Research Article

Eccentric Domination in Boolean Graph BG₂(G) of a Graph G

M. Bhanumathi¹ and RM. Mariselvi²

¹Principal (Retd.), Government Arts College for Women, Sivagangai ²Government Arts College for Women, Pudukkottai – 622001 (Affiliated to Bharathidasan University), Tamilnadu, India. bhanu_ksp@yahoo.com¹, <u>rmselvi0384@gmail.com²</u>

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG₂(G) is a graph with vertex set V(G) \cup E(G) and two vertices are adjacent if and only if they correspond to two adjacent vertices of G, a vertex and an edge incident to it in G or two non-adjacent edges of G. In this paper, we studied eccentric domination number of Boolean graph BG₂(G), obtained bounds of this parameter and determined its exact value for several classes of graphs.

Keywords: Domination number, eccentric domination number, Boolean graph.

1.Introduction

Let G be a finite simple, undirected graph on p vertices and q edges with vertex set V(G) and edge set E(G). For graph theoretic terminology refer to Harary[11], and Kulli[17].

The distance d(u, v) between two vertices u and v in G is the minimum length of a path joining them if any; otherwise d(u, v) = ∞ . Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus, e(v) = max{d(u, v): u \in V}. The radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is the maximum eccentricity. For any connected graph G, r(G) \leq diam(G) \leq 2r(G). The vertex v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central sub graph $\langle C(G) \rangle$ of a graph G is the subgraph induced by the center. The vertex v is a peripheral vertex if e(v) = diam(G). The periphery P(G) is the set of all peripheral vertices. For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex. Eccentric set of a vertex v is defined as $E(v) = \{u \in$ V(G) : d(u, v) = e(v)\}. A graph is self-centered if every vertex is in the center. Thus, in a self-centered graph G all vertices have the same eccentricity, so r(G) = diam(G).

A vertex and an edge are said to cover each other if they are incident. A set of vertices which covers all the edges of a graph G is called a point cover for G, while a set of edges which covers all the vertices is a line cover. The smallest number of vertices in any point cover for G is called its point covering number or simply covering number and is denoted by $\alpha_0(G)$ or α_0 . Similarly, α_1 is the smallest number of edges in any line cover of G and is called its line cover number. A set of vertices in G is independent if no two of them are adjacent. The largest number of vertices in such a set is called the point independence number of G and is denoted by $\beta_0(G)$ or β_0 . A set of edges in a graph is independent if no two edges in the set are adjacent. By a matching in a graph G, we mean an independent set of edges in G. The edge independence number $\beta_1(G)$ of a graph G is a maximum cardinality of an independent set of edges. A perfect matching is a matching with every vertex of the graph is incident to exactly one edge of the matching. The graph G⁺ is obtained from the graph G by attaching a pendant edge to each of the vertices of G.

The open neighborhood N(v) of a vertex v is the set of all vertices adjacent to v in G. $N[v] = N(v) \cup \{v\}$ is called the closed neighborhood of v. The second neighborhood $N_2(v)$ of a vertex v is the set of all vertices at distance two from v in G.

In 2007, Janakiraman, Bhanumathi and Muthammai defined the Boolean graph $BG_2(G)$ and studied its properties [12, 14, 15, 16]. Boolean graph $BG_2(G)$ is a graph with vertex set $V(G) \cup E(G)$ and edge set $\{E(T(G)) - E(L(G))\} \cup E(\overline{L(G)})$, where L(G) is the line graph of G and T(G) is the total graph of G. It is a graph with vertex set $V(G) \cup E(G)$ and two vertices are adjacent if and only if they correspond to two adjacent vertices of G, a vertex and an edge incident to it in G or two non-adjacent edges of G.

The concept of domination in graphs was introduced by Ore [18]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) - D is adjacent to some vertex in D. D is said to be a minimal dominating set if $D - \{u\}$ is not a dominating set for any $u \in D$. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set [10].

Janakiraman, Bhanumathi and Muthammai [13] introduced the concept of eccentric domination number of a graph. Eccentric domination in trees and various types of eccentric dominations were studied in [2, 3, 4, 5, 6, 7, 8, 9].

A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exists at least one eccentric point of v in D. The eccentric domination number $\gamma_{ed}(G)$ of a graph G equals the minimum cardinality of an eccentric dominating set. Obviously, $\gamma(G) \leq \gamma_{ed}(G)$.

Theorem 1.1[15]: Let G be a connected graph. Then, $\gamma(G) \leq \gamma(BG_2(G)) \leq \gamma(G) + 2$.

Theorem 1.2[16]: (i) Eccentricity of every line vertex is two in BG₂(G) if $G \neq K_2$.

(ii) If $G = K_2$, $BG_2(G)$ is C_3 .

Theorem 1.3[16]: Eccentricity of every point vertex in BG₂(G) is 1, 2 or 3.

Theorem 1.4[16]: (i) Radius of BG₂(G) is one if and only if $G = K_{1,n}$, $n \ge 1$.

- (ii) BG₂(G) is self-centered with radius two if and only if $G \neq K_{1,n}$ and diam(G) ≤ 2 .
- (iii) BG₂(G) is bi-eccentric with diameter three if and only if diam(G) \geq 3.

2. Eccentric Domination in Boolean Graph BG2(G) of a Graph G

In this section, study of eccentric domination in Boolean graph $BG_2(G)$ is initiated and some bounds for $\gamma_{ed}(BG_2(G))$ are obtained. We have $\gamma(G) \leq \gamma_{ed}(G)$ for any graph G. Hence, $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Also, $\gamma(G) \leq \gamma(BG_2(G))$ by Theorem 1.1. Thus, $\gamma(G) \leq \gamma_{ed}(BG_2(G))$.

