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Abstract: The clustered deep learning systems practice deep neural model networks with a cluster pooled resources aid. 

Distributed profound learning systems engineers should make multiple choices to process their diverse workloads successfully in 

their selected environment. Combined with the cluster bandwidth constraints, the abundance of GPU-based deep learning, the 

ever-greater size of data sets, and deep neural network models would entail developing high-quality models by distributed, 

profound learning systems designers. Because of their extensive lists of features and architectural deviations, it is not easy to 

compare distributed deep learning systems side by side. By examining the overall properties of deep learning models and how 

these workloads can be expanded into a cluster to carry out collective algorithm testing, the fundamental principles at work are 

shed when training a deep neural network in an isolated machinery cluster. Different techniques been addressed which are used 

by today's distributed deep learning systems and discuss their consequences. In order to conceptualize and compare deep-level 

structures, different methods have been developed by previous works to deep-level systems spread DDLS. Indeed, this paper 

addressed them to be more clearance for the readers. 

Keyword: Machine learning, deep learning, distributed systems, gradient descent, big data. 

 

1. Introduction  

In recent years, Deep Learning (DL) has made significant progress. In the different fields, DL tools have been 

used by scientists and engineers to solve their problems, including computer vision (He et al., 2016), natural 

language processing (Vaswani et al., 2017), voice recognition (Amodei et al., 2016), etc. In DL, an increase in 

training data sizes usually improves model efficiency (e.g., classification accuracy) (Brownlee, 2019). However, the 

training method of DL is very computational and thus time-consuming, given the increased data size and model 

complexity. They are training a ResNet-50 model (in 90 epochs) with the new Nvidia Tesla V100 GPU on the 

ImageNet data sets, for example (Russakovsky et al., 2015; You et al., 2019). Takes about two days. Generally, one 

must adjust certain hyper-parameters to reach satisfactory efficiency, which takes much more time. The computer 

power of a single accelerator can be used entirely utilizing highly tailored program installation to reduce the training 

time(Wang et al., 2019). 

In addition, the most impressive effect is the miniaturization of computer systems with the maybe smartphones 

alongside the creation of increasingly efficient and connected machine (P. Y. Abdullah et al., 2020; Alzakholi et al., 

2020). This machines are all full-service computers packed with sensors, a lot of memory and a powerful CPU. 
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Naturally, they are often networked (Haji, Ahmad, et al., 2020; Shukur et al., 2020). In the same line plug machines 

are making their way to the market as well as other so-called microcomputers (Salih et al., 2020). These small 

computers are often connected directly to a desktop and provide near-desktop output, often in the size of a power 

adaptor (Z. S. Ageed et al., 2020). As a result, it is now not only possible, but also easy to build a computer 

infrastructure that consists of a large or small networked computer (Z. Ageed et al., 2020). In general, these 

machines are globally scattered and thus usually a distributed structure is said to be forming (Yazdeen et al., 2021). 

The size of a distributed system can range from a few devices to millions. The network may be wired, wireless or a 

hybrid of the two (Mohammed et al., 2021; M. M. Sadeeq et al., 2021). In addition, distributed networks are also 

very complex in that computers can enter and leave with almost continually evolving topology and output of the 

underlying network (Ageed, Zeebaree, Sadeeq, Kak, Yahia, et al., 2021).  

Different descriptions for distributed systems, none of them acceptable or in accordance with any other systems 

have been given in literature (Haji, Zeebaree, et al., 2020; Ibrahim, 2021). It is enough to give us a loose 

characterization for our purposes: A distributed system is a set of self-contained computational components that are 

a cohesive system for its users (Abdulrahman et al., 2021). Two characteristics are described in this description of 

distributed systems. The first is that a distributed system is a set of computer components, each of which may act 

separately (Kareem et al., 2021; Subhi RM Zeebaree, 2020). A processing element that we usually call a node could 

be a hardware system or a process of the program (Ageed, Zeebaree, Sadeeq, Kak, Rashid, et al., 2021). A second 

thing is that consumers (whether they are humans or applications) feel that they have a single device to work with 

(Ageed, Zeebaree, Sadeeq, Abdulrazzaq, et al., 2021). This implies that the autonomous nodes must work together 

in one direction or another (Abdulqadir et al., 2021). The development of distributed networks is central to how this 

relationship will be established (Jijo et al., 2021). Please note that we make no claims about the node form. They 

can, in theory, range from high-performance mainframe computers to small devices in sensor networks even within 

a single system (Rashid et al., 2018; Rashid et al., 2019).  

