbas, M. (2017). A comparison of distributed machine learning platforms.

Paper presented at the 2017 26th International Conference on Computer Communication and Networks

(ICCCN).

74. Zhang, S. (2016). Distributed stochastic optimization for deep learning. Ph. D. thesis (New York

University, New York).

75. Zhang, S., Choromanska, A., & LeCun, Y. (2014). Deep learning with elastic averaging SGD. arXiv

preprint arXiv:1412.6651.

76. Zhang, Y., Wang, Y., Liu, X.-Y., Mi, S., & Zhang, M.-L. (2020). Large-scale multi-label classification

using unknown streaming images. Pattern Recognition, 99, 107100.

77. Zhao, X., An, A., Liu, J., & Chen, B. X. (2019). Dynamic stale synchronous parallel distributed training

for deep learning. Paper presented at the 2019 IEEE 39th International Conference on Distributed

Computing Systems (ICDCS).

