Research Article

Nonsplit Neighbourhood Tree Domination Number In Connected Graphs

S. Muthammai¹, C. Chitiravalli²

 ¹Principal (Retired), Alagappa Government Arts College, Karaikudi – 630003, Tamilnadu, India.
²Research scholar, Government Arts College for Women(Autonomous), Pudukkottai – 622001, Tamilnadu, India.
¹Email: <u>muthammai.sivakami@gmail.com</u>, ²Email: <u>chithu196@gmail.com</u>

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: Let G = (V, E) be a connected graph. A subset D of V is called a dominating set of G if N[D] = V. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A dominating set D of a graph G is called a tree dominating set (tr - set) if the induced subgraph $\langle D \rangle$ is a tree. The tree domination number $\gamma_{tr}(G)$ of G is the minimum cardinality of a tree dominating set. A tree dominating set D of a graph G is called a neighbourhood tree dominating set (ntr - set) if the induced subgraph $\langle N(D) \rangle$ is a tree. The neighbourhood tree domination number $\gamma_{ntr}(G)$ of G is the minimum cardinality of a neighbourhood tree dominating set. A tree dominating set D of a graph G is called a nonsplit tree dominating set (nstd - set) if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit tree dominating set D of G is the minimum cardinality of a nonsplit tree dominating set. A neighbourhood tree dominating set D of G is called a nonsplit neighbourhood tree dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit neighbourhood tree dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit neighbourhood tree dominating number $\gamma_{nsntr}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood tree dominating set of G. In this paper, bounds for $\gamma_{nsntr}(G)$ and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.

Keywords: Domination number, connected domination number, tree domination number, neighbourhood tree domination number, nonsplit domination number.

Mathematics Subject Classification: 05C69

1. INTRODUCTION

The graphs considered here are nontrivial, finite and undirected. The order and size of G are denoted by n and m respectively. If $D \subseteq V$, then $N(D) = \bigcup_{v \in D} N(v)$ and $N[D] = N(D) \cup D$ where N(v) is the set of vertices

of G which are adjacent to v. The concept of domination in graphs was introduced by Ore[13]. A subset D of V is called a dominating set of G if N[D] = V. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. Xuegang Chen, Liang Sun and Alice McRac [14] introduced the concept of tree domination in graphs. A dominating set D of G is called a tree dominating set, if the induced subgraph $\langle D \rangle$ is a tree. The minimum cardinality of a tree dominating set of G is called the tree domination number of G and is denoted by $\gamma_{tr}(G)$. Kulli and Janakiram [8, 9] introduced the concept of split and nonsplit domination in graphs.

A dominating set D of a graph G is called a nonsplit dominating set if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit domination number $\gamma_{nsd}(G)$ of G is the minimum cardinality of a nonsplit dominating set. Muthammai and Chitiravalli [11, 12] defined the concept of split and nonsplit tree domination in graphs. A tree dominating set D of a graph G is called a nonsplit tree dominating set if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit tree domination number $\gamma_{nstd}(G)$ of G is the minimum cardinality of a nonsplit tree dominating set.

V.R. Kulli introduced the concepts of split and nonsplit neighbourhood connected domination in graph. A neighbourhood dominating set D of a graph G is called a nonsplit neighbourhood dominating set if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit neighbourhood domination number $\gamma_{nsntd}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood dominating set.

The Cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$ with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ (where x denotes the Cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)]$ or $[u_2 = v_2$ and $(u_1, v_1) \in E(G_1)]$.

In this paper, bounds for $\gamma_{nsntr}(G)$ and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.

2. PRIOR RESULTS

Theorem 2.1: [2] For any graph G, $\kappa(G) \leq \delta(G)$.

- Theorem 2.2: [14] For any connected graph G with $n \ge 3$, $\gamma_{tr}(G) \le n-2$.
- Theorem 2.3: [14] For any connected graph G with $\gamma_{tr}(G) = n 2$ iff $G \cong P_n$ (or) C_n .

Theorem 2.4: [11] For any connected graph G, $\gamma(G) \leq \gamma_{nstd}(G)$.

Theorem 2.5: [11] For any connected graph G with n vertices, $\gamma_{nstd}(G) = 1$ if and only if $G \cong H+K_1$, where H is a connected graph with (n - 1) vertices.

Theorem 2.6: [11] For any graph G, $\gamma(G) \leq \gamma_{ns}(G) \leq \gamma_{nstd}(G)$.

