Relaxed Skolam Mean Labeling of 5 - Star Graph

$$
\mathrm{G}=\mathrm{K}_{1, a_{1}} \mathrm{UK}_{1, a_{2}} \mathrm{UK}_{1, a_{3}} \mathrm{UK}_{1, \beta_{1}} \mathrm{UK}_{1, \beta_{2}}
$$

D. Angel Jovanna ${ }^{\text {a }}$

${ }^{\text {a }}$ Research Scholar, Department of Mathematics, Nazareth Margoschis College, Pillayanmanai, Tuticorin, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012
Email: ${ }^{\text {a angeljovanna91@gmail.com }}$
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021
Abstract: To prove that the 5 - star graph $G=K_{1, \alpha_{1}} \cup K_{1, \alpha_{2}} \cup K_{1, \alpha_{3}} \cup \mathrm{~K}_{1, \beta_{1}} \cup \mathrm{~K}_{1, \beta_{2}}$ where $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3}$ and $\beta_{1} \leq \beta_{2}$ is a relaxed skolam mean graph if $\left|\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}\right|=6$ is the core objective of this article.
Keywords: Relaxed skolam mean graphs, relaxed skolam mean labeling, 5-star graph.

1. Introduction

Relaxed skolam mean label for a graph was defined and coined by V.Balaji et. al.[5]. In the paper [5] he defined the relaxed skolam mean labeling for the first time. In the same paper we can find the basic properties for a graph to be relaxed skolam mean.

2. Preliminaries

Definition 2.1 [4]: A graph $G=(V, E)$ with p vertices and q edges is said to be a skolam mean graph if there exists a function $f: V \rightarrow\{1,2,3, \ldots, p=|V|\}$ such that the induced map $f^{*}: E \rightarrow\{2,3, \ldots, p=|V|\}$ given by

$$
f *(e=u v)= \begin{cases}\frac{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})}{2} & \text { if }(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})) \text { iseven } \\ \frac{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+1}{2} & \text { if }(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+1) \text { is even }\end{cases}
$$

then, the resulting distinct edge labels are from the set $\{2,3, \ldots, p=|V|\}$.

Definition 2.2 [5]: A graph $G=(V, E)$ with p vertices and q edges is said to be a relaxed skolam mean graph if there exists a function $f: V \rightarrow\{1,2,3, \ldots, p+1=|V|+1\}$ such that the induced edge map $f^{*}: E \rightarrow\{2,3, \ldots, p=|V|+1\}$ given by
$f *(e=u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if }(f(u)+f(v)) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if }(f(u)+f(v)+1) \text { is even }\end{cases}$
. The resulting distinct edge labels are from the set $\{2,3, \ldots, \mathrm{p}+1=|\mathrm{V}|+1\}$
Note 2.3: There are p vertices and available vertex labels are $\mathrm{p}+1$ and hence one number from the set $\{1,2,3, \ldots, p+1=|\mathrm{v}|+1\}$ is not used and we call that number as the relaxed label. When the relaxed label is $\mathrm{p}+1$, the relaxed mean labeling becomes a skolam mean labeling.

Result 2.4: In the relaxed skolam mean labeling $\mathrm{p} \geq \mathrm{q}$.

Result 2.5: The three star graph $K_{1, a} \cup K_{1, b} \cup K_{1, c}$ satisfies relaxed skolam mean labeling if $\mathrm{a}+\mathrm{b} \leq \mathrm{c} \leq \mathrm{a}+\mathrm{b}+\mathrm{c}$.

3. Main Result

Theorem 3.1: The 5-star graph $G=K_{1, \alpha_{1}} \cup K_{1, \alpha_{2}} \cup K_{1, \alpha_{3}} \cup K_{1, \beta_{1}} \cup K_{1, \beta_{2}}$ where $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3}$ and $\beta_{1} \leq \beta_{2}$ is a relaxed skolam mean graph if $\left|\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}\right|=6$.

Proof: Let $\sigma_{1}=\alpha_{1} ; \sigma_{2}=\alpha_{1}+\alpha_{2} ; \sigma_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}$ and $\delta_{1}=\beta_{1} ; \delta_{2}=\beta_{1}+\beta_{2}$.
Consider the 5 - star graph $\mathrm{G}=\mathrm{K}_{1, \alpha_{1}} \cup \mathrm{~K}_{1, \alpha_{2}} \cup \mathrm{~K}_{1, \alpha_{3}} \cup \mathrm{~K}_{1, \beta_{1}} \cup \mathrm{~K}_{1, \beta_{2}}$.
The condition $\left|\beta_{1}+\beta_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}\right|=6$ gives rise to the case $\delta_{2}=\sigma_{3}+6$. In this case we will establish that the graph G is relaxed skolam mean.

Let the set of vertices of G be $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$ where $V_{k}=\left\{v_{k, i}: 0 \leq i \leq \alpha_{k}\right\} ; 1 \leq k \leq 3$ and $\mathrm{V}_{4}=\left\{\mathrm{v}_{4, \mathrm{i}}: 0 \leq \mathrm{i} \leq \beta_{1}\right\} ; \mathrm{V}_{5}=\left\{\mathrm{v}_{5, \mathrm{i}}: 0 \leq \mathrm{i} \leq \beta_{2}\right\} \quad$. Let the edge set of G be $\mathrm{E}=\bigcup_{\mathrm{k}=1}^{3}\left\{\mathrm{v}_{\mathrm{k}, 0} \mathrm{v}_{\mathrm{k}, \mathrm{i}}: 1 \leq \mathrm{i} \leq \alpha_{\mathrm{k}}\right\} \cup \bigcup_{\mathrm{k}=4}^{5}\left\{\mathrm{v}_{\mathrm{k}, 0} \mathrm{v}_{\mathrm{k}, \mathrm{i}}: 1 \leq \mathrm{i} \leq \beta_{\mathrm{k}-3}\right\}$.

