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ABSTRACT: Analysis of PCG signals helps in diagnosis of cardio vascular disorder non-invasively. PCG signals 

are non-stationery in nature and hence time-frequency analysis of PCG is the most suitable means for analysis to 

determine the basic features of it. However, the PCG signals need to be denoised before feature extraction process 

and DWT proves to be most suitable for this purpose. During acquisition of HSS technically known as PCG various 

types of noises and artifacts contaminate the signal of interest. Hence denoising of the signal is inevitable before 

proceeding for diagnosis. DWT has been proved to be a powerful and handy tool along with thresholding for this 

purpose. However, the main challenge lies in the fact of selection of the suitable MWT with required number of DL 

and the type of thresholding function. The present work deals with the optimization of the selection process using 
varieties of MWT with varying DL and thresholding functions. Rigorous experiments have been conducted using 

codes in MATLAB environment to select the suitable MWT, DL and thresholding function. After optimization, the 

selected MWT, DL and Thresholding function have been applied on 22 PCG signals obtained from open data source 

and the performance of the process has been measured in terms of SNR and RMSE. It has been observed from the 

extensive experiments using different combination that sym20 wavelet with 10 decomposition level along with 

Bayesian Soft thresholding function provide the best result in denoising the applied PCG signals. The database used 

is that of MHSDB available at www.med.umich.edu/Irc/psb/heartsounds/index.htm provided by the University of 

Michigan Health System. 
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Abbreviations used: 

ASF Adaptive Smoothing Filters HSS Heart Sound Signals 

AV Atrioventricular ICA 
Independent Component 

Analysis 

BLW Baseline Wander IDWT 
Inverse Discrete Wavelet 

Transform 

BSS Blind source separation (BSS) LPF Low Pass Filter 

CAD Computer Aided Diagnosis MHSDB Michigan Heart Sound Data 
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Base 

CVD Cardio Vascular Disorder MRA Multi Resolution Analysis 

CVS Cardio Vascular System MWT Mother Wavelet 

CWT 
Continuous Wavelet 

Transform 
PCG Phonocardiogram 

DFT Discrete Fourier Transform RMSE Root Mean Square Error 

DL Decomposition Level SNR Signal to Noise Ratio 

DWT Discrete Wavelet Transform TF Thresholding Function 

EMD 
Empirical Mode 

Decomposition 
WAF wavelet adaptive filter 

FT Fourier Transform WPD Wavelet Packet Decomposition 

HPF High Pass Filter WT Wavelet Transform 

 

 

I. INTRODUCTION 

Computer Aided Diagnosis (CAD) boosts the potentials of physicians for more truthful and prompt diagnosis. 

Automatic diagnosis systems are developed to offer the physicians with more information and suggestions to the 

physicians to ease the diagnostic process. Diagnosis based on Heart Sound Signals (HSS) is an important indicator 

for detection of Cardio Vascular Disorder (CVD). Thus recording, processing, analysis and abstraction of HSS play 

an important role in automatic diagnosis of an early indication of CVD. Phonocardiography deals with the technique 
of generating phonocardiogram (PCG) signal depicting the nature of HSS for better understanding of the functioning 

of the Cardio Vascular System (CVS). Hence in order to develop an effective and efficient system for clinical 

diagnostic related to CVS, a good knowledge about the nature of HSS is very much required. Heart is the life line of 

the CVS to supply energies to various organs of the body with blood as the carrier for their proper functioning. 

Blood also takes away the waste product and gets itself purified in the lungs.  

Normally the heart is oriented on the slight left side of the chest. Its size is about the fist of the person concerned and 

weighs between 200 to 450 grams [1]. The pumping action of the heart is accomplished by various types of muscles 

attached to it. As the heart is engaged in circulation of fluid (blood) hence it is obvious that sounds will be generated 

during the circulation and control of blood flow in and out of various chambers in the heart. Moreover, vibrations 

created in the walls of the heart during the flow of blood also generate some mechanical sounds. All these sounds 

put together are called HSS and an electronic record of such signals is known as PCG. A typical HSS during a 
cardiac cycle contains four major sounds named as S1, S2, S3 and S4 apart from various types of murmurs. The first 

