Nonsplit Neighbourhood Tree Domination Number In Connected Graphs

S. Muthammai1, C. Chitiravalli2

1Principal (Retired),
Alagappa Government Arts College, Karaikudi – 630003, Tamilnadu, India.
2Research scholar,
Government Arts College for Women(Autonomous), Pudukkottai – 622001, Tamilnadu, India.

Email: muthammai.sivakami@gmail.com, 2Email: chithu196@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: Let \(G = (V, E) \) be a connected graph. A subset \(D \) of \(V \) is called a dominating set of \(G \) if \(N[D] = V \). The minimum cardinality of a dominating set of \(G \) is called the domination number of \(G \) and is denoted by \(\gamma(G) \). A dominating set \(D \) of a graph \(G \) is called a tree dominating set (t-r set) if the induced subgraph \((D) \) is a tree. The tree domination number \(\gamma_t(G) \) of \(G \) is the minimum cardinality of a tree dominating set. A tree dominating set \(D \) of a graph \(G \) is called a neighbourhood tree dominating set (ntd - set) if the induced subgraph \((N[D]) \) is a tree. The neighbourhood tree domination number \(\gamma_{ntd}(G) \) of \(G \) is the minimum cardinality of a tree dominating set. A tree dominating set \(D \) of a graph \(G \) is called a nonsplit tree dominating set (nstd - set) if the induced subgraph \((V - D) \) is connected. The nonsplit tree domination number \(\gamma_{nstd}(G) \) of \(G \) is the minimum cardinality of a nonsplit tree dominating set. A neighbourhood tree dominating set \(D \) of a graph \(G \) is called a nonsplit neighbourhood dominating set (nstd - set) if the induced subgraph \((V(G) - D) \) is connected. The nonsplit neighbourhood tree domination number \(\gamma_{nstd}(G) \) of \(G \) is the minimum cardinality of a nonsplit neighbourhood tree dominating set of \(G \). In this paper, bounds for \(\gamma_{nstd}(G) \) and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.

Keywords: Domination number, connected domination number, tree domination number, neighbourhood tree domination number, nonsplit domination number.

Mathematics Subject Classification: 05C69

1. INTRODUCTION

The graphs considered here are nontrivial, finite and undirected. The order and size of \(G \) are denoted by \(n \) and \(m \) respectively. If \(D \subseteq V \), then \(N(D) = \bigcup_{v \in D} N(v) \) and \(N[D] = N(D) \cup D \) where \(N(v) \) is the set of vertices of \(G \) which are adjacent to \(v \). The concept of domination in graphs was introduced by Ore[13]. A subset \(D \) of \(V \) is called a dominating set of \(G \) if \(N[D] = V \). The minimum cardinality of a dominating set of \(G \) is called the domination number of \(G \) and is denoted by \(\gamma(G) \). Xuegang Chen, Liang Sun and Alice McRac [14] introduced the concept of tree domination in graphs. A dominating set \(D \) of \(G \) is called a tree dominating set, if the induced subgraph \((D) \) is a tree. The minimum cardinality of a tree dominating set of \(G \) is the tree domination number of \(G \). Kulli and Janakiram [8, 9] introduced the concept of split and nonsplit domination in graphs.

A dominating set \(D \) of a graph \(G \) is called a nonsplit dominating set if the induced subgraph \((V - D) \) is connected. The nonsplit domination number \(\gamma_{nstd}(G) \) of \(G \) is the minimum cardinality of a nonsplit dominating set. Muthammai and Chitiravalli [11, 12] defined the concept of split and nonsplit tree domination in graphs. A tree dominating set \(D \) of a graph \(G \) is called a nonsplit tree dominating set if the induced subgraph \((V - D) \) is connected. The nonsplit tree domination number \(\gamma_{nstd}(G) \) of \(G \) is the minimum cardinality of a nonsplit tree dominating set.

V.R. Kulli introduced the concepts of split and nonsplit neighbourhood connected domination in graph.