But $\gamma_{ed}(G) \leq \gamma_{ed}(BG_2(G))$ is not true.

Example 2.1

Here, $\gamma_{ed}(G) = 6$ and $\gamma_{ed}(BG_2(G)) = 5$.

Theorem 2.1 Let G be a graph without isolated vertices. Set of all point vertices is an eccentric dominating set of BG₂(G); and hence $1 \le \gamma_{ed}(BG_2(G)) \le p$.

Proof: Distance from a line vertex to point vertices is one or two. Also, distance from a point vertex to line vertices is also one or two. So if G has more than one edge, then V(G) is an eccentric dominating set of BG₂(G). Hence, $1 \le \gamma_{ed}(BG_2(G)) \le p$.

Corollary 2.1 The bounds are sharp, since $\gamma_{ed}(BG_2(G)) = 1$ if and only if $G = P_2$ and $\gamma_{ed}(BG_2(G)) = p$ if and only if $G = \overline{K_n}$.

Theorem 2.2 If G is unicentral tree of radius 2, then $\gamma_{ed}(BG_2(G)) \le p - \deg_G(u)$, where u is a central vertex.

Proof: If G is of radius two with unique central vertex u, then in, $BG_2(G)$, $r(BG_2(G)) = 2$ and $V - N_G(u)$ dominates all point vertices and line vertices of $BG_2(G)$. Each vertex of $V(BG_2(G)) - N_G(u)$ has their eccentric vertices in $V(G) - N_G(u)$ only. Therefore, $V(G) - N_G(u)$ is an eccentric dominating set of $BG_2(G)$. Hence, $\gamma_{ed}(BG_2(G)) \le p - \deg_G(u)$.

Theorem 2.3 For a bi-central tree T with radius 2, $\gamma_{ed}(BG_2(G)) \le 4$.

Proof: Let u and v be the central vertices of G. In BG₂(G), N_G(u) and N_G(v) are dominating set of BG₂(G). Let x, y be the any two peripheral vertices at distance atmost 3 in BG₂(G). S = {x, y, u, v} is an eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) \le 4$.

Theorem 2.4 If G is a tree T, $\gamma_{ed}(BG_2(G)) \le p - \Delta(G) + 2$.

Proof: If G a has vertex v of maximum degree which is not a support, then $V(G) - N_G(u)$ is an eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) \le p - \Delta(G)$. If G has a vertex v of maximum degree which is a support of pendant vertices, then in BG₂(G), let $S = V(G) - N_G(u) \cup \{x, y\}$, where x, y are peripheral vertices of G. This S is an eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) \le p - \Delta(G) + 2$.

Theorem 2.5 Let G be a tree, then $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G)) \leq \gamma(BG_2(G)) + 2$.

Proof: Let $S \subseteq V(BG_2(G))$ be a γ -set of $BG_2(G)$. Let $u, v \in V(G)$ such that u an v are peripheral vertices of G at distance = diam(G) to each other. Then u or v is an eccentric point of each vertices in G. Again u or v is an eccentric point of line vertices and point vertices in $BG_2(G)$. Therefore, $S = D \cup \{u, v\}$ is a γ_{ed} -set of $BG_2(G)$, where D is a dominating set of $BG_2(G)$. Hence, $\gamma_{ed}(BG_2(G)) \leq \gamma(BG_2(G)) + 2$. Also, we know that $\gamma(G) \leq \gamma_{ed}(G)$ for any graph G. Thus, $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G)) \leq \gamma(BG_2(G)) + 2$.

Corollary 2.5 Let G be a tree, then $\gamma(G) \le \gamma_{ed}(BG_2(G)) \le \gamma(G) + 4$.

Proof: Proof follows from Theorem 1.1 and Theorem 2.5.

Theorem 2.6 If G is of radius one and diameter two, then $\gamma_{ed}(BG_2(G)) \leq 2 + \delta(G)$.

Proof: diam(G) = 2. Let $u \in V(G)$ with deg_G $u = \delta(G)$ and e(u) = 2 in G and let $uv = e \in E(G)$. In BG₂(G), diam(BG₂(G)) = 2, r(BG₂(G)) \le 2 by Theorem 1.4. Consider $S = \{u, e\} \cup \{N(u)\}$. S dominates all the point vertices and $u \in S$ is eccentric to point vertices in V - S also. All the edges incident with u and elements of N(u) are dominated by u and vertices of N(u) in BG₂(G). If an edge e_1 is in N₂(u) in G, then it is dominated by e in BG₂(G). Also, all line vertices not in S is eccentric to some vertices of S in BG₂(G). Therefore, S is an eccentric dominating set for BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) \le 2 + \delta(G)$ and S is a connected eccentric dominating set for BG₂(G).

Theorem 2.7 If $G \neq K_{1,n}$ is of radius one with a unique central vertex u, then $\gamma_{ed}(BG_2(G)) = 3$.

Proof: Let G be a graph with radius one with a unique central vertex u. In BG₂(G), u dominates all point vertices and line vertices incident with u in G. Let $e = uv \in E(G)$. Now in BG₂(G), Consider $S = \{u, v, e\} \subseteq V(BG_2(G))$. S is a dominating set of BG₂(G). BG₂(G) is two self-centered by Theorem 1.4. In BG₂(G), the line vertex e is eccentric to all point vertices except u and v; u is eccentric to all line vertices which are not incident with u in G; v is eccentric to all line vertices which are not incident with v in G. Therefore, S is a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) = 3$.