Case 1: Let $\delta_{2}=\sigma_{3}+6$.
G has $\sigma_{3}+\delta_{2}+5=2 \sigma_{3}+11$ vertices and $\sigma_{3}+\delta_{2}=2 \sigma_{3}+6$ edges.
We define the rsv function
$\mathrm{f}: \mathrm{V} \rightarrow\left\{1,2, \ldots, \mathrm{p}+1=\sigma_{3}+\delta_{2}+5+1=2 \sigma_{3}+12\right\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{1,0}\right)=1 ; \quad \mathrm{f}\left(\mathrm{v}_{2,0}\right)=3 ; \mathrm{f}\left(\mathrm{v}_{3,0}\right)=5 ;$
$f\left(v_{4,0}\right)=\sigma_{3}+\delta_{2}+5=2 \sigma_{3}+9 ;$
$\mathrm{f}\left(\mathrm{v}_{5,0}\right)=\sigma_{3}+\delta_{2}+6=2 \sigma_{3}+11$
$\mathrm{f}\left(\mathrm{v}_{1, \kappa}\right) \quad=2 \kappa+5 \quad 1 \leq \kappa \leq \alpha_{1}$
$\mathrm{f}\left(\mathrm{v}_{2, \kappa}\right)=2 \sigma_{1}+2 \kappa+5 \quad 1 \leq \kappa \leq \alpha_{2}$
$\mathrm{f}\left(\mathrm{v}_{3, \kappa}\right)=2 \sigma_{2}+2 \kappa+5 \quad 1 \leq \kappa \leq \alpha_{3}$
$\mathrm{f}\left(\mathrm{v}_{4, \kappa}\right)=2 \kappa \quad 1 \leq \kappa \leq \beta_{1}$
$\mathrm{f}\left(\mathrm{v}_{5, \kappa}\right)=2 \delta_{1}+2 \kappa \quad 1 \leq \kappa \leq \beta_{2}$
Here $2 \sigma_{2}+7$ is the relaxed label.
We get the edge labels as follows:

The edge labels of $\mathrm{v}_{1,0} \mathrm{v}_{1, \kappa}$ is $\kappa+3$ for $1 \leq \kappa \leq \alpha_{1}\left(4,5, \ldots, \alpha_{1}+2=\sigma_{1}+3\right), \mathrm{v}_{2,0} \mathrm{v}_{2, j}$ is $\sigma_{1}+\kappa+4$ for $1 \leq \kappa \leq \alpha_{2}\left(\sigma_{1}+5, \sigma_{1}+6, \ldots, \sigma_{1}+\alpha_{2}+4=\sigma_{2}+4\right), \quad v_{3,0} v_{3, j} \quad$ is $\sigma_{2}+\kappa+5$ for $1 \leq \kappa \leq \alpha_{3} \quad\left(\sigma_{2}+6, \sigma_{2}+7, \ldots, \sigma_{2}+\alpha_{2}+5=\sigma_{3}+5\right), \quad v_{4,0} v_{4, \kappa} \quad$ is $\quad \sigma_{3}+\kappa+5 \quad$ for $1 \leq \kappa \leq \beta_{1}$ ($\left.\sigma_{3}+6, \sigma_{3}+7, \ldots, \sigma_{3}+\beta_{1}+5=\sigma_{3}+\delta_{1}+5\right), \quad{ }^{v_{5,0}}{ }^{\mathrm{v}} 5, \kappa \quad$ is $\quad \sigma_{3}+\delta_{1}+\kappa+6 \quad$ for $\quad 1 \leq \kappa \leq \beta_{2}$ $\left(\sigma_{3}+\delta_{1}+7, \sigma_{3}+\delta_{1}+8, \ldots, \sigma_{3}+\delta_{1}+\left(\beta_{2}\right)+6=\sigma_{3}+\delta_{2}+6=2 \sigma_{3}+12\right)$.

The edge labels are therefore $4,5, \ldots, \sigma_{1}+3, \sigma_{1}+5, \sigma_{1}+6, \ldots, \sigma_{2}+4, \sigma_{2}+6, \sigma_{2}+7, \ldots, \sigma_{3}+5$, $\sigma_{3}+6, \sigma_{3}+5, \ldots, \sigma_{3}+\delta_{1}+5, \sigma_{3}+\delta_{1}+6, \sigma_{3}+\delta_{1}+7, \ldots, 2 \sigma_{3}+12$.

These edge labels, the images of the rse function of the graph G are therefore distinct. Hence G is a relaxed skolam mean graph.

Example:

Figure 3.2

References

1. M. Apostal, "Introduction to Analytic Number Theory", Narosa Publishing House, Second edition, 1991.
2. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", Macmillan press, London, 1976.
3. J. C. Bermond," Graceful Graphs, Radio Antennae and French Wind Mills", Graph Theory and Combinatories, Pitman, London, 1979, 13 - 37.
4. V. Balaji, D. S. T. Ramesh and A. Subramanian, "Skolam Mean Labeling", Bulletin of Pure and Applied Sciences, vol. 26E No. 2, 2007, $245-248$.
5. V. Balaji, D. S. T. Ramesh and A. Subramanian, "Relaxed Skolam Mean Labeling", Advances and Applications in Discrete Mathematics, vol. 5(1), January 2010, 11-22.
6. V. Balaji, D. S. T. Ramesh and A. Subramanian, "Some Results On Relaxed Skolam Mean Graphs", Bulletin of Kerala Mathematics Association, vol. 5(2), December 2009, 33 - 44.
7. J. A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of combinatorics 14(2007).