Theorem 2.7: [11] For any cycle C_n on n vertices, $\gamma_{nstd}(C_n) = n - 2$, $n \ge 3$.

Theorem 2.8: [9] For any connected graph G, $\gamma_{ns}(G) \leq p - 1$. Further equality holds if and only if G is a star.

3. MAIN RESULTS

In this section, nonsplit neighbourhood tree domination number is defined and studied. 3.1. Nonsplit Neighbourhood Tree Domination Number in Connected Graphs Definition 3.1.1:

A neighbourhood tree dominating set D of G is called a nonsplit neighbourhood tree dominating set, if the induced subgraph $\langle V(G) - D \rangle$ is connected. The nonsplit neighbourhood tree domination number $\gamma_{nsntr}(G)$ of G is the minimum cardinality of a nonsplit neighbourhood tree dominating set of G.

Not all connected graphs have a nonsplit neighbourhood tree dominating set. For example, the Path $P_n(n > 5)$ has a neighbourhood tree dominating set, but no nonsplit neighbourhood tree dominating set.

If the nonsplit neighbourhood tree domination number does not exist for a given connected graph G, then $\gamma_{nsntr}(G)$ is defined to be zero.

Example 3.1.1:

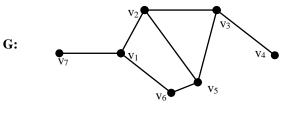
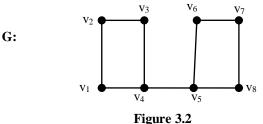
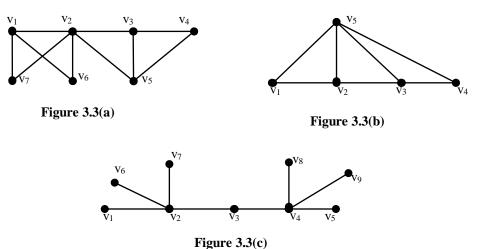



Figure 3.1

In the graph given in Figure 3.1, $D = \{v_4, v_5, v_7\}$ is a minimum nonsplit neighbourhood tree dominating set and the induced subgraph $\langle N(D) \rangle \cong P_4 = \langle \{v_3, v_2, v_6, v_1\} \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected and $\gamma_{nsntr}(G) = 3$.

Remark 3.1.1:

Since $\langle V(G) - D \rangle$ is connected for any γ_{nsntr} - set D of a connected graph G, $|V(G) - D| \ge 1$. Example 3.1.2


In the graph G given in Figure 3.2, $D = \{v_2, v_4, v_5, v_7\}$ is a minimum dominating set and the induced subgraph $\langle N(D) \rangle$ is a tree, but $\langle V(G) - D \rangle$ is disconnected.

Remark 3.1.2:

Every nonsplit neighbourhood tree dominating set is a dominating set and also a neighbourhood tree dominating set. Therefore, $\gamma(G) \leq \gamma_{nsntr}(G)$. Therefore, for any nontrivial connected graph G, $\gamma_{ntr}(G) = \min\{\gamma_{sntr}(G), \gamma_{nsntr}(G)\}$.

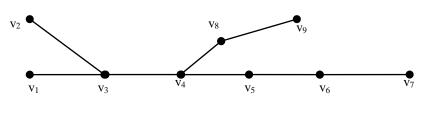
These are illustrated below.

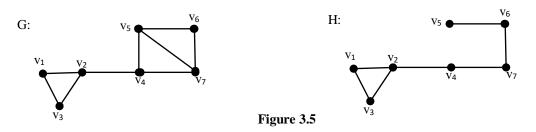
Example 3.1.3:

In Figure 3.3(a), $D_1 = \{v_1, v_5\}$ is a minimum nonsplit neighbourhood tree dominating set. $V - D_1 = \{v_2, v_3, v_4, v_6, v_7\}$ and $\gamma(G) = \gamma_{nsntr}(G) = 2$.

In Figure 3.3(b), $D_2 = \{v_1\}$ is a minimum nonsplit neighbourhood tree dominating set. $V - D_2 = \{v_1, v_2, v_3, v_4\}$ and $\gamma(G) = \gamma_{ntr}(G) = \gamma_{nsntr}(G) = 1$.