Theorem 2.8 If G is of radius two and diameter three and if G has a pendant vertex v of eccentricity three, then $\gamma_{ed}(BG_2(G)) \leq \Delta(G) + 2$.

Proof: If G has a pendant vertex v of eccentricity three, then its support vertex u is of eccentricity two. In BG₂(G), N_G(u) dominates all point and line vertices. Therefore, $S = N_G(u) \cup \{v, e\}$, where uv = e is an eccentric dominating set of BG₂(G). Hence, BG₂(G) $\leq \Delta(G) + 2$.

Theorem 2.9 If G is a graph with radius two, diameter three, then $\gamma_{ed}(BG_2(G)) \leq p - \Delta(G) + 2$.

Proof: Let $u \in V(G)$ with deg $u = \Delta(G)$. Since radius of G is two and diameter three, all the point vertices in BG₂(G) has their eccentric vertices atmost at distance three from u. Also, eccentricity of line vertices in BG₂(G) is two by Theorem 1.4. All the edges incident with u are dominated by u in BG₂(G) and are also eccentric to a point vertex w, where $w \in N_2(u)$. Suppose e_1 is an edge in $\langle N(u) \rangle$, then e_1 is not dominated by (V - N(u)). Hence the following cases arise:

Case(i): If all the edges in $\langle N(u) \rangle$ are adjacent or incident at a vertex v, then $(V - N(u)) \cup \{v\}$ is an eccentric dominating set of BG₂(G).

Case(ii): If all the edges in (N(u)) form a C₃, then $(V - N(u)) \cup \{v, e\}$ where, $v \in N(u)$ and e is an edge in (N(u)) form an eccentric dominating set of BG₂(G).

Case(iii): If $\langle N(u) \rangle$ has atleast two non-adjacent edges e_1 , e_2 , then $(V - N(u)) \cup \{e_1, e_2\}$ form an eccentric dominating set of BG₂(G).

Hence in all cases, $\gamma_{ed}(BG_2(G)) \leq p - \Delta(G) + 2$.

Theorem 2.10 If G is a graph with radius greater than two, then $\gamma_{ed}(BG_2(G)) \le p - \Delta(G) + 1$.

Proof: In this case, $BG_2(G)$ is bi-eccentric with diameter 3 by Theorem1.4. Let $u \in V(G)$ such that deg $u = \Delta(G)$. Let $v \in V(G)$ such that v is an eccentric vertex of u. Let $e = vw \in E(G)$. Vertices in $V(BG_2(G)) - N_G(u)$ has their eccentric vertices in $V - N_G(u)$. Then $(V - N_G(u)) \cup \{e\}$ is an eccentric dominating set of $BG_2(G)$.

Hence, $\gamma_{ed}(BG_2(G)) \leq p - \Delta(G) + 1$.

Theorem 2.11 If $G \neq K_{1,n}$, r(G) = 1, diam(G) = 2 and G has a pendant vertex, then $\gamma_{ed}(BG_2(G)) = 3 = \gamma_c(BG_2(G))$.

Proof: $G \neq K_{1,n}$. Consider a pendant vertex $u \in V(G)$ and let $v \in V(G)$ be its adjacent vertex in G, $e = uv \in E(G)$, v is a central vertex of G. Now in BG₂(G), $S = \{u, v, e\}$ is an eccentric dominating set. Thus, $\gamma_{ed}(BG_2(G)) = 3 = \gamma_c(BG_2(G))$.

Theorem 2.12 Let G be a connected graph with $p \ge 3$. Then, $\gamma_{ed}(BG_2(G)) \le \gamma_{ed}(G) + 2$.

Proof: Let $D \subseteq V(G)$ be an eccentric dominating set of G with cardinality $\gamma_{ed}(G)$. Let $u \in D$ be such that u is adjacent to $v \in V(G)$, $e = uv \in E(G)$. Consider $S = D \cup \{v, e\} \subseteq V(BG_2(G))$. The vertex v dominates incident edges in G and the edge e dominates non adjacent edges in G. All point vertices in $V(BG_2(G)) - S$ have their eccentric vertices in S. Also, the line vertices of $V(BG_2(G)) - S$ have u or v as eccentric vertices, since eccentricity of every line vertex is two in $BG_2(G)$. Therefore, S is an eccentric dominating set of $BG_2(G)$. Hence, $\gamma_{ed}(BG_2(G)) \leq \gamma_{ed}(G) + 2$.

Remark 2.1 $\gamma_{ed}(G) \leq \gamma_{ed}(BG_2(G))$ is not true. Refer Example 2.1.

Theorem 2.13 Let G be a graph with diam(G) = 2. If there exists a vertex $v \in V(G)$ such that $\langle N_2(v) \rangle$ is totally disconnected, then $\gamma_{ed}(BG_2(G)) \leq \Delta(G) + 2$.

Proof: Let $v \in V(G)$ be such that $\langle N_2(v) \rangle$ is totally disconnected Let $S = N(v) \cup \{u, w\}$, where $u, w \in N_2(v)$. Since $\langle N_2(v) \rangle$ is totally disconnected, all the edges of G are incident with vertices of S. Therefore, vertices of BG₂(G) – S are adjacent to atleast one vertex in S. Also, the vertices of $V(BG_2(G)) - S$ has u, w as eccentric vertices. Hence, $\gamma_{ed}(BG_2(G)) \leq |S| = |N(v)| + 2 \leq \Delta(G) + 2$.

Theorem 2.14 Let G be a connected graph. Then line independent set of G is an eccentric dominating set for BG₂(G) if and only if G is a graph with $p \ge 6$ and G has a perfect matching with diam(G) ≤ 2 .