Disseminated training (Brown, 2015) is becoming very common, however, to accelerate the training process 

with many processors such as CPUs (You et al., 2018), GPUs, and Google TPUs (Lin et al., 2017). Many processors 

working with each task intuitively will minimize the overall training time, but coordination costs between processors 

usually limit the scalability of systems (Ioffe et al., 2015).  

Much worse, multiple transformers could attain lower efficiency compared to a single processor by installing 

high-speed calculators (for instance, Nvidia V100 GPUs) with low-speed interconnections (for example, a 1/10 

Gbps Ethernet) to train a deep model (for example, the calculated to communicate ratio is low) (S. M. S. A. 

Abdullah et al., 2021). Therefore, data communication in the distributed training of deep models should be designed 

to maximize the computational resources of distributed clusters (M. A. Sadeeq et al., 2021). The examination parts 

can be as follows: 

Different distributed deep learning techniques are extensively studied, providing readers with motivations and 

principles underlying different design decisions and their effect on model training.  

Some distributed deep learning systems vary markedly; others just slightly. In this area, we review a selection of 

major works (both science and commercial) and organize them depending on this review.  

We separate our review-based methodology from related works in Section 2. The main components at work in a 

DDLS are addressed, rather than addressing different current DDLS in Section 3, clarifying how they connect, and 

including some advice on selecting an effective technique. We summarize our review for future studies in Section 4. 

2. Literature Review  

Several separate current works have been compared to distributed deep learning systems. A sequential review of 

recent advancements in deep learning, with several improvements in DDLS, is given (Saeed et al., 2021). This 

review, opposed to this approach, focuses exclusively on the distributed issue domain and is arranged by subject 

rather than chronologically (Obaid et al., 2020; K. Zhang et al., 2017). Demonstrate how complex deployment 

choices impact the preparation and bandwidth of networks in several distributed networks(Dino et al., 2020). More 

honest is our review. The principles that support the multiple training approaches been understood widely used in 

distributed deep learning and inevitably contribute to variations in application choices. We are therefore looking for 

a wider variety of explaining parallel and distributed deep learning algorithms that have recently been released (Ben-

Nun & Hoefler, 2019), which begins with a tutorial on general concepts such as backpropagation, model 

architectures, and supervised learning algorithms, beforehand turning to parallel and distributed training related to 
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architecture search and hyper-parameter. We believe that the researcher accepts the basics of deep learning and its 

best approaches in a cluster framework to train DL models (Subhi R Zeebaree et al., 2020). Therefore, it provides 

additional evidence on approaches for distributed training rather than relying on the scope (D. Q. Zeebaree et al., 

2017). The review-based approach attempts to organize and separate the problem domain offers an in-depth 

overview of the multiple implementation options for distributed deep learning systems training and discusses the 

intuitions that underpin them (here, the differentiation in the workings of centralized optimization and decentralized 

optimization under different scheduling administrations) is compromised. In addition, we also present subjects and 

highlight recent studies that have not been adequately discussed but are of high interest to practitioners 

(asynchronous systems and their impact of staleness and reduction). Also, for the distributed and reproducible 

benchmarking system for deep learning, a software infrastructure was introduced to utilize the most powerful 

supercomputers for extreme-scale workloads (Ben-Nun, Besta, et al., 2019; Gao et al., 2019; Mattson et al., 2019). 

There are similar works to distributed deep learning in another field of study. However, it was illustrated 

differently, such as neurocomputing (Najdavan A Kako, 2013), security (Najdavan A Kako, 2018; Najdavan 

Abduljawad Kako et al., 2020), parallel distributed processing in cloud computing (Subhi RM Zeebaree, 2020), and 

other artificial intelligence (Abdulazeez et al., 2021; Sadeeq et al., 2017; Subhi R Zeebaree et al., 2020). 

Our goal is to provide an overview of a variety of distributed deep learning systems concepts and methods. To do 

this, an analysis been built by integrating the fundamental features that have a significant effect on how DDLS 

works. Real DDLS may be viewed as specializations of more general terms through recognizing the intuitions and 

values underpinning these characteristics. These ideas will be discussed with the limits of distributed atmospheres in 

mind. The implementation of our review gives an unhindered view of current works in this area and requires 

observations to be made based on basic design choices. In addition, quite recently, distributed deep learning has 

appeared. Several terms and divisions of the problem domain are used in current literature in this area. The review 

attempts to unify the definitions so that such phenomena can be precisely related to particular features or design 

choices. the review is divided into four parts:  

1) Data-model parallelism. 

