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Abstract: Parikh Fuzzy vector for finite words of Rectangular Hilbert Space Filling Curve is introduced. Recurrence relations 
for this vector and its complement vector are produced.  It is shown that the components of the Parikh Fuzzy vector are equally 
distributed at the limiting level.   Hence, it is observed that the Parikh Fuzzy vector tends to a constant vector as n tends to 
infinity. Moreover, it is also valid to any other kinds of Space Filling Curves like Lebesgue Space Filling Curve, Peano Curve 

and Moore Curve 
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1. Introduction  

Space Filling Curves are applied to visit each cell of a multidimensional grid exactly once.  These concepts of 

traversal are very useful in image processing, data organization and in reducing dimensions of multidimensional 

data.  Generally Space Filling Curves fill a square using iterative process.  For a particular case, Rectangular 

Space Filling curves fill a rectangle by using recursive progression.   

   In [1] the concept of fuzzy basis of fuzzy vector space is studied. The authors of [2] studied the nature of 

binary alphabets in Parikh matrix mapping.  Combinations and selections on words are explained in [3].  The 

authors of [4] provided the notion of Parikh prime words. The concept of Parikh factor matrix is introduced in [5].   

The properties of recurrence relations of Parikh vectors for finite words are discussed in [6] and [8].   The 

authors of [7] formed different representations of fuzzy vectors. Finite words for Space Filling Curves are 

investigated in [9] and [10]. 

    Finite words for Rectangular Hilbert Space Filling Curves (RHSFC) are specified from [5] in the second 

section. Parikh fuzzy vectors for these words are defined in third section.  Also properties of Parikh fuzzy vector 

for finite words of Rectangular Hilbert Space Filling Curve are discussed in the third section.  Finally the limiting 

case of the Parikh fuzzy vector is analyzed. 

2. RHSFC And Finite Words 

The construction of the Rectangular Hilbert Space Filling Curve is observed from  [5] and nth finite iteration of 

this curve is described by the String Wn. 

Let W1 = u r d  

This implies     W2 = r u  u r u  u r u   u u r d r u r d ru r d  d  d r d  d r d  d r  
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3. Parikh Fuzzy Vector  

Definition 3.1.   

Parikh FuzzyVector:    

Let Σ = { a1< a2 < ….<ak} be an ordered alphabet. The Parikh fuzzy mapping is a mapping k

fp ]10[: * →  

defined as   ( ))()......(),(),()( 321 kwwwwf apapapapwp = where )( iw ap is the probability of 

occurrences of  ia  in w.  i.e.  )( iw ap  = 
w

w
ia

    

Definition 3.2.   

Complement Parikh Fuzzy Vector :   

Let Σ = { a1< a2 < ….<ak} be an ordered alphabet.  The Complement Parikh fuzzy mapping is a mapping 
k

fc ]10[: * →
 
defined as   

( ))(1),......(1),(1)( 21 kwwwf apapapwc −−−=  

Example 1: Let Σ ={a < b} be an ordered alphabet.  Then 

( ),25.0,75.0)( =abaap f ( )75.0,25.0)( =abaac f  

Example 2 : Let Σ ={a < b < c} be an ordered alphabet.  Then     

( )0,25.0,75.0)( =abaap f      
( )1,75.0,25.0)( =abaac f

 

4. Parikh Fuzzy Vector Of Wn 

Let the alphabet Σ of Wn is ordered by   ddrruu .  

Then the Parikh Fuzzy vector of Wn is given by 

=)( nf Wp ( ))(),(),(),(),(),(),(),( 
nnnnnnnn WWWWWWWW ppdpdprprpupup  
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When n=1 in (4.1) 
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RECURRENCE RELATION FOR pf (Wn) 

Parikh Fuzzy vector pf (Wn) of Wn can be recursively written as 
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The recurrence equation is linear non-homogeneous non-autonomous equation with variable coefficients.  

RECURRENCE RELATION FOR COMPLEMENT PARIKH FUZZY VECTOR cf (Wn) OF pf (Wn) 

The complement of pf (Wn)  is given by 

(4.2)               cf (Wn) = ( ).)(1),(1),(1),(1),(1),(1),(1),(1 
nnnnnnnn HHHHHHHH ppdpdprprpupup −−−−−−−−  

It is also a fuzzy vector since its values ∈ [0, 1] 
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The Complement Parikh Fuzzy vector cf (Wn) of Wn can be recursively written as 
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since wn= 4(9)n-1 – 1 

wn+1= 4(9)n – 1=9×4(9)n-1 – 1= 9(wn+1)-1 

wn+1= 9 wn+8 implies wn+1- 9 wn=8 

1 =(1,1,1,1,1,1,1,1) and wn = 
nW  with initial condition  

)2.4(11,1,1,
3

2
,1,
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,1,
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2
)( 1 innwhenWc f =








=  

The recurrence equation is linear non-homogeneous non-autonomous equation with variable coefficients.  