Proof: Let D be a line independent set of G. If D is an eccentric dominating set for $BG_2(G)$, it dominates every point vertices of $BG_2(G)$, that is D is a line cover of G. D is independent and cover all vertices of G implies that D is a perfect matching. If $p \ge 3$ and $\beta_0(G) \ge 3$, then every edge in E(G) - D has atleast one edge in D, which is not adjacent to e in G. Thus D dominates all line vertices of $BG_2(G)$ also. Hence, D is a dominating set of $BG_2(G)$. Therefore, G must be a graph with even number of vertices and has a perfect matching. Also, eccentricity of every line vertex in $BG_2(G)$ is two and if $diam(G) \ge 3$, then eccentricity of point vertex is three in $BG_2(G)$. Hence, D is an eccentric dominating set implies that G is a graph with $p \ge 6$ and G has a perfect matching with diam $(G) \le 2$.

Conversely, let G has a perfect matching with diam $(G) \le 2$ and $p \ge 6$. This implies, G cannot be $K_{1,n}$. Let D be a perfect matching of G. D dominates all point and line vertices of BG₂(G). Since diam $(G) \le 2$ and G $\ne K_{1,n}$, line vertices of BG₂(G) is of eccentricity two. Therefore, BG₂(G) is a 2 self-centered graph. In BG₂(G), every edge in E(G) – D is adjacent with some edge in D. Hence, in BG₂(G), every line vertex has eccentric vertex in D. Every point vertices of V(G) is non incident with some edge of D in G. Therefore, point vertex in BG₂(G) has eccentric vertex in D. Hence, D is an eccentric dominating set of BG₂(G).

Remark 2.1 If p = 4 and G has a perfect matching, then D cannot be a dominating set of BG₂(G).

Theorem 2.15 Let G be a connected graph. Maximal independent set of G is an eccentric dominating set of BG₂(G) if and only if G satisfies any one of the following (i) $G = K_{1,n}$, $n \ge 3$ (ii) G is bipartite and if $v \in V(G) - D$ such that $e_G(v) = 2$ then v is not adjacent to atleast one element of D, if $v \in V(G) - D$ such that $e_G(v) \ge 3$ then there exists $w \in S$ such that $d(v, w) \ge 3$.

Proof: Let G be a connected graph. Let D be the maximal independent set of G. So, $D \subseteq V(G)$ such that D is independent. Since, D is maximal independent it is a dominating set of G. So, D dominates the point vertices in BG₂(G). Now, to dominate the line vertices of BG₂(G), D must be a point cover of G also. D is maximal independent implies that V(G) - D is a point cover of G. Also, D is a point cover of G implies that V(G) - D has no edges and so it is independent. Thus both D and V(G) - D are independent. Therefore, G is bipartite. When p > 3 and $G \neq K_n$, every line vertex of BG₂(G) has eccentric vertices in D. But point vertices which are not in D need not have eccentric vertices in D. D has eccentric vertices of other point vertices if D satisfies condition (ii) only. Hence the theorem is proved. On the otherhand, if all the conditions are satisfied, then any maximal independent set of G is an eccentric dominating set of BG₂(G).

Theorem 2.16 G is a connected (p, q) graph with $p \ge 4$. Set of all line vertices is an eccentric dominating set of BG₂(G) if and only if diameter of G is 1 or 2.

Proof: Eccentricity of line vertices in BG₂(G) is always two and eccentricity of point vertex is 1, 2 or 3. Hence, E(G) is an eccentric dominating set only when diam(G) \leq 2 by Theorem 1.3.

Converse: **Case(i):** r(G) = d(G) = 1. That is $G = K_n$. In this case, E(G) is an eccentric dominating set of $BG_2(G)$. **Case(ii):** r(G) = 1, d(G) = 2. If $G = K_{1,n}$, $BG_2(G)$ is of radius one and E(G) is an eccentric dominating set of $BG_2(G)$. When $G \neq K_{1,n}$, $BG_2(G)$ is two self centered. For a point vertex u, a line vertex e which is not incident with u in G is an eccentric vertex in $BG_2(G)$. So, E(G) is an eccentric dominating set of $BG_2(G)$.

Case(iii): r(G) = d(G) = 2. In this case also $BG_2(G)$ is 2 self-centered and E(G) is an eccentric dominating set of $BG_2(G)$.

Theorem 2.17 Let $G \neq K_{1,n}$ be a graph with $p \ge 3$. Then $\gamma_{ed}(BG_2(G)) = 2$ if and only if G satisfies any one of the following: (i) $K_{1,2}$ (ii) K_2 (iii) $K_1 \cup K_2$.

Proof: Assume that $\gamma_{ed}(BG_2(G)) = 2$.

Case(i): Let $D = \{u, v\} \subseteq V(G)$ is an eccentric dominating set for $BG_2(G)$.

D is a dominating set for $BG_2(G)$. Therefore, all point vertices are adjacent to u or v or both in G and all the edges in G are incident with u or v and the vertex u and v are non adjacent in G. Hence, D is a point cover of G. Suppose $d(u, v) \ge 3$, $D = \{u, v\}$ cannot be a point cover, so $d(u, v) \le 2$. If d(u, v) = 1, the line vertex e = uv cannot be dominated by D in $BG_2(G)$. Hence, d(u, v) must be two in G. Let uwv be a path in G. Since D is a point cover, all the edges must be incident with u or v. But the vertex w is adjacent to both u and v and hence w has eccentric vertex in D if e(w) = 1 in G. Hence, D is an eccentric dominating set only when d(u, v) = 2 and w is a centre of G and G is of radius one. If there exists vertex x not adjacent to u and not adjacent to v and adjacent to w, then x is not dominated by D in $BG_2(G)$. Hence, the only possibility is $G = K_{1,2}$.