 2) Centralized versus decentralized optimization. 

3) Synchronous versus asynchronous scheduling. 

4) The exchanging parameters communication pattern. 

 

A.  Data-model parallelism 

 
In both data parallelism and model parallelism, some constraints apply. For data parallelism, if there are so many 

processing nodes, there is a need to reduce the learning rate to ensure a smooth training phase. For model parallelism, 
if there are so many nodes, the network efficiency would be significantly reduced for the sake of connectivity cost. 
With many neuron operations, model parallelism could achieve good efficiency, and data-parallel is successful with 
many weights. In CNNs, the convolution layer includes around 90 percent of the computation and 5 percent of the 
parameters. 

In comparison, 95 percent of the parameters and five percent-10 percent of the computation are found in the 
complete linked layer. Therefore, by utilizing data parallelism for the convolution layer and model parallelism for a 
completely linked layer, it can be parallelized the CNNs in data model mode (Buyya et al., 2016). The two 
parallelisms are: 

Model Parallelism (MP): Parallelism of the model means the responsibility of a computer node by training the 
same data sample for parts of the model. The model is split into many components, and each computer node, like 
GPU, has a single part of it. The correspondence takes place between computer nodes where a neuron input is from 
the other computer node output. Parallel model performance is often smaller than parallel data since the parallel 
model's connectivity costs are much greater than parallel data. 

Data Parallelism (DP): It is possible to apply data parallelism easily and is thus the most frequently used multi-
GPU architectural technique. 
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Figure 1:  Deep learning models and their data flow cycles during training 

Parallel data means that all GPUs use the same model for traveling on different data sub-sets. There is no 

synchronization between GPUs in parallel data transmission as each GPU has a complete model reproduction, 

including its deep network configuration and parameters. Nevertheless, the parameter gradients computed from 

various GPUs in BP must be synchronized. 

B. Centralized versus Decentralized Optimization 

Deep learning models and their data flow cycles during training illustrated in figure 1. It is possible to break the 

training procedure into two separate cycles. By applying the BP algorithm on small batches taken from outcomes, 

the method calculates per-parameter grounded on the existing model. To evaluate model parameter changes, the 

optimization period absorbs these gradients. Although this can sound like a bidirectional reliance, it is necessary to 

remember that the model cycle may turn out several predictions to improve gradient outputs provided a collection of 

parameters. At the same time, the optimizer requires modified gradients to advance. There are two significant forms 

to map this implementation model onto a cluster of independent machines:  

1) Centralized optimization: On a central machine, the optimization step is carried out, whereas the gradient 

processing code is repeated on the residual cluster nodes.  

2) Decentralized optimization: In each cluster node, all cycles are repeated, and some synchronization is 

understood that enables the different optimizers to work helpfully. 

 

C. Synchronous versus Asynchronous Scheduling 

It is even necessary to classify DDLS through synchronous, asynchronous, and restricted asynchronous 

structures. Computations for all workers arise concurrently in bulk synchronous (or merely synchronous) structures. 

Global obstacles to convergence mean that specific worker nodes cannot proceed before the remaining workers enter 

a similar state. Asynchronous systems yield a more passive attitude to coordinating collective preparation and stop 

sidestepping workers' execution to please other workers. In other terms, synchronous systems accomplish successful 

collective training by eliminating variation in development between workers at the cost of a probable under-usage of 

resources. In contrast, asynchronous systems encourage a high use of hardware for more training and variation 

between workers as a controllable side effect that can also be beneficial in some circumstances. 
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Figure 1: The top is the flow of data in a synchronous DDLS, and the bottom path is minimizing the application of 

the parameter server and worker programs. 

Bounded asynchronous structures define a blended approach of these two archetypes. They run similar to unified 

asynchronous networks but implement laws to satisfy worker advancing at different rates. Therefore, workers work 

asynchronously concerning each other, but only under those boundaries (W. Dai et al., 2015). Their conversation is 

separated accordingly because of the various motivations and consequences of creating a hyper propagation model 

of synchronous or asynchronous modes of service with centralized and decentralized. 

Centralized Synchronous Systems CSS: The training of those systems is divided amongst the gradient 

computation and the parameter servers. Suppose such a method shows the asynchronous mode of process. In that 

case, training cannot continue even a complete exchange of parameters among the server of parameters and its 

worker because the server of parameters relies on the gradient feedback to the new version of the model (J. J. Dai et 

al., 2019; Feng et al., 2016; Iandola et al., 2016). In exchange, the workers depend on the revised model to further 

examine the loss function. Thus, the cluster as an entire transition cyclically among phases of unified synchronous 

DDLS, during which all workers execute the same operation (Tandon et al., 2017). 