sound (S1) is caused due to initiation of left ventricular contraction, abrupt tension on the AV valve at its closure 

and turbulent flow of blood into the great vessels. It has the longest duration (100 msec – 160 msec) with a 

frequency range of 10 Hz to 150 Hz. S2, the second heart sound is caused due to the closure of aortic valve, closure 

of pulmonary valve and sudden reversal of blood flow. Its duration typically is 60 msec to 100 msec. it is of higher 

frequencies than S1. The source of sound heard as the third sound (S3) is due to rapid ventricular filling during early 

diastole. It is observed as low frequency transient. The fourth sound (S4) occurs at the end of the diastole due to 

atrial contraction. Pathological heart murmurs occur due to high rate of blood flow through normal and abnormal 

orifices at the heart valves, blood flow into a dilated chamber, and flow reversal of blood due to defects in heart 

valves. Innocent heart murmurs are observed due to circulation of blood through the heart chambers and valves or 

blood vessels attached to heart. Murmurs occur between S1 and S2 is called systolic murmurs and that occurring 
between S2 and S1 is called diastolic murmurs [2]. 

The HSS, i.e., the signal obtained from PCG has an edge over the sound obtained through clinical stethoscopes 

since, the PCG can be recorded and analyzed using signal processing systems and many more information can be 

extracted from them. PCG carries important physiological indications related to cardiovascular system. Significant 

diagnostic information can be obtained using computer aided diagnostic techniques and with the intervention of 

experienced clinical staff. Such information can be analyzed for an early diagnosis of functioning of the 

cardiovascular system [1]. Moreover compared to recording of other pathological signals related to cardiovascular 

system, PCG is more convenient, low cost and low maintenance requirements.  

To record the heart sound properly for audio-visual display and storage in electrical form, the clinical stethoscope is 

modified by the placement of a sensor to pick up the heart sound while the stethoscope is placed on the auscultation 

areas over the chest. The signal acquired by the sensor is then amplified and make it compatible to the display and 

storage systems. 
Frequency band of HSS typically remains in the range 10Hz – 250 Hz. Also their amplitudes are very low and hence 

are very susceptible to noise. Noise contamination is a major problem while capturing the HSS using electronic 
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circuitry [3]. Many sources of noise can contaminate the PCG; some of which are internal like lung sounds, 

movement of the subject etc. while some of them are external like improper contact between the body surface and 

the recording device, various electronic noises inherent to the circuits and semiconductor devices under use, power 

line interference, improper matching circuits, design flaws of the circuits etc.  

The noise picked up by the acquisition system causes misleading results during analysis of the HSS. Hence it is of 
utmost importance that the noise to be removed as far as possible before analyzing the HSS to come to any decision 

regarding the well being of the CVS. Traditionally the noise can be removed by utilizing suitable filters with 

appropriate pass band and stop band. But the problem with the use of filters is that the HSS share the same 

frequency band of the noise. Hence more careful and efficient techniques need to be adopted for denoising purposes. 

Another suitable technique to remove the noise is the use of frequency analysis of the HSS and then appropriate tool 

is to be applied to make the HSS noise free. However, transformation of HSS only in frequency domain will not be 

sufficient to remove the noise since the signal under consideration is of non-stationery type. Hence a method of 

transformation in time as well as frequency domain is adopted. Thus Wavelet Transform is an efficient alternative. 

As the further analysis of HSS to be accomplished using digital systems, DWT has been proved to be the best and 

suitable choice [4].  

Wavelet transform, a mathematical tool, is used very often whenever a signal of non-stationery nature is required to 

be analyzed both in time as well as frequency domain. The wavelets are used to decompose a signal into a single 
function called mother wavelet. DWT is a type of wavelet transform that utilizes a discrete set of wavelet functions 

and translations based on some predefined rules. DWT transforms the signal in mutually orthogonal set of wavelets 

in time and frequency domain at the same time which differentiates DWT from Continuous Wavelet Transform 

(CWT). DWT finds its wide application in processing biomedical signals. A time domain signal of finite length can 

be decomposed in different frequency bands to obtain the detail and approximation coefficients [5].  