A neighbourhood dominating set \(D \) of a graph \(G \) is called a nonsplit neighbourhood dominating set if the induced subgraph \((V - D) \) is connected. The nonsplit neighbourhood domination number \(\gamma_{nnd}(G) \) of \(G \) is the minimum cardinality of a nonsplit neighbourhood dominating set.

The Cartesian product of two graphs \(G_1 \) and \(G_2 \) is the graph, denoted by \(G_1 \times G_2 \) with \(V(G_1 \times G_2) = V(G_1) \times V(G_2) \) (where \(x \) denotes the Cartesian product of sets) and two vertices \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \) in \(V(G_1 \times G_2) \) are adjacent in \(G_1 \times G_2 \) whenever \([u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)] \) or \([u_2 = v_2 \text{ and } (u_1, v_1) \in E(G_1)] \).

In this paper, bounds for \(\gamma_{nstd}(G) \) and its exact values for some particular classes of graphs and cartesian product of some standard graphs are found.
2. PRIOR RESULTS

Theorem 2.1: [2] For any graph G, \(\kappa(G) \leq \delta(G) \).

Theorem 2.2: [14] For any connected graph G with \(n \geq 3 \), \(\gamma_{nt}(G) \leq n - 2 \).

Theorem 2.3: [14] For any connected graph G with \(\gamma_t(G) = n - 2 \) iff G \(\cong P_n \) (or) \(C_n \).

Theorem 2.4: [11] For any connected graph G, \(\gamma(G) \leq \gamma_{nt}(G) \).

Theorem 2.5: [11] For any connected graph G with n vertices, \(\gamma_{ntd}(G) = \gamma(G) \) if and only if G \(\cong H + K_1 \), where H is a connected graph with \((n - 1) \) vertices.

Theorem 2.6: [11] For any graph G, \(\gamma(G) \leq \gamma_{ntd}(G) \).

Theorem 2.7: [11] For any cycle \(C_n \) on n vertices, \(\gamma_{ntd}(C_n) = n - 2, n \geq 3 \).

Theorem 2.8: [9] For any connected graph G, \(\gamma_{tad}(G) \leq n - 1 \). Further equality holds if and only if G is a star.

3. MAIN RESULTS

In this section, non-split neighbourhood tree domination number is defined and studied.

3.1. Non-split Neighbourhood Tree Domination Number in Connected Graphs

Definition 3.1.1:

A neighbourhood tree dominating set \(D \) of G is called a non-split neighbourhood tree dominating set, if the induced subgraph \(\langle V(G) - D \rangle \) is connected. The non-split neighbourhood tree domination number \(\gamma_{nsntr}(G) \) of G is the minimum cardinality of a non-split neighbourhood tree dominating set of G.

Not all connected graphs have a non-split neighbourhood tree dominating set. For example, the Path \(P_n \) (\(n > 5 \)) has a neighbourhood tree dominating set, but no non-split neighbourhood tree dominating set.

If the non-split neighbourhood tree domination number does not exist for a given connected graph G, then \(\gamma_{nsntr}(G) \) is defined to be zero.

Example 3.1.1:

![Figure 3.1](image1)

In the graph given in Figure 3.1, \(D = \{v_4, v_5, v_7\} \) is a minimum non-split neighbourhood tree dominating set and the induced subgraph \(\langle N(D) \rangle \cong P_4 = \{v_3, v_2, v_6, v_1\} \) is a tree and \(\langle V(G) - D \rangle \) is connected and \(\gamma_{nsntr}(G) = 3 \).

Remark 3.1.1:

Since \(\langle V(G) - D \rangle \) is connected for any \(\gamma_{nsntr} \) - set D of a connected graph G, \(\left| V(G) - D \right| \geq 1 \).

Example 3.1.2

![Figure 3.2](image2)

In the graph G given in Figure 3.2, \(D = \{v_2, v_4, v_5, v_7\} \) is a minimum dominating set and the induced subgraph \(\langle N(D) \rangle \) is a tree, but \(\langle V(G) - D \rangle \) is disconnected.