Decentralized Synchronous Systems DSS: in synchronous distributed deep learning systems, which focus on 

clustered optimization, independently perform model training in individual worker and thus do not swap parameters 

for more model training, but rather propagate with the rest of the cluster the independent results of each worker to be 

able to rate descent trajectories with reasonable accuracy. They thus work in stages separated by global barriers to 

synchronization. 

Centralized Asynchronous Systems CAS: Distributed deep learning systems of those systems, each worker, once 

a small batch has been processed, a parameter server operates alone, while still sharing its gradients with the server 

(Abadi et al., 2016; Keskar et al., 2016). The parameter server enthusiastically inserts obtained gradients into the 

optimization algorithm to train the model instead of waiting for other workers to enter the same condition. Thus, 

each modification of the global model is only based on a single worker's gradient data (Chen et al., 2015). This is 

close to the processes of willing aggregation. However, instead of removing all residual workers' outcomes and 

wasting the computational capital expended, each worker can merely continue to use its nearby cached old version 

of the model parameters (Dean et al., 2012; Zhao et al., 2019). 

Bounded Asynchronous Systems BAS: In practice, the equal scheduling inferred in our study is impractical since 

faster computers will be pushed back by the slowest computer, which is precisely the condition that asynchronous 

systems strive and prevent. However, when sharing criteria, not implementing any order transfers some harm. 

Gradients from severely eclipsed workers will confuse the optimizer of the parameter server, which can set back 

testing or even ruin model training. 

Decentralized Asynchronous Systems DAS: Dissimilar in DAS, where model training of all workers sometimes 

ceases to re-parameterize the local models at a global synchronization barrier, workers behave independently in 

DAS and begin to discover the loss function of this model that is disconnected from the current state of the server 

(Feyzmahdavian et al., 2016; S. Zhang, 2016). Consequently, upon completing a parameter swap with the server 

node, the worker cannot substitute their model parameters. Alternatively, they need to combine the respective 

asynchronously collected results. The Preference form for combining server (𝑤)̃ and worker models (𝑤𝑖) in such a 

setting is to apply linear interpolation (Kim et al., 2016; Lian et al., 2015). 



Najdavan Abduljawad Kako1, Subhi R. M. Zeebaree2, Mohammed A. M.Sadeeq3 Ahmed Alkhayyat4 Hanan 
M. Shukur5 

 

7400 
 

 

D. Parameters Communication Pattern 

Different machine performs each function in the cluster. However, computing programs running on one 

computer, different machines, or distributed over several machines are worker, parameter servers, and server nodes. 

Distributing the worker function is model parallelism. The concentration focused on communication patterns used 

by parallel data distributed deep learning systems to coordinate the transfers of clusters and accelerate parameters. 

Communication patterns in centralized systems: Having the parameter server task based on a single 

computer, irrespective of the training process, vastly simplifies the system design since whole model training is 

organized in one program. Besides, it is simple to configure, monitor, and debug such systems. This might, however, 

render the parameter server a bottleneck. 

Communication patterns in decentralized systems: Discrete training phases of loops assume the 

coordination demand of each clustered worker per local measurement stage. In this way, decentralized networks 

usually maintain better use of computer hardware, even with minimal network capacity, making it easier to train 

massive models despite bandwidth restrictions. Scaling to greater cluster sizes, however, will also cause the server 

node to become a bottleneck. In decentralized systems, it is possible to break the server's position to decrease 

coordination costs, as in centralized systems. However, autonomous DDLS provide several choices for arranging 

parameter transfers since each system is a self-contained autonomous trainer. 

 

3. Evaluation 

Many of the distributed deep learning practices are focused on the promising results obtained by Google's large-

scale image classification (Y. Zhang et al., 2020) utilizing clusters of huge nodes of CPU using Disbelief. A 

centralized asynchronous distributed deep learning system with multiparameter server support (Dean et al., 2012). 

Several distributed deep learning systems have been suggested for expanding the Disbelief approach. For example, 

the imposition of delay limits to monitor the staleness of asynchronous workers has increased the convergence pace 

(Xing et al., 2015). In order to create multiple parallelisms and integrate with a general ML model, the emphasis was 

on formalizing the processing of DL workloads. A related approach was taken by transferring gradient processing 

measures for certain neural network layers into the parameter servers (Chilimbi et al., 2014). 