The wavelet approach of denoising is based on ‘Decomposition’ through multilevel filter bank rather ‘filtering’ by a 

single filter. Wavelets are capable of reconstructing the original signal free from noise by using Inverse DWT 

(IDWT) transform operation. Also they do not introduce any phase shift in the signal; hence signal after 

reconstruction (synthesis) remains intact. Time-frequency localization can be achieved using wavelet, thus most of 

the energy content of the signal remains confined in a finite time interval. A good number of wavelet functions and 

associated algorithms are available for implementation. Wavelets have Multi Resolution Analysis (MRA) capability. 
Wavelet filter banks are capable of generating lower level coefficients even from the higher level coefficients [6]. 

Due to the features of DWT mentioned above, they can be proved to be an efficient and effective means to denoise a 

non-stationery signal.  

Decomposition (analysis), thresholding and reconstruction (synthesis) are the main stages of denoising a signal 

using DWT. To retrieve the noise free signal after denoising, orthogonal wavelet functions are to be chosen since 

they conserve the energy content of the signal [7]. Decomposition stage decides the coefficients of the low and high 

frequencies using the outputs of the filters of the filter bank. Thresholding is used to eliminate the values of the 

signal beyond the threshold thus actually removing the noise content in the signal. Reconstruction is the process of 

reclaiming back the original signal which is free from noise.   

The key factors behind the success of effective noise removal depend on the following factors: 

 Selection of the Mother Wavelet (MWT) 

 Choosing the number of Decomposition Level (DL) 

 Selection of Thresholding Function (TF) 

In order to obtain the best performance of the denoising process of the PCG signal, the above key factors need to be 

optimized [8]. The optimization will be done through experiments to be performed in MATLAB environment. The 

results obtained during the experiments are to be carefully observed based on the evaluation parameter under 

consideration like Signal to Noise Ratio (SNR) and Root Mean Square Error (RMSE). Adequate number of MWT, 

DL and TF are used to optimize the technique and components of denoising process.   

 

II. THEORETICAL BACKGROUND 

2.1 Baseline Wander Removal 

Any signal when recorded and measured must have a reference with respect to which the measurements are done. 

Such a level or line of reference is known as baseline. Normally this line must be a straight line in nature. It is also 
known as isoelectric line. Whenever a drift in the baseline occurs due to incorporation of noise in the acquisition 

system, the baseline does not remain fixed and keeps on varying its level. Such a behavior is known as Baseline 

Wander (BLW). BLW severely limits the decision making process based on PCG records. The drift or wandering of 

the baseline can be caused by external noises during acquisition of the signal. The sources may include all or some 

of the artifacts like movement of the patient during acquisition, breathing sound, loose coupling between the sensing 



Optimal Parameter Selection for DWT based PCG Denoising 

3510 

element and the points of auscultations etc. Normally such noises are of very low frequency and drift the baseline of 

the signal in an irregular manner. The presence of baseline drift effectively changes the amplitudes of the peaks 

exhibited by the signal and hence proper measurements of the peak amplitudes cannot be achieved. Thus wandering 

of the baseline degrades the signal quality and makes it difficult in decision making. Thus BLW creates mystifying 

data while measuring the parameters of the HSS [9].  
Removal of BLW is one of the primary steps in preprocessing the PCG signal. A high pass filter can be used to 

block the low frequency components in the signal causing baseline drift, however, cut-off frequency and phase 

response characteristics are the main considerations in designing such filters. Linear filters can be used to avoid the 

issue of phase distortion in such cases. Thus use of digital filters is another choice to remove such drift of the 

baseline. Better control over the cut-off frequency can be achieved by using time variant filters. Also wavelet 

adaptive filter (WAF) in the category of multirate system wavelet transform can also be utilized to remove the BLW 

of the PCG. Another filter known as empirical mode decomposition (EMD) can also be adopted to get rid of the drift 

in baseline. BLW can also be removed by using a cascaded structure of adaptive smoothing filters (ASF) consisting 

of a notch filter to eliminate the DC components present in the PCG followed by a comb filter. Blind source 

separation (BSS) and in particular independent component analysis (ICA) can also be an alternative for this 

operation. ASF with a higher window length of 2.2 sec with an iteration number equal to 5 has been employed in the 

current work for the removal of BLW. Following figure (Fig. 1) exhibits the visual quality of the signal before and 
after the removal of BLW [10]. 