Case(ii): $D = \{u, e\} \subseteq V(BG_2(G)), u \in V(G), e \in E(G) \text{ is an eccentric dominating set for } BG_2(G).$

Subcase(i): $D = \{u, e\}$, e is incident with u in G. Let $e = uv \in E(G)$. D is an eccentric dominating set in BG₂(G). This implies that eccentricity of v in BG₂(G) is one. Thus, v is of eccentricity one in G. If there exists any other edges incident with v in G, then they cannot be dominated by D in BG₂(G). Hence, $G = K_2$ only.

Subcase(ii): $D = \{u, e\}$, e is not incident with u. Let $e = xy \in E(G)$.

(i) Suppose u is adjacent to any one of x and y say x. In this case, eccentricity of x in G must be one. Hence, r(G) = 1 and there exists no other edges incident with x. Hence $G = K_{1,2}$. If u is adjacent to both x and y, the vertex y has no eccentric vertex in D. So, this case is not possible.

(ii) Suppose u is not adjacent to both x and y. Suppose u is not isolated there exists e_1 incident with u. Let $e_1 = uu_1 \in E(G)$. Then e_1 is adjacent to both u and e in BG₂(G), so e_1 has no eccentric vertex in D. So, this is not possible. So u must be isolated and there exists no other edges. Hence $G = K_2 \cup K_1$.

Case(iii): $D = \{e_1, e_2\} \subseteq V(BG_2(G)), e_1, e_2 \in E(G) \text{ is an eccentric dominating set for } BG_2(G).$

Subcase(i): $D = \{e_1, e_2\}, e_1$ and e_2 are adjacent in G. D is an eccentric dominating set for BG₂(G). D is a dominating set for BG₂(G). Therefore, all point vertices incident with e_1 or e_2 or both in G and e_1 , e_2 are adjacent in G. Hence, G must be $K_{1,2}$.

Subcase(i): $D = \{e_1, e_2\}, e_1$ and e_2 are non adjacent in G. Let $e_1 = uv$, $e_2 = xy \in E(G)$. D is a dominating set of BG₂(G) implies that there exists no other point vertices and hence, no non adjacent edges. If there exists an edge e adjacent to both e_1 and e_2 in G, then in BG₂(G) the corresponding line vertex cannot be dominated by D in BG₂(G). Hence, $G = 2K_2$, and in this case D is a dominating set, but point vertices has no eccentric vertices. Hence, this case is also not possible.

This proves the theorem.

3. Eccentric Domination number of BG₂(G) for some particular graphs

In this section, the exact value of $\gamma_{ed}(BG_2(G))$ for some particular classes of graphs are determined.

Theorem 3.1 For a non-trival path P_n on n vertices, where $n \ge 3$.

(i) $\gamma_{ed}(BG_2(P_n)) = (n / 3) + 1$, if n = 3k, k > 1. (ii) $\gamma_{ed}(BG_2(P_n)) = \lfloor n / 3 \rfloor + 1$, if n = 3k + 1

(ii) $\gamma_{ed}(BG_2(P_n)) = \lfloor n / 3 \rfloor + 1$, if n = 3k + 2

Proof: Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $e_i = v_i v_{i+1}$, $1 \le i \le n - 1$. Let $u_i \in V(BG_2(P_n))$ be the vertex corresponding to e_i in $BG_2(P_n)$. Then $v_1, v_2, v_3, ..., v_n, u_1, u_2, u_3, ..., u_n - 1 \in V(BG_2(P_n))$. Thus $|V(BG_2(P_n))| = 2n - 1$.

Case(i): n = 3k.

Let $S = \{u_1, v_3, v_6 \dots, v_{n-3}, v_n\}$. S is a minimal eccentric dominating set of $BG_2(P_n)$. $|S| = \lfloor n / 3 \rfloor + 1$. Therefore, $\gamma_{ed}(BG_2(P_n)) \leq (n / 3) + 1$. We have $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Therefore, $\gamma_{ed}(BG_2(P_n)) \geq \gamma(BG_2(G)) = (n / 3) + 1$. Hence, $\gamma_{ed}(BG_2(P_n)) = (n / 3) + 1$.

Case(ii):
$$n = 3k + 1$$

Let $S = \{u_1, v_3, v_6 \dots, v_{n-1}\}$. S is a minimal eccentric dominating set of $BG_2(P_n)$. $|S| = \lfloor n / 3 \rfloor + 1$. Therefore, $\gamma_{ed}(BG_2(P_n)) \leq \lfloor n / 3 \rfloor + 1$. We have $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Therefore, $\gamma_{ed}(BG_2(P_n)) \geq \gamma(BG_2(G)) = \lfloor n / 3 \rfloor + 1$. Hence, $\gamma_{ed}(BG_2(P_n)) = \lfloor n / 3 \rfloor + 1$.

Case(iii): n = 3k + 2

Let $S = \{u_1, v_3, v_6 \dots, v_{n-2}, v_n\}$. S is a minimal eccentric dominating set of $BG_2(P_n)$. $|S| = \lceil n / 3 \rceil + 1$ Therefore, $\gamma_{ed}(BG_2(P_n)) \leq \lceil n / 3 \rceil + 1$. We have $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Therefore, $\gamma_{ed}(BG_2(P_n)) \geq \gamma(BG_2(G)) = \lceil n / 3 \rceil + 1$. Hence, $\gamma_{ed}(BG_2(P_n)) = \lceil n / 3 \rceil + 1$.