Remark 3.1.2:

Every non-split neighbourhood tree dominating set is a dominating set and also a neighbourhood tree dominating set. Therefore, \(\gamma(G) \leq \gamma_{ntd}(G) \leq \gamma_{nsntr}(G) \). Therefore, for any nontrivial connected graph G, \(\gamma_{ntd}(G) = \min \{\gamma_{ntd}(G), \gamma_{nsntr}(G)\} \).

These are illustrated below.
Example 3.1.3:

In Figure 3.3(a), $D_1 = \{v_1, v_5\}$ is a minimum nonsplit neighbourhood tree dominating set.

In Figure 3.3(b), $D_2 = \{v_1\}$ is a minimum nonsplit neighbourhood tree dominating set.

In Figure 3.3(c), $D_3 = \{v_2, v_3, v_4\}$ is a minimum nonsplit neighbourhood tree dominating set.

Example 3.1.4:

In Figure 3.4, $D_1 = \{v_3, v_4, v_7, v_9\}$ is a minimum nonsplit neighbourhood tree dominating set.

$D_2 = \{v_1, v_2, v_5, v_6, v_7, v_8, v_9\}$ is a nonsplit neighbourhood tree dominating set and $\gamma(G) = 2, \gamma_{ntr}(G) = 3, \gamma_{sntr}(G) = 4, \gamma_{nsntr}(G) = 7$. Here, $\gamma(G) < \gamma_{ntr}(G), \gamma(G) < \gamma_{nsntr}(G), \gamma_{ntr}(G) < \gamma_{nsntr}(G)$.

Example 3.1.5:

In Figure 3.5, H is a spanning subgraph of a connected graph G. $D_1 = \{v_3, v_5\}$ is a minimum non-split neighbourhood tree dominating set of G and $\gamma_{ntr}(G) = 2$. The set $D_2 = \{v_3, v_5, v_6, v_7\}$ is a non-split neighbourhood tree dominating set of H and $\gamma_{ntr}(H) = 4$.

Therefore, $\gamma_{ntr}(G) < \gamma_{ntr}(H)$.
Example 3.1.6:

![Diagram](image)

In Figure 3.6., H is a spanning subgraph of G and \{v_3, v_4\} is a minimum nonsplit neighbourhood tree dominating set of G, \(\gamma_{nnsnt}(G) = 2\). The set \(\{v_1, v_4\}\) is a minimum nonsplit neighbourhood tree dominating set of H and \(\gamma_{nnsnt}(H) = 2\). Therefore, \(\gamma_{nnsnt}(G) = \gamma_{nnsnt}(H)\).

In the following, the exact values of \(\gamma_{nnsnt}(G)\) for some standard graphs are given.

(a) For any path \(P_n\) on \(n\) vertices, \(\gamma_{nnsnt}(P_n) = n - 2\), \(n \geq 4\).

(b) If G is a spider, then \(\gamma_{nnsnt}(G) = n + 1\).

(c) If G is a wounded spider, then \(\gamma_{nnsnt}(G) = p + 1\), where \(p\) is the number of pendant vertices which are adjacent to nonwounded legs.

(d) For any triangular cactus graph \(T_p\) whose blocks are \(p\) triangles with \(p \geq 1\), \(\gamma_{nnsnt}(T_p) = \frac{p}{2}\) where \(p > 2\) and \(p\) is odd.

(e) If \(S_{m,n}\), \((1 \leq m \leq n)\) is a double star, then \(\gamma_{nnsnt}(S_{m,n}) = m + n\).

Theorem 3.1.1:

If T is a tree which is not a star, then \(\gamma_{nnsnt}(T) \leq n - 2\).

Proof:

Suppose T is not a star. Then T has two adjacent cut vertices u and v, such that \(\deg u, \deg v \geq 2\). This implies that \(D = \{V - \{u, v\}\}\) is a nonsplit neighbourhood tree dominating set of T. Therefore, \(\gamma_{nnsnt}(T) \leq |D| = |V(T) - \{u, v\}| = n - 2\).