 
Fig. 1: (a) PCG signal before BLW removal, (b) PCG signal before BLW removal 

2.2 Normalization 

Normalization of a signal is a technique to change the range of the signal by increasing or decreasing the sampled 

values of the signal by multiplying the signal by a predefined factor based on a mathematical function. 

Normalization and standardization are often used as synonymous; however, these two are different processing 

methods. Normalization scales the amplitude of the given signal to acquire values between 0 and 1 or between -1 

and 1 whereas standardization converts the signal amplitude in such a way that the standard deviation turns out to be 

1 and mean becomes 0. The aim of the normalization of a signal lies in the fact that normalization of a signal 

removes redundancy of amplitude data so that storage of the data occupies less space at the same time less data are 

to be handled for processing. Normalization can be done both in time as well as in amplitude domain. 

In the present work amplitude normalization is employed since amplitude is of more importance than frequency for 
further processing. Each sample of the given signal is divided by the maximum of absolute value of signal. Thus the 

signal range can be limited between -1 and 1. Initially the sampled signal from the original signal are collected into a 

fixed-size window and then they are normalized according to the predefined formula and then the window slides by 

a fixed amount in the time domain to normalize the samples lying in the next window. This is known as sliding 

window normalization technique. Thus the window keeps on sliding until the whole range of the signal in time 

domain is covered. It is not practical to observe the dynamic range of the signal after acquisition of the signal during 

every observation. Hence without the prior knowledge of the amplitude limits, amplitude thresholding cannot be 

employed.  

xn(t) =
x(t)

Max(|x(τ)|)
 ,     such that  t −

𝑙

2
< 𝜏 < 𝑡 +

𝑙

2
 

Where, l is the length of the sliding window, x(t) is the original signal recorded by stethoscope after removing the 

baseline wandering and xn(t) is the normalized signal. 

The following figure (Fig. 2)depicts the visual representation of the signal after normalization using the technique as 

discussed. The normalization has been applied after removing the baseline wandering of the original signal [11].  
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Fig. 2: Visual display of PCG signal after normalization 

2.3 DWT Based Denoising 

 

A wavelet is a small part of the signal located in time with concentrated amount of energy for better understanding, 
processing and analysis of signals. A wavelet transform is a type of linear transformation of a signal in time – 

frequency domain using mathematical function called wavelet function. The original transformation function is 

called “mother wavelet” and is used to generate “daughter functions” from mother wavelet by applying scaling and 

dilation on the mother wavelet. As in the case of Fourier analysis, inner products can be applied on this set of 

orthogonal sample data to decompose any signal. FT and WT are different in the sense that FT decomposes the 

signal only in the frequency domain whereas WT decomposes the signal both in time as well as frequency domain 

usinf shifting and scaling properties of WT [12]. WT is superior to FT since time information is not lost when 

moving to the frequency domain. Depending upon how wavelet transforms treat scale and translation, it is divided 

into two categories: Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). DWT proves 

to be a very powerful means in signal processing applications especially for non-stationery signals like biomedical 

signals the type of mother wavelets used in DWT are different from that of CWT [6].  

DWT decomposes the signal into sub-bands or levels covering different frequency ranges so that each level 
simultaneously splits the signal into high and low frequency components. Thus detailing of the signal can be obtained 

by checking the output of the filters at various levels. This particular technique is called wavelet decomposition 

technique, a more recent addition to multiscale signal processing applications. The Wavelet Filter is used for 

detailing of a signal, i.e. to highlight the signal in the desired spatial frequency domain. Filter bank is a collection of 

filters, mainly Low Pass Filter (LPF) and High Pass Filter (HPF) to emphasize or deemphasize certain portion of the 

signal in a selected frequency region with certain mutual and individual characteristics either with a common input 

or with a common output summation. Digital filter bank of  DWT provides the approximate and detail components 

of a signal at various desired frequencies in the spatial domain. Decomposition of a signal for detail analysis using 

wavelet packets is called Wavelet Packet Decomposition (WPD). At each level of decomposition, the wavelet 

transform provides approximate components and detail components. Such approximate components are further 