Furthermore, in a PAXOS cluster, they arrange the parameter servers to achieve high availability. The current 

descendants of Disbelief implement new ideas such as specifying stand-by staff, improving model partitioning 

utilizing auto-tuning models, and reducing expansion by enabling parameter servers to be organized hierarchically 

(Abadi et al., 2016; Chen et al., 2015). Systems in deep learning with COTS HPC (Goyal et al., 2017) and Fire Caffe 

on compute clusters are reduced distributed deep learning systems operations that obtain convinced concepts from 

Disbelief. However, it has been used in supercomputer environments, particularly HPC and GPU, where they have 

proven to be an ideal tool for many specific applications in terms of performance. By integrating unified 

synchronous parallel data in model training on top of Apache Spark, a simple convergence of data analysis 

platforms and the hardware environment was used. They use specialized communication fashions to incorporate a 

parameters distribution registry to meet the everyday communication needs of such systems. The deep learning with 

Python data-parallel optimizer follows a similar method but introduces a traditional interface to use collective 

connectivity primitives to perform synchronous model training. Either one or more worker’s function as the server 

parameter server. The majority of distributed deep learning systems that depend on decentralized optimization stem 

from training deep networks in Spark (You et al., 2019). This decentralized synchronous distributed deep learning 

system replicates Caffe-solvers to conduct training in commodity cluster environments using the map-reduce API of 

Apache Spark. This technique has achieved widespread acceptance as part of the popular Java distributed deep 

learning systems. This technique also sees the constraint on synchronous execution as a significant downside. A 

worker that attempts to improve upon training DNN in Spark (distributed deep learning training models) (Lin et al., 

2017). Extending the simple Spark-based approach to quasi-asynchronous training by overlapping computation and 

connectivity and extrapolating the recently found descent route to deal with staleness, and DL with elastic averaging 

SGD, that preserves the principle of small isolated phases of training but implements entirely asynchronous 

scheduling. If the cluster gets bigger, having one server node will reach deadlock (Lian et al., 2017). Also, many 

approaches are used to scale out the decentralized optimization (Blot et al., 2016; Huang et al., 2018; S. Zhang, 
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2016). Table 1 displays all systems for DDL, and Table 2 can support researchers to find the choice when applying 

or selecting a distributed deep learning system. 

TABLE 1:  Comparison and overview for different distributed deep learning systems. 

DDLS Name 

(a-z) 

Parallelism 

(Model / Data) 
Optimization Scheduling 

Parameter 

Exchange 
Topology 

Achieved Objective and 

Significant Results 

BigDL (J. J. 

Dai et al., 

2019) 

DP central synchronous scatter-red. 

DPS 

(always 

𝑘 =  𝑛) 

For 1/n of the model, each 

worker works as a parameter 

server. Via the Spark block 

manager, distributed 

parameter exchanges are 

carried out. 

CaffeOnSpark 

(Feng et al., 

2016) 

DP central synchronous scatter-red. 

DPS 

(always 

𝑘 =  𝑛) 

Exchange of parameters by 

RDMA using repetitive MPI 

function invocations. There 

are available equivalent 

implementations for 

CAFFE2 and CHAINER. 

COTS HPC 

(Coates et al., 

2013) 

MP central synchronous – 
Dist. array 

abstraction 

Model clusters divided 

along tensor dimensions & 

spread among the cluster. 

The access may be fine-

grained with a low-level 

array definition. 

D-PSGD 

(Lian et al., 

2017) 

DP decentral synchronous 2:1 reduce 
closed 

ring 

Each node only 

communicates parameters 

with its neighboring nodes 

on the ring. 

DistBelief 

(Dean et al., 

2012) 

MP and DP central asynchronous ad hoc DPS 

Dedicated parameter server 

nodes spread by model 

divisions 

EASGD (S. 

Zhang et al., 

2014) 

DP decentral asynchronous ad hoc 
single 

server 

Active variation of hyper-

parameters can accelerate 

training (Decentralized 

asynchronous system) 

FireCaffe 

(Iandola et al., 

2016) 

DP central synchronous 
binomial 

tree 
SPS 

centralized synchronous 

system in a simple manner 

GoSGD (Blot 

et al., 2016) 
DP decentral 

soft-bounded 

asynchronous 
ad hoc P2P mesh 

There is no dedicated server 

node, and when two workers 

realized via a sum-weighted 

randomized gossip protocol, 

the parameter will exchange 

MPCA-SGD 

(Lin et al., 
DP decentral soft-bounded binomial 

dedicated 

server 

Model and data may be 

modified separately. 
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2017) asynchronous tree node Punishment is a component 

of the loss function in the 

model. The extrapolation 

mechanism is used to reduce 

the staleness impact. 