Remark 3.1: When $G = P_2$. $S = \{v_1\}$ is a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(P_2)) = 1$. 1. When $G = P_3$. $S = \{v_1, v_1\}$ is a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(P_2)) = 2$.

Theorem 3.2 For $n \ge 5$, (i) $\gamma_{ed}(BG_2(C_n)) = (n / 3) + 1$, n = 3k.

(ii) $\gamma_{ed}(BG_2(C_n)) = \lceil n/3 \rceil + 1$, n = 3k + 1 or n = 3k + 2.

Proof: Let $V(C_n) = \{v_1, v_2, ..., v_n\}$ and $e_i = v_i v_{i+1}$, $1 \le i \le n - 1$ and $e_n = v_n v_1$. Let u_i be the vertex corresponding to e_i in BG₂(C_n). Then $v_1, v_2, v_3, ..., v_n, u_1, u_2, u_3, ..., u_n \in V(BG_2(C_n))$. Thus $|V(BG_2(C_n))| = 2n$.

Case(i): n = 3k

Let $S = \{v_1, v_4, v_7 \dots, v_{n-2}, u_{n-1}\}$. S is an eccentric dominating set of $BG_2(C_n)$. |S| = (n / 3) + 1. Therefore, $\gamma_{ed}(BG_2(C_n)) \leq (n / 3) + 1$. We have $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Therefore, $\gamma_{ed}(BG_2(C_n)) \geq \gamma(BG_2(G)) = (n / 3) + 1$. Hence, $\gamma_{ed}(BG_2(C_n)) = (n / 3) + 1$.

Case(ii): n = 3k + 1 or n = 3k + 2.

Let $S = \{v_1, v_4, v_7, ..., v_{n-1}, u_{n-1}\}$. S is an eccentric dominating set of $BG_2(C_n)$. $|S| = \lceil n / 3 \rceil + 1$. Therefore, $\gamma_{ed}(BG_2(C_n)) \leq \lceil n / 3 \rceil + 1$. We have $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. Therefore, $\gamma_{ed}(BG_2(C_n)) \geq \gamma(BG_2(G)) = \lceil n / 3 \rceil + 1$. Hence, $\gamma_{ed}(BG_2(C_n)) = \lceil n / 3 \rceil + 1$.

Remark 3.2 When $G = C_3$, C_4 . $S = \{v_1, v_2, v_3\}$ is a minimum eccentric dominating set of $BG_2(G)$. Hence, $\gamma_{ed}(BG_2(C_3)) = \gamma_{ed}(BG_2(C_4)) = 3$. When $G = C_5$. $S = \{v_1, v_3, v_5\}$ is a minimum eccentric dominating set of BG-2(G). Hence, $\gamma_{ed}(BG_2(C_5)) = 3$.

Theorem 3.3
$$\gamma_{ed}(BG_2(K_n)) = 3, n \ge 3$$

Proof: Let $v_1, v_2, v_3, ..., v_n$ be the vertices of K_n and let u_{ij} , i < j, i, j = 1, 2, 3, ..., n be the added vertices corresponding the edges e_{ij} of K_n to obtain BG₂(K_n). Thus V(BG₂(K_n)) = { $v_1, v_2, v_3, ..., v_n$ } $\bigcup_{i < j} {u_{ij}}$, i, j = 1, 2,

3...,n. The graph BG₂(K_n) has $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$ vertices. Eccentricity of every point vertex and line

vertex of $BG_2(K_n)$ is two. Therefore it is a self-centered graph. Let $S = \{v_1, v_2, u_{12}\}, v_1, v_2 \in V(G)$ and $u_{12} \in E(G)$. S dominates all point vertices and line vertices and is also an eccentric dominating set of $BG_2(K_n)$. Hence, $\gamma_{ed}(BG_2(K_n)) = 3$.

Remark 3.3 When $G = K_2$, $S = \{v_1\}$ is a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(K_n)) = 1$.

Theorem 3.4 $\gamma_{ed}(BG_2(K_{1,n})) = 3, n \ge 3.$

Proof: $V' = V(BG_2(K_{1,n}))$. Let $S = \{v, v_1, v_n\}$, where v is the central vertex of G and v_1, v_2 , are pendant vertices. The central vertex dominates all point vertices and line vertices in V' - S and v_1, v_n are eccentric vertices of V' - S. Hence, $\gamma_{ed}(BG_2(K_{1,n})) = 3$.

Remark 3.4 When $G = K_{1,2}$. $S = \{e_1, e_2\}$ is a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(K_{1,2})) = 2$

Remark 3.5 Let $S = \{v, v_1, e_1\}$, where $e_1 = vv_1 \in E(G)$. S is also an eccentric dominating set of $BG_2(K_{1,n})$. **Theorem 3.5** $\gamma_{ed}(BG_2(K_{m,n})) = 3$, m, $n \ge 2$.

Proof: When $G = K_{m,n}$. $V(G) = V_1 \cup V_2$. $|V_1| = m$ and $|V_2| = n$. $E(G) = \{e_{ij} / 1 \le i \le m, 1 \le j \le n\}$ where $e_{ij} = u_i v_j$ for all $1 \le i \le m, 1 \le j \le n$. Thus $V(BG_2(K_{m,n})) = (V_1 \cup V_2) \cup \{e_{ij} / 1 \le i \le m, 1 \le j \le n\}$. Let $S = \{u, v, e\}$, $u \in V_1$, $v \in V_2$ and $uv = e \in E(G)$. The vertex u dominates all point vertices of V_2 and line vertices which are edges incident with u in G. The vertex v dominates all point vertices of V_1 and line vertices which are edges incident with v in G. The line vertex v dominates all line vertices which are edges not incident with both u and v. The vertex u is an eccentric vertex of V_1 and non incident edges of G and the vertex v is an eccentric vertex of V_2 and non incident edges of G. Therefore, S is an minimum eccentric dominating set of $BG_2(K_{m,n})$. Hence, $\gamma_{ed}(BG_2(K_{m,n})) = 3$.

