Left Maximum Minimum Cost Ideal Process -Secure and Unhinged Grid in Haze Computing

S. Janani ${ }^{\text {a }}$, K. Thiagarajan ${ }^{\text {b }}$, N. Suriya Prakash ${ }^{\text {c }}$
${ }^{\text {a b }}$ Department of Mathematics, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, Indi
${ }^{\text {c }}$ Aptean India Pvt. Ltd, Bangalore, Karnataka, India
${ }^{\text {a }}$ jananis0502@gmail.com, ${ }^{\text {b }}$ vidhyamannan@yahoo.com, ${ }^{\text {c }}$ prakashsuriya@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021
Abstract: In this article, proposed method namely Maximum Minimum LeftAllotment method is applied to seek the feasible solution with respect to Cost Optimization from the basic feasible solution set for transportation problems. The proposed algorithm is a different way to obtain the feasible (or) may be optimal (for some extant) solution without anxiety of degeneracy condition.
Keywords: Assignment problem, Degeneracy, Left,Maximum, Minimum, Optimum Cost, Pay off Matrix (POM), Pivot element, Transportation problem

1. Introduction

In transport departments and travelers are facing some problems to detect the cost of transportation. Now a days many proposals and procedures are developed in this connections in linear programming problems mainly reduce the cost [3]. Particularly from warehouses and Godowns articles will be transported source place to designated places with cheap cost[1], [2]. The cost of distribution from a source to a destination is directly comparative to the number of units shipped [1] [8], [9].

In Computer Science Engineering formally some techniques were used in internet connections and intranet connections with minimum expenditure. This achievement achieved by an experimental test with genuine ideas of applied Operation Research [5].

So many methods are available to find the minimum cost for the transportation in logistics and supply chain management [6], [7]. Also the cost minimization for the medical management has been discussed widely along with different algorithms in effective manner [4].

2. Procedure:

Left Maximum Minimum Allotment (LMxMiA):

Step 1: \quad Create the Transportation table (TT) for the given pay off matrix (POM).
Step 2: Choose the maximum element from givenPOM.
Step 3: Supply the maximum demand for the minimum component lies in the left side of the chosen maximum componentand delete the corresponding row (or) column.

Step 4: Select the next maximum component from the remaining rows and columns in Newly Constructed Transportation Table (NCTT) and repeat the step $2 \& 3$ until degeneracy condition satisfied.

Note: If the problem is notbalanced, make the problem as balanced by adding dummy zero row or dummy zero column in the given transportation table, then consider the allotment for the dummy zero row or dummy zero column in end iteration.

Example 1: Consider the following balanced pay off matrix to minimizethe cost.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
S_{1}	3	4	6	8	9	20
$\mathrm{~S}_{2}$	2	10	1	5	8	30
$\mathrm{~S}_{3}$	7	11	20	40	3	15
$\mathrm{~S}_{4}$	2	1	9	14	16	13
Demand	40	6	8	18	6	78

Table 1

By applying the proposed algorithm, we get
Step 1:The maximum cost in the following table no. 1.1is 40 shaded to state the pivotelement. Allot the maximum possible demand of 8 units which lies in column 3 , according to the minimum cost 1 in two various columns namely 2 and 3,by the procedure.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
S_{1}	3	4	6	8	9	20
$\mathrm{~S}_{2}$	2	10	1	8	5	8
$\mathrm{~S}_{3}$	7	11	20	40	3	22
$\mathrm{~S}_{4}$	2	1	9	14	16	13
Demand	40	6	0	18	6	70

Table 1.1
Step 2:The next maximum cost in this following table no 1.2 is 40 to be selected to state the pivot element.By the procedure 1the maximum possible demand 6 units must beallottedtogether with minimum cost 1 in column 2 .

	D_{1}	D_{2}	D_{4}	D_{5}	Supply
S_{1}	3	4	8	9	20
$\mathrm{~S}_{2}$	2	10	5	8	22
$\mathrm{~S}_{3}$	7	11	40	3	15
$\mathrm{~S}_{4}$	2	1	14	16	7
Demand	40	6	0	18	6

Table 1.2
Step 3:The next maximum cost in this following table no 1.3 is 40 to be certain to state the pivot element. By the procedure 1the maximum possible demand 22 units must be chosen composed with minimum cost 2 in column 1.

	D_{1}	D_{4}	D_{5}	Supply
S_{1}	3	8	9	20
$\mathrm{~S}_{2}$	2	5	8	0
$\mathrm{~S}_{3}$	7	40	3	15
$\mathrm{~S}_{4}$	2	14	16	7
Demand	18	18	6	42

Table 1.3
Step 4:The next maximum cost in this following table no 1.4 is 40 to be particular to state the pivot element. By the procedure 1the maximum possible demand 7 units must be selectedtogether with minimum cost 2 in column 1.

	D_{1}	D_{4}	D_{5}	Supply
S_{1}	3	8	9	20
$\mathrm{~S}_{3}$	7	40	3	15
$\mathrm{~S}_{4}$	2	14	16	0
Demand	7	11	18	6

Table 1.4
Step 5:The next maximum cost in this following table no 1.5 is 40 to be selected to state the pivot element. By the procedure 1the maximum likely demand 11 units must be allottedtogether with minimum cost 3 in column 1.

	D_{1}	D_{4}	D_{5}	Supply
S_{1}	3	8	9	9
$\mathrm{~S}_{3}$	71	40	3	15
Demand	0	18	6	24

Table 1.5
Step 6: The next maximum cost in this following table no 1.6 is 40 to be selected to state the pivot element. By the procedure 1the maximum likely demand 9 units must be allottedtogether with minimum cost 8 in column 1.

