The Upper Total Triangle Free Detour Number of a Graph

G. Priscilla Pacifica^a, S.Lourdu Elqueen^b

^aDepartment of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India ^bPh. D Research Scholar (Full Time) of Mathematics, St. Mary's College (Autonomous) Thoothukudi affiliated under Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli, Tamil Nadu, South India ^apriscillamelwyn@gmail.com, ^bsahayamelqueen@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract: For a connected graph G = (V,E) of order at least two, a total triangle free detour set of a graph G is a triangle free detour set S such that the subgraph G[S] induced by S has no isolated vertices. The minimum cardinality of a total triangle free detour set of G is the total triangle free detour number of G. It is denoted by $[tdn]_{\Delta}f(G)$. A total triangle free detour set of cardinality $[tdn]_{\Delta}f(G)$ is called $[tdn]_{\Delta}f$ -set of G. In this article, the concept of upper total triangle free detour number of a graph G is introduced. It is found that the upper total triangle free detour number is found for some standard graphs. Their bounds are determined. Certain general properties satisfied by them are studied.

Keywords: total triangle free detour set, total triangle free detour number, upper total triangle free detour set, upper total triangle free detour number.

AMS Subject classification: 05C12 Corresponding Author: S. Lourdu Elqueen

1. Introduction

For a graph G = (V, E), we mean a finite undirected connected simple graph. The order of G is represented by *n*. We consider graphs with at least two vertices. For basic definitions we refer [3]. For vertices *u* and *v* in a connected graph G, the detour distance D(u, v) is the length of the longest u - v path in G. A u - v path of length D(u, v) is called a u - v detour. This concept was studied by Chartrand et.al [1].

A chord of a path *P* is an edge joining two non-adjacent vertices of *P*. A path *P* is called a monophonic path if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set *S* of vertices of *G* is a detour monophonic set of *G* if each vertex *v* of *G* lies on an x-y detour monophonic path for some *x* and *y* in *S*. The minimum cardinality of a detour monophonic set of *G* is the detour monophonic number of *G* and is denoted by dm(G). The detour monophonic number of a graph was introduced in [8] and further studied in [7].

A total detour monophonic set of a graph G is a detour monophonic set S such that the subgraph G[S] induced by S has no isolated vertices. The minimum cardinality of a total detour monophonic set of G is the total detour monophonic number of G and is denoted by $dm_t(G)$. A total detour monophonic set of cardinality $dm_t(G)$ is called a dm_t -set of G. These concepts were studied by A. P. Santhakumaran et. al[6].

The concept of triangle free detour distance was introduced by Keerthi Asir and Athisayanathan [4]. A path *P* is called a triangle free path if no three vertices of *P* induce a triangle. For vertices *u* and *v* in a connected graph *G*, the triangle free detour distance $D_{Af}(u, v)$ is the length of a longest u - v triangle free path in *G*. A u - v path of length $D_{Af}(u, v)$ is called a u - v triangle free detour. For any two vertices *u* and *v* in a connected graph *G*, $0 \le d(u, v) \le dm(u, v) \le D_{Af}(u, v) \le n - 1$.

The triangle free detour eccentricity of a vertex v in a connected graph G is defined by $e_{\Delta f}(v) = \max\{D_{\Delta f}(u, v): u, v \in V\}$. The triangle free detour radius of G is defined by $rad_{\Delta f}(G) = \min\{e_{\Delta f}(v): v \in V\}$ and The triangle free detour diameter of G is defined by $diam_{\Delta f}(G) = \max\{e_{\Delta f}(v): v \in V\}$

A total triangle free detour set of a graph G is a triangle free detour set S such that the subgraph G[S] induced by S has no isolated vertices. The minimum cardinality of a total triangle free detour set of G is the total triangle free detour number of G. It is denoted by $tdn_{\Delta f}(G)$. A total triangle free detour set of cardinality $tdn_{\Delta f}(G)$ is called $tdn_{\Delta f}$ - set of G.

A vertex v of a connected graph G is called a support vertex of G if it is adjacent to an end vertex of G. Two adjacent vertices are referred to as neighbors of each other. The set N(v) of neighbors of a vertex v is called the neighborhood of v. A vertex v of a graph G is called extreme vertex if the subgraph induced by its neighbourhood is complete. The following theorems will be used in the sequel.

Theorem 1.1: Let G be a connected graph of order n, then $2 \leq dn_{\Delta f}(G) \leq tdn_{\Delta f}(G) \leq cdn_{\Delta f}(G) \leq n$.

Theorem 1.2. If the set of all extreme vertices and support vertices form a total

triangle free detour set, then it is the unique minimum total triangle free detour set of G.

2. The Upper Total Triangle Free Detour Number

Definition 2.1. A total triangle free detour set in a connected graph G is called a minimal total triangle free detour set of G if no proper subset of S is a total triangle free detour set of G. The upper total triangle free detour number

 $tdn_{\Delta f}^{+}(G)$ of G is the maximum cardinality of a minimal total triangle free detour set of G.