Theorem 3.6 $\gamma_{ed}(BG_2(W_n)) = 3$, where $W_n = K_1 + P_n$.

Proof: Let $S = \{u, v, e\}$, where u and v are adjacent vertices and v is the central vertex. $uv = e \in E(G)$. u and v dominates all point vertices and incident edges in $BG_2(W_n)$ and e dominates non adjacent edges in $BG_2(W_n)$. The vertex u is a eccentric vertex of non adjacent point vertices and non incident line vertices and the vertex e is a eccentric vertex of non adjacent line vertices and non incident point vertices in G. Therefore, eccentricity of every point vertex and line vertex of $BG_2(W_n)$ is two. This implies, it is a self-centered graph. S is an eccentric dominating set of $BG_2(W_n)$. Also, S is a minimum eccentric dominating set of $BG_2(W_n)$. Hence, $\gamma_{ed}(BG_2(W_n)) = 3$.

Theorem 3.7 $\gamma_{ed}(BG_2(F_n)) = 3$, where $F_n = K_1 + P_n$.

Proof: Let $v_1, v_2, v_3, ..., v_n, v$ (v is the central vertex of F_n) be the vertices of F_n and let $e_j = vv_j$, j = 1, 2, ..., n, and $v_iv_j = e_{ij}$ (j = i + 1, i = 1, 2, 3, ..., n) be the edges of F_n . Let $v_1, v_2, ..., v_n, v, u_1, u_2, ..., u_n, e_{12}, e_{23}, ..., e_{n-1,n}$ be the corresponding vertices of BG₂(F_n). Thus V((BG₂(F_n)) has 3n vertices. S = {v, v_1, e_1} is the eccentric dominating set of BG₂(F_n). Eccentricity of every point vertex and line vertex of BG₂(F_n) is two. Therefore it is a self-centered graph. The vertex v_1 is an eccentric vertex of e_j , j > 1 in BG₂(F_n). The vertex v is the eccentric vertex of the line vertex e_{12} in BG₂(F_n). For other e_{ij} 's v is the eccentric vertex in BG₂(F_n). For point vertex v_i , i > 1, line vertex e is an eccentric point. Therefore, S is a minimum eccentric dominating set of BG₂(F_n). Hence, $\gamma_{ed}(BG_2(F_n)) = 3$.

Theorem 3.8 $\gamma_{ed}(BG_2(P_n^+)) = n.$

Proof: Let $G = P_n^+$ be a graph obtained from P_n by attaching exactly one pendant edge at each vertex of P_n . Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices and $e_{12}, e_{23}, e_{34}, \ldots, e_{n-1,n}$ be the edges in P_n , where $e_{i,i+1} = v_i v_{i+1}$, $i = 1, 2, 3, \ldots, n-1$. Let u_i be the pendant vertex attached to v_i in P_n^+ , $i = 1, 2, 3, \ldots, n$. Then $v_1, v_2, v_3, \ldots, v_n, u_1, u_2, u_3, \ldots, u_n, e_{11}$, $e_{22}, e_{33}, \ldots, e_{nn}, e_{12}, e_{23}, e_{34}, \ldots, e_{n-1,n} \in V(BG_2(P_n^+))$. Thus $|V(BG_2(P_n^+))| = 4n - 1$. Let $S = \{u_1, u_n, v_2, v_3, \ldots, v_{n-1}\}$. u_1 and u_n are two peripheral vertices $BG_2(G)$. S is an eccentric dominating set of $BG_2(P_n^+)$. |S| = n. Thus, $\gamma_{ed}(BG_2(P_n^+)) \leq n$. Also, $\gamma(BG_2(G)) \leq \gamma_{ed}(BG_2(G))$. $\gamma(G) = n$ and $\gamma(BG_2(G)) \geq \gamma(G)$. Hence, $\gamma_{ed}(BG_2(P_n^+)) = n$. Theorem 3.9 $\gamma_{ed}(BG_2(C_n^+)) = n$.

Proof: Let $G = C_n^+$ be a graph obtained from C_n by attaching exactly one pendant edge at each vertex of C_n . Let $v_1, v_2, v_3, ..., v_n$ be the vertices and $e_{12}, e_{23}, e_{34}, ..., e_{n1}$ be the edges in C_n , where $e_{i,i+1} = v_iv_{i+1}$, $1 \le i \le n-1$ and $e_{n1} = v_nv_1$. Let u_i be the pendant vertex attached to v_i in C_n^+ , i = 1, 2, ..., n, where $e_i = u_iv_i$, $1 \le i \le n$. Then $v_1, v_2, v_3, ..., v_n$, $u_1, u_2, u_3, ..., u_n$, $e_1, e_2, e_3, ..., e_{n1}, e_{12}, e_{23}, e_{34}, ..., e_{n1} \in V(BG_2(C_n^+))$. Thus $|V(BG_2(C_n^+))| = 4n$. $u_i, v_i \in V(BG_2(C_n^+))$ has all u_j 's and v_j 's, $i \ne j$ as eccentric vertices and $e_{ii} \in V(BG_2(C_n^+))$ has all u_j 's and v_j 's, $i \ne j$ as eccentric vertices. Let $S = \{v_1, v_2, v_3, ..., v_n\}$. S is an eccentric dominating set of $BG_2(C_n^+)$. |S| = n. Therefore, $\gamma_{ed}(BG_2(C_n^+)) \le n$. $\gamma(BG_2(G)) \ge \gamma(G) = n$. This implies that $\gamma_{ed}(BG_2(G)) \ge n$. Hence, $\gamma_{ed}(BG_2(C_n^+)) = n$.