3.2. Nonsplit Neighbourhood Tree Domination Number of Cartesian product of Graphs

In this section, nonsplit neighbourhood tree domination numbers of \(P_2 \times C_n, P_3 \times C_n, P_2 \times P_n, P_3 \times P_n\) are found.

Theorem 3.2.1:

For the graph \(P_2 \times P_n\) (\(n \geq 5, n\) is odd), \(\gamma_{nnsnt}(P_2 \times P_n) = \left\lceil \frac{n}{2} \right\rceil\).

Proof:

Let \(G \cong P_2 \times P_n\) and let \(V(G) = \bigcup_{i=1}^{n} \{v_{ij}, v_{ij+1}\} \) where \(\{v_{ij}, v_{ij+1}\} \cong P_2, i = 1, 2\) and \(\{v_{1j}, v_{2j}, ..., v_{nj}\} \cong P_2, j = 1, 2, ..., n\) and \(P_2^i\) is the \(i\)th copy of \(P_2\) and \(P_2^j\) is the \(j\)th copy of \(P_2\) in \(G\).

Let \(D = \bigcup_{i=1}^{\lfloor \frac{n-3}{4} \rfloor + 1} \{v_{4i-1,1}\} \cup \bigcup_{i=1}^{\lfloor \frac{n-1}{4} \rfloor + 1} \{v_{4i-3,2}\}\). Then \(D \subseteq V(G)\). Here, \(v_{n1}\) and \(v_{n2}\) are adjacent to \(v_{12}\) and \(v_{n1}\) and \(v_{n-1,2}\) are adjacent to \(v_{22}\) and \(v_{2n+1,2}\) is adjacent to \(v_{2n+1,1}\) (\(i \geq 1\)).

Therefore, \(D\) is a dominating set of \(G\) and \(\langle D \rangle \subseteq P_{3n-1,1}\). Since \(\langle D \rangle\) is a tree and \(\langle V(G) - D \rangle\) is connected, \(D\) is a nonsplit neighbourhood tree dominating set of \(G\) and is minimum.

Hence \(\gamma_{nnsnt}(G) = |D| = \left\lceil \frac{n}{2} \right\rceil\).

Remark 3.2.1:

\(\gamma_{nnsnt}(P_2 \times P_3) = 2\), the set \(\{v_{31}, v_{12}\}\) is a minimum nonsplit neighbourhood tree dominating set of \(P_2 \times P_3\), where \(v_{21}, v_{22}\) are the vertices of degree 3 in \(P_2 \times P_3\).
Example 3.2.1:

In the graph $P_2 \times P_3$ given in Figure 3.7, minimum non-split neighbourhood tree dominating set is $D = \{v_{11}, v_{32}\}$, where $(N(D)) \equiv P_4$ and $\gamma_{nssntr}(P_2 \times P_3) = 2$.

Theorem 3.2.2:

For the graph $P_3 \times P_n$ $(n \geq 3)$, $\gamma_{nssntr}(P_3 \times P_n) = n$.

Proof:

Let $G \cong P_3 \times P_n$ and let $V(G) = \bigcup_{i=1}^{n} \{v_{i1}, v_{i2}, v_{i3}\}$ where $\langle \{v_{i1}, v_{i2}, v_{i3}\} \rangle \equiv P_{i3}$, $i = 1, 2, 3$ and $\langle \{v_{i1}, v_{i2}, \ldots, v_{in}\} \rangle \equiv P_{i}$, $j = 1, 2, \ldots, n$ and P_{i} is the ith copy of P_3 and P_{i} is the jth copy of P_n in G.

Let $D = \bigcup_{i=1}^{n} \{v_{2i,3}\} \cup \bigcup_{i=1}^{n} \{v_{2i-1,1}\}$. Then $D \subseteq V(G)$. Here, $v_{2i,2}$ is adjacent to $v_{2i,3}$ $(i \geq 1)$ and $v_{2i-1,2}$ is adjacent to $v_{2i-1,1}$ $(i \geq 1)$. Therefore, D is a dominating set of G and $\gamma_{nssntr}(G) = P_2 \circ P_1$. Since $\langle N(D) \rangle$ is a tree and $\langle V - D \rangle$ is connected, D is a non-split neighbourhood tree dominating set of G and is minimum.