In Figure 3.3(c), $D_3 = \{v_2, v_3, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set. $V - D_3 = \{v_1, v_5, v_6, v_7, v_8, v_9\}$ and $\gamma(G) = 2$, $\gamma_{tr}(G) = 3$, $\gamma_{ntr}(G) = 3$, $\gamma_{nsntr}(G) = 7$. Here, $\gamma(G) < \gamma_{ntr}(G)$, $\gamma(G) < \gamma_{nsntr}(G)$, $\gamma_{ntr}(G) < \gamma_{nsntr}(G)$. **Example 3.1.4:**




Figure 3.4

In Figure 3.4, $D_1 = \{v_3, v_4, v_7, v_9\}$ is a neighbourhood tree dominating set. $V - D_1 = \{v_1, v_2, v_5, v_6, v_8\}$, $D_2 = \{v_1, v_2, v_5, v_6, v_7, v_8, v_9\}$ is a nonsplit neighbourhood tree dominating set and $V - D_2 = \{v_3, v_4\}$, $\gamma(G) = 3$, $\gamma_{ntr}(G) = 4$, $\gamma_{sntr}(G) = 4$, $\gamma_{nsntr}(G) = 7$. Therefore, $\gamma_{ntr}(G) = min\{4, 7\} = 4$ **Remark 3.1.3:**

If H is a spanning subgraph of a connected graph G, then $\gamma_{nsntr}(G) \leq \gamma_{nsntr}(H)$.

This is illustrated by following examples.

Example 3.1.5:

In Figure 3.5, H is a spanning subgraph of G. $D_1 = \{v_3, v_5\}$ is a minimum nonsplit neighbourhood tree dominating set of G and $\gamma_{nsntr}(G) = 2$. The set $D_2 = \{v_3, v_5, v_6, v_7\}$ is a nonsplit neighbourhood tree dominating set of H and $\gamma_{nsntr}(H) = 4$.

Therefore, $\gamma_{nsntr}(G) < \gamma_{nsntr}(H)$.

Example 3.1.6:

In Figure 3.6., H is a spanning subgraph of G and $\{v_3, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set of G, $\gamma_{nsntr}(G) = 2$. The set $\{v_1, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set of H and $\gamma_{nsntr}(H) = 2$. Therefore, $\gamma_{nsntr}(G) = \gamma_{nsntr}(H)$.

In the following, the exact values of $\gamma_{sntr}(G)$ for some standard graphs are given.

- (a) For any path P_n on n vertices, $\gamma_{nsntr}(P_n) = n 2$, $n \ge 4$.
- (b) If G is a spider, then $\gamma_{nsntr}(G) = n + 1$.
- (c) If G is a wounded spider, then $\gamma_{nsntr}(G) = p + 1$, where p is the number of pendant vertices which are adjacent to nonwounded legs.
- (d) For any triangular cactus graph T_p whose blocks are p triangles with $p \ge 1$, $\gamma_{nsntr}(T_p) = p$ where p > 2 and p is odd.
- (e) If $S_{m,n}$, $(1 \le m \le n)$ is a double star, then $\gamma_{nsntr}(S_{m,n}) = m + n$.

Theorem 3.1.1:

If T is a tree which is not a star, then $\gamma_{nsntr}(T) \leq n - 2$.

Proof:

Suppose T is not a star. Then T has two adjacent cut vertices u and v, such that deg u, deg $v \ge 2$. This implies that $D = \{V - \{u, v\}\}$ is a nonsplit neighbourhood tree dominating set of T. Therefore, $\gamma_{nsntr}(T) \le |D| = |V(T) - \{u, v\}| = n - 2$.

3.2. Nonsplit Neighbourhood Tree Domination Number of Cartesian product of Graphs

In this section, nonsplit neighbourhood tree domination numbers of $P_2 \times C_n$, $P_3 \times C_n$, $P_2 \times P_n$, $P_3 \times P_n$ are found.

Theorem 3.2.1:

For the graph
$$P_2 \times P_n$$
 ($n \ge 5$, n is odd), $\gamma_{nsntr}(P_2 \times P_n) = \left| \begin{array}{c} n \\ 2 \end{array} \right|$.