Example 2.1. For the graph G given in Figure:2.1, $S_1 = \{u_5, u_6, u_4\}$, $S_2 = \{u_5, u_6, u_3\}$ are the minimum total triangle free detour sets of G and $S_3 = \{u_5, u_6, u_1, u_2\}$ is a minimal total triangle free detour set of G. Clearly S_3 is minimal total triangle free detour set of G with maximum cardinality. Thus

 $tdn_{\Delta f}^+(G) = 4.$

Figure 2.1

Note 2.1: Every minimal total triangle free detour set is a total triangle free detour set. But the total triangle free detour number and the upper total triangle free detour number need not be same.

Theorem 2.1: Every minimum total triangle free detour set is a minimal total triangle free detour set.

Proof:

Let S be a minimal total triangle free detour set. Then no proper subset of S is a total triangle free detour set of G. Thus S is a minimal total triangle free detour set.

Remark 2.1: Converse of the above theorem need not be true. For the graph G given in Figure:2.1, $S_3 = \{u_5, u_6, u_1, u_2\}$ is a minimal total triangle free detour set of G. But S_3 is not a minimum total triangle free detour set.

Theorem 2.2: Let *n* be the order of a connected graph *G*, then $2 \le tdn_{\Delta f}(G) \le tdn_{\Delta f}^+(G) \le n$.

Proof: By theorem 1.1, we can conclude that $2 \le tdn_{\Delta f}(G)$. Since the order of the given graph is *n*. The upper total triangle free detour number cannot exclude *n*. Thus $tdn_{\Delta f}^+(G) \le n$. By theorem 2.1, every minimum total triangle free detour set is a minimal total triangle free detour set, $tdn_{\Delta f}(G) \le tdn_{\Delta f}^+(G)$. Hence $2 \le tdn_{\Delta f}(G) \le tdn_{\Delta f}^+(G) \le n$.

Remark 2.2: The bound in the theorem 2.2 is sharp. For a cycle C_n , $tdn_{\Delta f}(G) = tdn_{\Delta f}^+(G) = 2$ and for a path P_n $(n \ge 4)$, $tdn_{\Delta f}(G) = tdn_{\Delta f}^+(G) = 4$. For the graph given in the figure 2.1 $tdn_{\Delta f}(G) = 3$, $tdn_{\Delta f}^+(G) = 4$. Thus $2 < tdn_{\Delta f}(G) < tdn_{\Delta f}^+(G) < n$.

Theorem 2.3: Let *n* be the order of a connected graph *G*, $tdn_{\Delta f}(G) = n$ if and only if $tdn_{\Delta f}^+(G) = n$.

Proof: Let $tdn_{\Delta f}^+(G) = n$. Then by theorem 2.2, $tdn_{\Delta f}(G) \leq n$. If $tdn_{\Delta f}(G) < n$, then there exist a total triangle free detour set with cardinality less than n, which is a subset of minimal total triangle free detour set. This is impossible. Hence $tdn_{\Delta f}(G) = n$. Conversely, let $tdn_{\Delta f}(G) = n$. Then by theorem 2.2 $tdn_{\Delta f}^+(G) = n$.

Theorem 2.4: Let $G = K_n$. Then $tdn^+_{\Delta f}(G) = n$.

Proof: Every vertex of a complete graph is an extreme vertex. Then by the theorem 1.2, $tdn_{\Delta f}(G) = n$. Then by theorem 2.3, $tdn_{\Delta f}^+(G) = n$.

References

- 1. G. Chartrand and H. Escuadro and P. Zhang, Detour Distance in Graphs,
- 2. J.Combin.Math.Combin.Comput., 53 (2005), 75-94.
- 3. G. Chartrand, N. Johns and P. Zhang, Detour number in Graphs,
- 4. Util.math 64 (2003), 97113.
- 5. G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
- 6. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Distance in Graphs, J. Combin. Math. Combin. Comput., 105(2016).
- G. Priscilla Pacifica, S. Lourdu Elqueen, S. Athisayanathan, A Result on The Total Triangle Free Detour Number of a Graph, The Maharaja Sayajirao University of Baroda Vol.55, No.1(I) (2021) (UGC Care Group I)
- 8. G. Priscilla Pacifica, S. Lourdu Elqueen, S. Athisayanathan, The Total Triangle Free Detour Number of a Graph, Advances in Mathematics: Scientific Journal 9 (2020), no-5, 2405-2413.(SCOPUS)
- G. Priscilla Pacifica, S. Lourdu Elqueen, S. Athisayanathan, The Total Weak Edge Triangle Free Detour Number of a Graph, The Maharaja Sayajirao University of Baroda Vol.54, No.2(XIII) (2020-2021) (UGC Care Group I)
- 10. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Math. Algorithms Appl., 3 (2011), 159 169.
- 11. P. Santhakumaran and P. Titus and K. Ganesamoorthy, The total detour monophonic number of a graph, Proyecciones Journal of Mathematices (Antofagasta), vol 36(June 2017), 209-224.
- 12. P. Titus and K. Ganesamoorthy, On the Detour Monophonic Number of a Graph, Ars Combinatoria, 129, pp. 33-42, (2016).
- 13. P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput., 84, pp. 179-188, (2013)