Hence $\gamma_{nssntr}(G) = |D| = n$.

Example 3.2.2:

In the graph $P_2 \times C_n$ $(n = 3)$, $\gamma_{nssntr}(P_2 \times C_n) = 2$.

Theorem 3.2.3:

For the graph $P_2 \times C_n$ $(n \geq 3)$, $\gamma_{nssntr}(P_2 \times C_n) = 2$.

Proof:

Let $G \cong P_2 \times C_n$ and let $V(G) = \bigcup_{i=1}^{n} \{v_{i1}, v_{i2}\}$, where $\langle \{v_{i1}, v_{i2}\} \rangle \equiv P_{i2}$, $i = 1, 2$ and $\langle \{v_{i1}, v_{i2}, \ldots, v_{jn}\} \rangle \equiv C_{n}$, $j = 1, 2, \ldots, n$ and P_{i} is the ith copy of P_2 and C_{n} is the jth copy of C_n in G.

Let $D = \{v_{31}, v_{22}\}$. Then $D \subseteq V(G)$. Here, v_{11}, v_{21} are adjacent to v_{31} and v_{12}, v_{22} are adjacent to v_{22}. Therefore, D is a dominating set of G and $\gamma_{nssntr}(G) = P_2 \circ P_1$. Since $\langle N(D) \rangle$ is a tree and $\langle V(G) - D \rangle$ is connected, D is a non-split neighbourhood tree dominating set of G and $\gamma_{nssntr}(G) \leq |D| = 2$.

Let D' be a non-split neighbourhood tree dominating set of $P_2 \times C_n$. Since $\gamma(P_3 \times C_3) = \left\lfloor \frac{3n}{2} \right\rfloor = 2$ and $\gamma_{nssntr}(G) \geq \gamma(G)$ and $\gamma_{nssntr}(G) \geq \gamma_{nssntr}(G)$. Therefore, $\gamma_{nssntr}(G) = 2$.

3241
Example 3.2.3:

In the graph $P_2 \times C_3$ given in Figure 3.9, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{31}, v_{22}\}$, where $(N(D)) \equiv P_4$ and $\gamma_{nsntr}(P_2 \times C_3) = 2$.

Remark 3.2.2:

For $n \geq 4$, $\gamma_{ns}(P_2 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_2 \times C_n$. Let D be a dominating set of $P_2 \times C_n$. If D contains two vertices, then either $(N(D))$ is not a tree or $(N(D))$ contains a cycle. If D contains at least three vertices, then $(N(D))$ contains a cycle.

Theorem 3.2.4:

For the graph $P_3 \times C_n$ ($n = 3$), $\gamma_{nsntr}(P_3 \times C_n) = 3$.

Proof:

Let $G \equiv P_3 \times C_n$, $n \geq 4$ and let $V(G) = \bigcup_{i=1}^{n} \{v_{ij}, v_{i2}, v_{i3}\}$ such that $(\{v_{ij}, v_{i2}, v_{i3}\}) \equiv P_3^i$, $i = 1, 2, 3$ and $(\{v_{ij}, v_{j2}, ..., v_{mn}\}) \equiv C_n^j$, $j = 1, 2, ..., n$ where P_3^i is the i^{th} copy of P_3 and C_n^j is the j^{th} copy of C_n in G.

Let $D = \{v_{31}, v_{12}, v_{33}\}$. Then $D \subseteq V(G)$. Here, v_{22} is adjacent to v_{21} and v_{11}, v_{21}, v_{22} are adjacent to v_{31} and v_{32}, v_{13}, v_{23} are adjacent to v_{33}. Therefore, D is a dominating set of G and $(N(D))$ is a connected graph obtained from P_3 by attaching a pendant edge at v_{22}. Since $(N(D))$ is a tree and $(V(G) - D)$ is connected, D is a nonsplit neighbourhood tree dominating set of G and $\gamma_{nsntr}(G) \leq |D| = 3$.