Proof:

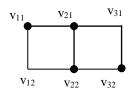
Let
$$G \cong P_2 \times P_n$$
 and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}\}$ where $\langle \{v_{i1}, v_{i2}\} \rangle \cong P_2^i$, $i = 1, 2$ and

 $\langle \{v_{1j}, v_{2j}, ..., v_{nj}\} \rangle \cong P_n^{\ j}, \ j=1, \ 2, \ ... \ ,n \ and \ P_2^{\ i} \ is \ the \ i^{th} \ copy \ of \ P_2 \ and \ P_n^{\ j} \ is \ the \ j^{th} \ copy \ of \ P_n \ in \ G.$

Let
$$D = \bigcup_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \bigcup_{i=1}^{\left\lfloor \frac{n-1}{4} \right\rfloor + 1} \bigcup_{i=1}^{\left\lfloor \frac{n-1}{4} \right\rfloor + 1} \sum_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \bigcup_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \bigcup_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \sum_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor + 1} \bigcup_{i=1}^{\left\lfloor \frac{n-3}{4} \right\rfloor +$$

and $v_{n-1,2}$ are adjacent to v_{n2} and $v_{2i+1,2}$ is adjacent to $v_{2i+1,1}$ ($i \ge 1$).

Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_{\frac{3n-1}{2}}$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is


connected, D is a nonsplit neighbourhood tree dominating set of G and is minimum.

Hence
$$\gamma_{\text{nsntr}}(G) = |D| = \left| \frac{n}{2} \right|.$$

Remark 3.2.1:

 $\gamma_{nsntr}(P_2 \times P_3) = 2$, the set $\{v_{31}, v_{12}\}$ is a minimum nonsplit neighbourhood tree dominating set of $P_2 \times P_n$, where v_{21}, v_{22} are the vertices of degree 3 in $P_2 \times P_3$.

Example 3.2.1:

In the graph $P_2 \times P_3$ given in Figure 3.7, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{11}, v_{32}\}$, where $\langle N(D) \rangle \cong P_4$ and $\gamma_{nsntr}(P_2 \times P_3) = 2$.

Theorem 3.2.2:

For the graph $P_3 \times P_n$ $(n \ge 3)$, $\gamma_{nsntr}(P_3 \times P_n) = n$. **Proof:**

Let
$$G \cong P_3 \times P_n$$
 and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}, v_{i3}\}$ where $\langle \{v_{i1}, v_{i2}, v_{i3}\} \rangle \cong P_3^i$, $i = 1, 2, 3$ and

 $\langle \{v_{1j}, v_{2j}, ..., v_{nj}\} \rangle \cong P_n^j, j = 1, 2, ..., n \text{ and } P_3^i \text{ is the } i^{\text{th}} \text{ copy of } P_3 \text{ and } P_n^j \text{ is the } j^{\text{th}} \text{ copy of } P_n \text{ in } G.$

Let
$$D = \bigcup_{i=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \{v_{2i,3}\} \cup \bigcup_{i=1}^{\left\lfloor \frac{n-2}{2} \right\rfloor^{i+1}} \{v_{2i-1,1}\}$$
. Then $D \subseteq V(G)$. Here, $v_{2i,2}$ is adjacent to $v_{2i,3}$ ($i \ge 1$) and $v_{2i-1,2}$ is

adjacent to $v_{2i-1,1}$ ($i \ge 1$). Therefore, D is a dominating set of G and N(D) $\ge P_n \circ P_1$. Since $\langle N(D) \rangle$ is a tree and $\langle V - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and is minimum.

Hence $\gamma_{nsntr}(G) = |D| = n$. Example 3.2.2:

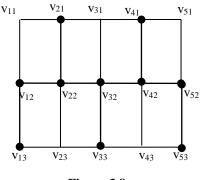


Figure 3.8

In the graph $P_3 \times P_5$ given in Figure 3.8, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{12}, v_{22}, v_{32}, v_{42}, v_{52}\}$, where $\langle N(D) \rangle \cong P_5 \circ P_1$, and $\gamma_{nsntr}(P_3 \times P_5) = 5$.

Theorem 3.2.3:

For the graph $P_2 \times C_n$ (n = 3), $\gamma_{nsntr}(P_2 \times C_n) = 2$. **Proof:**

Let
$$G \cong P_2 \times C_n$$
 and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}\}$, where $\langle \{v_{i1}, v_{i2}\} \rangle \cong P_2^i$, $i = 1, 2$ and

 $\langle \{v_{1j}, v_{2j}, ..., v_{nj}\} \rangle \cong C_n{}^j, j = 1, 2, ..., n \text{ and } P_2{}^i \text{ is the } i^{th} \text{ copy of } P_2 \text{ and } C_n{}^j \text{ is the } j^{th} \text{ copy of } C_n \text{ in } G.$

Let $D = \{v_{31}, v_{2,2}\}$. Then $D \subseteq V(G)$. Here, v_{11}, v_{21} are adjacent to v_{31} and v_{12}, v_{32} are adjacent to $v_{2,2}$. Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_4$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and $\gamma_{ntr}(G) \le |D| = 2$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_2 \times C_n$. Since $\gamma(P_3 \times C_3) = \left\lfloor \frac{3n}{2} \right\rfloor = 2$ and $\gamma(G) \ge \gamma(G)$ and $\gamma(G) \ge \gamma(G)$. Therefore, $\gamma(G) = 2$.