MXNet (Chen 

et al., 2015) 
MP and DP central 

bounded 

asynchronous 

scatter-

reduce 

async.: ad 

hoc 

DPS 

(default 

𝑘 =  𝑛) 

Supports numerous 

technical parameter server 

configurations in 

comparison to hierarchical 

multi-stage proxy servers. 

Parameter 

Server (W. 

Dai et al., 

2015) 

MP and DP central 
bounded 

asynchronous 

reduce 

async.: ad 

hoc 

DPS 

Model partitions 

propagation through 

parameter groups is 

redundant. Model 

parallelism enables to 

organize workers in groups, 

and one worker can act as a 

proxy server per group. 

Petuum (Xing 

et al., 2015) 
MP and DP central 

bounded 

asynchronous 

ad hoc 

with 

eager 

scatter 

DPS 

Uses pause bounds for the 

first time to regulate 

staleness. The prompt 

distribution of model 

parameters further decreases 

model variance. 

Project Adam 

(Chilimbi et 

al., 2014) 

MP and DP central asynchronous ad hoc DPS 

It has a dedicated parameter 

server group that is operated 

as a PAXOS cluster. Hybrid 

parallelism takes advantage 

of gradient computing by 

transforming computation 

into GPUs. 

PyTorch 

(Paszke et al., 

2019) 

MP and DP central synchronous all-reduce 

SPS or 

replicated 

PS 

Capabilities of model 

parallelism in version 1.4 

can just use either 

synchronous data-

parallelism or model 

parallelism. 

SparkNet 

(Moritz et al., 

2015) 

DP decentral synchronous reduce 

dedicated 

server 

node 

Decentralized synchronous 

implementation is 

understood using Spark 

map-cut. Production grade 

reimplementation is existing 

in deeplearning4J. 

TensorFlow 

(Abadi et al., 

2016) 

MP and DP central 
bounded 

asynchronous 

scatter/all-

red. 

async.: ad 

DPS 

(default 

Technologies supporting 

single and multiparameter 

servers and all-reduce-
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hoc 𝑘 =  𝑛) related methods are studied. 

TreeEASGD 

(Langer et al., 

2020) 

DP decentral 
bounded 

asynchronous 
ad hoc tree 

The nodes of the tree are 

workers. Workers on 

immediate up and 

downstream neighbors can 

only exchanges parameters 

 

 Data Parallelism (DP); Model Parallelism (MP); Distributed Parameter Server (DSP) 

TABLE 2: Criteria for choosing a distributed deep learning system approach. 

 RLBD RBM opt LR COCC CAHP RSOI ERB 

Model Parallelism  ✓ higher 1+ 3+ 1+ trivial 

Model Parallelism and mini-batch 

pipelining 

 ✓ lower 2+ 4+ 2+ medium 

Data Parallelism, central and sync.   higher 1+ 1+ 1+ easy 

Data Parallelism, central and async. ✓  lower 3+ 2+ 3+ hard 

Data Parallelism, decentral, and sync. ✓  likely 

lower 

1+ 2+ 2+ easy 

 

4. Conclusion & Future Work 

In this review, we discussed different theoretical and functional aspects that may emerge in the training of DL 

models in a cluster and presented reasonable surmises that enable thinking about how different methods use the tools 

available to the association. The underlying concepts of architecture that have a guiding effect were structured. Our 

review defines a simple scheme that enables the main sources of distributed deep learning to be separated. In order 

to obtain a compact description, we then extended this analysis to classify a set of distributed deep learning systems 

irrespective of application-specific particularities. Some possible fields of future study related that may be an 

important part of the study for the IoT or vehicle applications to use P2P model sharing combined with decentralized 

optimization strategies, as suggested by (Blot et al., 2016).  

The majority of work in distributed deep learning is restricted to optimal research scenarios. The condition is 

typically more complicated in real cluster configurations because of overlapping workloads. For certain clinicians, a 

systematic study of multiple distributed methods in real-life situations will be useful. Lin et al. (Lin et al., 2017) 

proved that the  clusters are mostly not substituted but rather expanded as investment commodities. A largely un-

tackled innovation challenge is the successful realization of distributed instruction in heterogeneous setups. 
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