Let D' be a nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. Since $\gamma(P_3 \times C_3) = \left\lceil \frac{3n}{4} \right\rceil = 3$ and $\gamma_{nsntr}(G) \geq \gamma(G)$ and $\gamma_{nsntr}(G) \geq \gamma_{ns}(G)$. Therefore, $\gamma_{ns}(G) = 3$.

Example 3.2.4:

In the graph $P_3 \times C_3$ given in Figure 3.10, minimum nonsplit neighbourhood tree dominating set is $D = \{v_{21}, v_{32}, v_{13}\}$, where $(N(D)) \equiv P_6$ and $\gamma_{nsntr}(P_3 \times C_3) = 3$.

Remark 3.2.3:

For $n \geq 4$, $\gamma_{ns}(P_3 \times C_n) = 0$, since there exists no nonsplit neighbourhood tree dominating set of $P_3 \times C_n$. If a dominating set D of $P_3 \times C_n$ contains at least three vertices, then the induced subgraph $(N(D))$ contains a cycle.

Theorem 3.2.5:

For the graph $P_4 \times C_n$ ($n = 3$), $\gamma_{nsntr}(P_4 \times C_n) = 4$.
Proof:

Let \(G \equiv P_4 \times C_n \), \(n \geq 6 \) and let \(V(G) = \bigcup_{i=1}^{n} \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \) such that \(\langle \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \rangle \equiv P_i \), \(i = 1, 2, 3, 4 \) and \(\langle \{v_{1j}, v_{2j}, \ldots, v_{nj}\} \rangle \equiv C_n \), \(j = 1, 2, \ldots, n \), where \(P_i \) is the \(i \)th copy of \(P_4 \) and \(C_n \) is the \(j \)th copy of \(C_n \) in \(G \).

Let \(D = \{v_{31}, v_{22}, v_{13}, v_{34}\} \). Then \(D \subseteq V(G) \). Here, \(v_{11}, v_{21}, v_{32} \) are adjacent to \(v_{31} \), and \(v_{12}, v_{23}, v_{33} \) are adjacent to \(v_{32} \). Therefore, \(D \) is a dominating set of \(G \) and \(\langle N(D) \rangle \rangle \equiv P_8 \). Since \(\langle N(D) \rangle \) is a tree and \(\langle V(G) \rangle \rangle \) is connected, \(D \) is a neighbourhood tree dominating set of \(G \) and \(\gamma_{nt}(G) \leq |D| = 4 \).

Let \(D' \) be a non-split dominating set of \(P_3 \times C_n \).

Since \(\gamma(P_4 \times C_3) = 3n + 1 = 4 \) and \(\gamma_{nt}(G) \geq \gamma(G) \) and \(\gamma_{nt}(G) \geq \gamma_{nt}(G) \). Therefore, \(\gamma_{nt}(G) = 4 \).

Example 3.2.5:

In the graph \(P_4 \times C_3 \) given in Figure 3.11, minimum non-split neighbourhood tree dominating set is \(D = \{v_{31}, v_{22}, v_{13}, v_{34}\} \), where \(\langle N(D) \rangle \rangle \equiv P_8 \), and \(\gamma_{nt}(P_4 \times C_3) = 4 \).

Remark 3.2.4:

For \(n \geq 4 \), \(\gamma_{nt}(P_4 \times C_n) = 0 \), since there exists no neighbourhood tree dominating set of \(P_4 \times C_n \). The graph \(P_4 \times C_3 \) can be divided into two blocks \(P_2 \times C_4 \) and \(P_2 \times C_4 \). \(\gamma_{nt}(P_2 \times C_4) = 0 \). If a dominating set \(D \) of \(P_4 \times C_3 \) contains three vertices, then \(\langle N(D) \rangle \rangle \) contains a cycle.

Remark 3.2.5:

For \(n \geq 2 \), \(\gamma_{nt}(P_n \times C_3) = n \).

Reference