 $\gamma_{ntr}(G) \ge \gamma(G)$ and $\gamma_{nsntr}(G) \ge \gamma_{ntr}(G)$. Therefore, $\gamma_{nsntr}(G) = 2$.

Example 3.2.3:

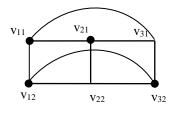


Figure 3.9

In the graph $P_2 \times C_3$ given in Figure 3.9, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{31}, v_{22}\}$, where $\langle N(D) \rangle \cong P_4$ and $\gamma_{ntr}(P_2 \times C_3) = 2$.

Remark 3.2.2:

For $n \ge 4$, $\gamma_{nsntr}(P_2 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_2 \times C_n$. If D contains two vertices, then either $\langle N(D) \rangle$ is not a tree or $\langle N(D) \rangle$ contains a cycle. If D contains atleast three vertices, then $\langle N(D) \rangle$ contains a cycle.

Theorem 3.2.4:

For the graph $P_3 \times C_n$ (n = 3), $\gamma_{nsntr}(P_3 \times C_n) = 3$.

Proof:

Let
$$G \cong P_3 \times C_n$$
, $n \ge 4$ and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}, v_{i3}\}$ such that $\langle \{v_{i1}, v_{i2}, v_{i3}\} \rangle \cong P_3^i$, $i = 1, 2, 3$

and $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \cong C_n^{\ j}, \ j = 1, 2, \dots, n$ where P_3^i is the *i*th copy of P_3 and C_n^j is the *j*th copy of C_n in G.

Let $D = \{v_{31}, v_{12}, v_{33}\}$. Then $D \subseteq V(G)$. Here, v_{22} is adjacent to v_{12} and v_{11}, v_{21}, v_{32} are adjacent to v_{31} and v_{32}, v_{13}, v_{23} are adjacent to v_{33} . Therefore, D is a dominating set of G and $\langle N(D) \rangle$ is a connected graph obtained from P₅ by attaching a pendant edge at v_{22} . Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a nonsplit neighbourhood tree dominating set of G and $\gamma_{nsntr}(G) \leq |D| = 3$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. Since $\gamma(P_3 \times C_3) = \left\lceil \frac{3n}{4} \right\rceil = 3$ and $\geq \gamma(G)$ and $\gamma = \gamma(G) \geq \gamma = 0$. Therefore $\gamma = 0$.

 $\gamma_{ntr}(G) \ge \gamma(G)$ and $\gamma_{nsntr}(G) \ge \gamma_{ntr}(G)$. Therefore, $\gamma_{ntr}(G) = 3$. **Example 3.2.4:**

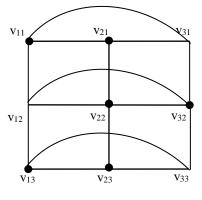


Figure 3.10

In the graph $P_3 \times C_3$ given in Figure 3.10, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{21}, v_{32}, v_{13}\}$, where $N(D) \geq P_6$ and $\gamma_{nsntr}(P_3 \times C_3) = 3$.

Remark 3.2.3:

For $n \ge 4$, $\gamma_{std}(P_3 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. If a dominating set D of $P_3 \times C_n$ contains atleast three vertices, then the induced subgraph $\langle N(D) \rangle$ contains a cycle.

Theorem 3.2.5:

For the graph $P_4 \times C_n$ (n = 3), $\gamma_{nsntr}(P_4 \times C_n) = 4$.

Proof:

Let
$$G \cong P_4 \times C_n$$
, $n \ge 6$ and let $V(G) = \bigcup_{i=1}^n \{v_{i1}, v_{i2}, v_{i3}, v_{i4}\}$ such that $\langle \{v_{i1}, v_{i2}, v_{i3}, v_{i4}\} \rangle \cong P_4^i$, $i = 1$,

2, 3, 4 and $\langle \{v_{1j}, v_{2j}, \dots, v_{nj}\} \rangle \cong C_n^{j}, j = 1, 2, \dots, n$, where P_4^i is the ith copy of P_4 and C_n^j is the jth copy of C_n in G.