UPPER BOUND OF pf (Wn) 

The largest element in the fuzzy vector ‘a’ is called its upper bound. 

      where ),....,,( 321 naaaaa =  

Therefore     
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LOWER BOUND OF pf (Wn) 

The smallest element in the fuzzy vector ‘a’ is called as its lower bound. 

http://4.bp.blogspot.com/-q76EQrtq5hI/TlJgdLq3A2I/AAAAAAAACM0/L75K-YII17k/s1600/fuzzy-vector-upper-bound.png
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    where   ),....,,( 321 naaaaa =
      

 
Therefore   )(

nWp=
 

5. Limiting Case Of Pf(Wn) 

The values of p(a) where a =  lrdulrdu ,,,,,,,
 
are listed in Table1. 

Table 1.Probabilites of occurrences of the letters 

n )(rp
nW  )(

nWp  )()( dpup
nn WW =  

)()(

)()(


nn

nn

WW

WW

pdp

rpup

=

==  

1 0.333333333 0 0.333333333 0 

2 0.142857143 0 0.085714286 0 

3 0.164086687 0.111455 0.139318885 0.111455 

4 0.129331046 0.111149 0.120411664 0.111149 

5 0.129596464 0.123461 0.126548032 0.123461 

6 0.125510701 0.123457 0.124486124 0.123457 

7 0.125513992 0.124829 0.125171527 0.124829 

8 0.12505711 0.124829 0.124942851 0.124829 

9 0.125057151 0.124981 0.125019053 0.124981 

10 0.12500635 0.124981 0.124993649 0.124981 

11 0.125006351 0.124998 0.125002117 0.124998 

12 0.125000706 0.124998 0.124999294 0.124998 

13 0.125000706 0.125 0.125000235 0.125 

14 0.125000078 0.125 0.124999922 0.125 

15 0.125000078 0.125 0.125000026 0.125 

16 0.125000009 0.125 0.124999991 0.125 

17 0.125000009 0.125 0.125000003 0.125 

18 0.125000001 0.125 0.124999999 0.125 

19 0.125000001 0.125 0.125 0.125 

20 0.125 0.125 0.125 0.125 

21 0.125 0.125 0.125 0.125 

22 0.125 0.125 0.125 0.125 

23 0.125 0.125 0.125 0.125 

24 0.125 0.125 0.125 0.125 

25 0.125 0.125 0.125 0.125 

From this table, it can be seen that the probabilities of occurrences of the eight letters are approximately equal 

to 0.125 after some iterations.  But, it can be noticed that letters landrldu ,, tend to their limiting value 0.125 

faster than the other letters..  Therefore, the occurrences of letters of Wn are equally probably distributed as n tends 

to infinity. Moreover, it can be applicable to any formation of finite words for any Space Filling Curve. That is, if 

the finite words are formed with k letters, then the probability of occurrences of these letters are equal to 1/k at its 

limiting case.  Hence the Parikh Fuzzy vector tends to a constant vector as n tends to infinity.   

Theoretical View For Limiting Value Of Pf (Wn) 

The limiting value of pf (Wn) can be found by applying limit →n  to pf (Wn).  Firstly the limit value of 

)(up
nW

 can be found as follows.  

http://3.bp.blogspot.com/-_Ll2Gy_feyE/TlJgdcn9tGI/AAAAAAAACM8/29_VzS4ugcg/s1600/lower-bound-of-fuzzy-vector.png
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Similarly, other limit values of probabilities for other letters namely u,d,r, rdl ,,  and l .  Therefore Parikh 

Fuzzy vector tends to (0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125) as →n .  

6. Conclusion 

Parikh Fuzzy vector of a word over an ordered alphabet with finite number of letters was introduced.  Parikh 

Fuzzy vectors are computed correspondingly for finite words of Rectangular Hilbert Space Filling Curve.  It is 

observed that, this vector tends to a constant vector as n tends to infinity. Additionally, this nature is also true for 

other kinds of Space Filling Curve.  Also some of the properties of these vectors were analyzed. 

7. Further Research 

Some more properties of Fuzzy Parikh Vectors have to be discussed further. 
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