	D_{4}	D_{5}	Supply
S_{1}	8	9	0
$\mathrm{~S}_{3}$	9	3	15
Demand	9	6	15

Table 1.6

Step 7:

	D_{4}	D_{5}	Supply
S_{3}	40	3	0
Demand	9	6	0

Table 1.7
Supply the maximum possible demand 9 units in $(1,1)$ and 6 units in $(1,2)$ which leads to the solution satisfying all the conditions.

Step 8:The resulting initial feasible solution is given below.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
S_{1}	3 11	4	6	8 9	9	20
S_{2}	2 22	10	1	5	8	30
S_{3}	7	11	20	40 9	3	15
S_{4}	2 7	1 6	9	14	16	13
Demand	40	6	8	18	6	78

Table 1.8

OptimumCost:

S	1	1	2	2	3	3	4	4
D	1	4	1	3	4	5	1	2
Cost	33	72	44	8	360	18	14	6
Optimum Cost								555

Table 1.9
Example 2: Consider the following balanced pay off matrix to minimize the cost.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
S_{1}	2	11	10	3	7	4
$\mathrm{~S}_{2}$	1	4	7	2	1	8
$\mathrm{~S}_{3}$	3	9	4	8	12	9
Demand	3	3	4	5	6	21

Table 2
The resulting initial feasible solution is given below.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Supply
S_{1}	2 1	11	10	3 3	7	4
S_{2}	1 2	4	7	2	1 6	8
S_{3}	3	9 3	4 4	8 2	12	9
Demand	3	3	4	5	6	21

Table 2.1

OptimumCost:

S	1	1	2	2	3	3	3
D	1	4	1	5	2	3	4
Cost	2	9	2	6	27	16	16
Optimum Cost							78

Table 2.2
Example 3: Consider the following balanced pay off matrix to minimize the cost.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	10	30	50	10	7
$\mathrm{~S}_{2}$	70	30	40	60	9
$\mathrm{~S}_{3}$	40	8	70	20	18
Demand	5	8	7	14	34

Table 3
The resulting initial feasible solution is given below.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	10 5	30	50	10 2	7
$\mathrm{~S}_{2}$	70	30	40	60	9
$\mathrm{~S}_{3}$	40	8	7	70	20
Demand	5	8	7	10	18

Table 3.1
OptimumCost:

S	1	1	2	2	3	3
D	1	4	3	4	2	4
Cost	50	20	280	120	64	200

Table 3.2

Comparison with existed methods:

Comparison with North West Corner method (NWC):

EXAMPLE	NWC	LMxMiA	ACCURACY \%
1	970	734	132.15
2	153	78	196.15
3	878	555	158.20
Average accuracy			162.17

Table 4.1

Comparison with Least Cost Method (LCM):

EXAMPLE	LCM	LMxMiA	ACCURACY \%
1	814	734	110.90
2	78	78	100.00
3	555	555	100.00
Average accuracy		103.63	

Table 4.2
Comparison with Vogal's Approximation Method (VAM):

EXAMPLE	VAM	LMxMiA	ACCURACY \%
1	734	734	100.00
2	68	78	87.18
3	267	555	48.11
Average accuracy			78.43

Table 4.3
3. Results and Discussion:

Overall Accuracy	
With NWC	162.17
With LCM	103.63
With VAM	78.43
Average accuracy	114.74

Table 5
The proposed method gives 14.74% more accuracy in optimal feasible solution than the existed Least Cost Optimization Method.

4. Acknowledgement

The authors express their gratitude to Dr. PonnammalNatarajan, Former Director of Research, Anna University, Chennai, India..

References

1. Amaravathy, V. Seerengasamy, S. Vimala, Comparative study on MDMA Method with OFSTF Method in Transportation Problem, International Journal of Computer \& Organization Trends(IJCOT) - Volume 38 Number 1 - December 2016, ISSN 2249-2593.
2. Amaravathy, K. Thiagarajan , S. Vimala, Cost Analysis - Non linear Programming Optimization Approach, International Journal of pure and applied mathematics Volume 118 No. 10 2018, 235-245 ISSN:1311-8080(printed version), ISSN:1314-3395(on -line version)
3. Amaravathy, K. Thiagarajan, S. Vimala, MDMA Method -An Optimal Solution for Transportation Problem, Middle - East Journal of Scientific Research 24(12):3706-63710,2016 ISSN 1990-9233
4. Amaravathy, K. Thiagarajan , S. Vimala, Optimal Solution of OFSTF, MDMA Methods with Existing Methods Comparison, International Journal of pure and applied mathematics Volume 119 No. 10 2018, 989-1000 ISSN:1311-8080(printed version), ISSN:1314-3395(on -line version)
5. Gass, SI (1990). On solving the transportation problem. Journal of Operational Research Society, 41(4), 291-297.
6. Goyal, SK (1984). Improving VAM for unbalanced transportation problems. Journal of Operational Research Society, 35(12), 1113-1114.
7. K. Thiagarajan, A. Amaravathy, S. Vimala, K. Saranya (2016). OFSTF with Non linear to Linear Equation Method - An Optimal Solution for Transportation Problem, Australian Journal of Basic and Applied Sciences, ISSN - 1991-8178 Anna University-Annexure II, SI No. 2095.
8. Reinfeld, NV and WR Vogel (1958). Mathematical Programming. Englewood Gliffs, New Jersey: Prentice-Hall.
9. Shih, W (1987). Modified Stepping-Stone method as a teaching aid for capacitated transportation problems. Decision Sciences, 18, 662-676.
10. S. Vimala, K. Thiagarajan, A. Amaravathy, OFSTF Method -An Optimal Solution for Transportation Problem, Indian Journal of Science and Technology, Vol 9(48), DOI:17485/ijst/2016/v9i48/97801, December 2016. ISSN (Print) : 0974-6846, ISSN (Online) : 0974-5645.