Let $D = \{v_{31}, v_{22}, v_{13}, v_{34}\}$. Then $D \subseteq V(G)$. Here, v_{11}, v_{21}, v_{32} are adjacent to v_{31} and v_{12}, v_{23}, v_{33} are adjacent to v_{13} and and v_{14}, v_{24} are adjacent to v_{34} . Therefore, D is a dominating set of G and $\langle N(D) \rangle \cong P_8$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a neighbourhood tree dominating set of G and $\gamma_{ntr}(G) \le |D| = 4$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_3 \times C_n$.

Since
$$\gamma(P_4 \times C_3) = \left\lceil \frac{3n}{4} \right\rceil + 1 = 4$$
 and $\gamma_{ntr}(G) \ge \gamma(G)$ and $\gamma_{nsntr}(G) \ge \gamma_{ntr}(G)$. Therefore, $\gamma_{ntr}(G) = 4$.

Example 3.2.5:

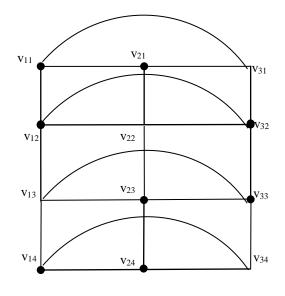


Figure 3.11

In the graph $P_4 \times C_3$ given in Figure 3.11, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{31}, v_{22}, v_{13}, v_{34}\}$, where $\langle N(D) \rangle \cong P_8$, and $\gamma_{nsntr}(P_4 \times C_3) = 4$.

Remark 3.2.4:

For $n \ge 4$, $\gamma_{nsntr}(P_4 \times C_n) = 0$, since there exists no neighbourhood tree dominating set of $P_4 \times C_n$. The graph $P_4 \times C_4$ can be divided into two blocks $P_2 \times C_4$ and $P_2 \times C_4$. $\gamma_{ntr}(P_2 \times C_4) = 0$. If a dominating set D of $P_4 \times C_n$ contains three vertices, then $\langle N(D) \rangle$ contains a cycle. **Remark 3.2.5:**

For $n \ge 2$, $\gamma_{nsntr}(P_n \times C_3) = n$.

REFERENCE

- 1. S. Arumugam and C. Sivagnanam, Neighborhood connected domination in graphs, JCMCC 73(2010), pp.55-64.
- S. Arumugam and C. Sivagnanam, Neighborhood total domination in graphs, OPUSCULA MATHEMATICA. Vol. 31.No. 4. 2011.
- 3. M. El- Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991), 223-227.
- 4. F. Harary, Graph Theory, Addison- Wesley, Reading Mass, 1972.
- 5. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, **1998**.
- 6. M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin., 18 (1983), 33-44.

- 7. M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs II, J. Graph Theory, 10 (1986), 97-106.
- 8. V.R. Kulli, B. Janakiram, The split domination number of a graph, graph theory notes of New York Academy of Science (**1997**) XXXII, 16-19.
- 9. V.R. Kulli, B. Janakiram, The nonsplit domination number of a graph, Indian j. Pure Appl. Math., 31 (2004), no. 4, 545-550.
- S. Muthammai and C. Chitiravalli, Neighborhood Tree Domination in Graphs, Aryabhatta Journal of Math ematics and informatics, 8(2), (2016), 94 - 99, ISSN 2394 - 9309, (SCOUPUS INDEX ID: 73608143192), Impact factor : 4.866.
- 11. S. Muthammai and C. Chitiravalli, The Nonsplit Tree Domination Number of a Graph, J. of Emerging Technologies and Innovative Research (JETIR), Vol. 6, Issue 1, January 2019, pp. 1-9.
- 12. S. Muthammai, C. Chitiravalli, The split tree domination number of a graph, International Journal of Pure and Applied Mathematics, volume 117 no. 12, (2017), 351-357.
- 13. O. Ore, Theory of grap99hs, Amer. Math. Soc. Colloq. Publication, 38, 1962.
- 14. Xuegang Chen, Liang Sun, Alice McRae, Tree Domination Graphs, ARS COMBBINATORIA 73(2004), pp, 193-203.