Theorem 3.10 If G is a wounded spider with atleast one non-wounded leg, then $\gamma_{ed}(BG_2(G)) = s + 2$, where s is the number of support vertices which are adjacent to non-wounded legs.

Proof: Let G be a wounded spider. Let u be the vertex of maximum degree $\Delta(G)$, and S be the set of support vertices which are adjacent to non-wounded legs. In BG₂(G), the set S form a dominating set of BG₂(G). But it is not an eccentric dominating set. Adding any one peripheral vertex of G, form a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) = s + 2$.

Theorem 3.11 If G is a spider such that length of each leg is two, then $\gamma_{ed}(BG_2(G)) = \Delta(G) + 1$.

Proof: Let G be a spider and u be a vertex of maximum degree $\Delta(G)$. u is the central vertex. In BG₂(G), N_G(u) dominates all point vertices and line vertices. Adding any one peripheral vertex of G with N_G(u), form a minimum eccentric dominating set of BG₂(G). Hence, $\gamma_{ed}(BG_2(G)) = \Delta(G) + 1$.

References:

- 1. Bhanumathi,M., A study on some structural properties of graphs and some new graph operation on graphs, Thesis, Bharathidasan University, 2004.
- Bhanumathi.M., On Connected Eccentric Domination in Graphs, Elixir Dis. Math. 90(2016) 37639-37643. ISSN: 2229-712x. IF: 6.865.
- Bhanumath.M. and S.Muthammai., On Eccentric Domination in Trees, International Journals of Engineering science, Advanced Computing and Bio-Technology Vol:2, No.1, pp 38-46, 2011. ISSN: 2249-5584(Print), ISSN: 2249-5592(Online)
- Bhanumath.M. and S.Muthammai., Further Results On Eccentric Domination graphs, International Journals of Engineering science, Advanced Computing and Bio-Technology Volume:3, Issue 4, pp 185-190, 2012. ISSN: 2249-5584(Print), ISSN: 2249-5592(Online)
- Bhanumathi.M. and John Flavia.J., Total eccentric domination in Graphs, International Journals of Engineering science, Advanced Computing and Bio-Technology Vol:3, No.2, April - June 2014 pp 49-65.
- Bhanumathi.M. and M.Kavitha., On Connected Eccentric Domination in trees, International Journals of Engineering science, Advanced Computing and Bio-Technology Volume:8, No. 3, July-September 2017, pp. 133-142. ISSN: 2249-5584(Print), ISSN: 2249-5592(Online). SJIF: 3.376.
- Bhanumathi.M. and R.Niroja., Eccentric Domination in Splitting graphs of some graphs, International Journals of Engineering science, Advanced Computing and Bio-Technology Volume: 11, No. 2(2016), pp. 179-188. ISSN: 0973 – 4554.
- Bhanumathi.M. and R.Niroja., Eccentric Domination and Restrained Domination in Circulant graphs, International Journals of Engineering science, Advanced Computing and Bio-Technology Volume: 9, No. 1, January - March 2018, pp. 1-11. ISSN: 2249-5584(Print), ISSN: 2249-5592(Online). SJIF: 3.376(2017).
- Bhanumathi.M. and R.Niroja., Isolated Eccentric Domination in Graphs, International Journal of Advanced Research trends in Engineering and Technology(IJARTET) Vol. 5, Special issue 12, Apirl 2018, pp. 951 - 955. ISSN(P): 2394-3777, ISSN(E): 2394-3785.
- 10. Cockayne, E.J. and Hedetniemi, S.T., Towards a Theory of Domination in Graphs, Network, 7 : 247-261.1977
- 11. Harary, F., Graph Theory, Addition-Wesley Publishing Company Reading, Mass (1972).

- 12. Janakiraman, T.N., Bhanumathi, M. and Muthammai, S., Point-set Domination of the Boolean Graph BG₂(G). Proceeding of the National Conference on Mathematical Techniques and Application (NCMTA 2007) Jan 5 and 6, 2007, S.R.M University, Chennai. pp.191-206.
- 13. Janakiraman, T.N., Bhanumathi, M. and Muthammai, S., Eccentric Domination in Graphs, International Journals of Engineering science, Advanced Computing and BioTechnology Vol:1, No.2, pp1-16, 2010.
- Janakiraman, T.N., Bhanumathi, M. and Muthammai, S., On the Boolean Graph BG₂(G) of a Graph G. International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol.3, No.2, April-June 2012, pp:93-107
- Janakiraman, T.N., Bhanumathi, M. and Muthammai, S., Domination Parameters of Boolean Graph BG₂(G) and its Complement, International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol.3, No.3, July-September 2012, pp.115-135.
- Janakiraman, T.N., Bhanumathi, M. and Muthammai, S., Eccentricity properties of the Boolean graphs BG₂(G) and BG₃(G), International Journal of Engineering Science, Advanced Computing and Bio-Technology, Volume :4, Issue :2, Page : 32-42
- 17. Kulli, V.R., Theory of Domination in Graphs, Vishwa International Publication, Gulbarga, India.
- 18. Ore.O., Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Providence(1962). International Publication, Gulbarga, India.