transformed to get new approximate components and detail components. Thus at every levels of decomposition, 
detail components of the signal under consideration are obtained. Number of levels is restricted depending upon the 

detailing of the signal required in the frequency domain. WPD is very accurate technique in analyzing the signal 

with the predominance of abstracting the information in the signal at higher frequency ranges. The wavelets 

approach is more appropriate due to the fact that the signal will be studied using a “dual” frequency-time 

representation, which allows separating noise frequencies from valuable signal frequencies. Under this approach, 

noise will be represented as a consistent high frequency signal in the entire time scope and so its identification will 

be easier than using Fourier analysis. DWT de-noising is performed in three basic steps: (i) analysis decomposition 

DWT filter bank, (ii) thresholding and (iii) synthesis reconstruction IDWT filter bank [13] which will be dicsussed 

separately in the subsequent paragraphs. Each mother wavelets lead to four different filters, two of them (LPF and 

HPF) will be used for decomposition purposes and the other two (LPF and HPF) will be used for reconstruction 

purposes. Thus to sum up it can be inferred that DWT is an operation that receives a signal as an input (a vector of 

data) and decomposes it in its frequential components. By this description, it may be confused with the also very 
important DFT (Discrete Fourier Transform) but the DWT has its tricks. First, DFT has a fixed frequency resolution 

(e.g.: It can separate frequential components lineally along the whole frequency range), on the other hand, DWT can 

separate frequential components with an increasing frequency resolution as the frequency increases. This means that 

at bigger frequencies, the number of components that can be distinguished is larger.  
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2.3.1  Decomposition of HSS using DWT filter bank 
A filter bank is a constellation of filters used to separate a signal into sub-signals (wavelets) consisting various 

frequency bands within the entire range of the signal frequency. In order to analyze the signal contaminated either 

by external interference, internal noise of the system under measurement or external noise generated from the 

acquisition system, the signal must be decomposed at various frequency levels to emphasize the frequency 
components under consideration. Such separation or decomposition of the signal can be achieved using filter banks 

[14]. The major operations performed to implement digital filter bank are: (i) Convolution and (ii) Wavelet 

transform analysis. As the localization capabilities in time and frequency domain is better for wavelet transform 

analysis compared to direct filtering of the signal in terms of noise detection and reduced signal distortion, wavelet 

transform is the natural choice for noise detection and removal from HSS. The filtering operation is implemented by 

convolving the impulse coefficients of the chosen wavelet function and the input signal.  Upon convolution, the 

output of the filters after down sampling by base 2 will be termed as coefficients and more specifically, the output of 

LPF is called ‘Approximation coefficients’ and that of HPF are termed as ‘Detail coefficients’. The basic unit of a 

digital filter to decompose the signal is as shown in Fig. (3) below. As has been depicted through the figure, the 

signal is applied as input simultaneously to a LPF with impulse response g[n] and a HPF with impulse response 

h[n].  

 

 
 

Figure (3): Basic unit of digital filter bank 

 
Basic units as shown above can be cascaded to implement the filter bank for the decomposition of the signal so that 

at each level the detail coefficients can be obtained with higher frequency resolution. The low pass representations 

of the signal are the approximation coefficients whereas the wavelet coefficients correspond to the detail coefficients 

at each level of decomposition. The detail coefficients of a noisy signal are often such that the coefficients of the 

signal are confined to coarser scales, while those of the noise are observed in finer scales. At the subsequent level, 

the approximation coefficients will act as the input and again this approximation coefficient will be divided into 

approximation part and detail part at the next level. Thus more the number of levels more will be the resolution 

coefficients. Using DWT, as the level increases, the frequency resolution increases whereas the time resolution 

decreases. The number of levels to be employed depends on the requirement of resolution. The whole scheme of 

decomposition tree of the digital filter bank has been shown in figure (4) where d1, d2, …. dn represent the 

corresponding detail coefficients at each level.   
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Figure (4): Block diagram of the filter bank implemented 

 

The decomposed signal then can be analyzed to find out the presence of various frequencies at various instants of 

time and hence can be modified accordingly to remove the noise appearing at high frequencies.  In Multi Resolution 

Analysis (MRA), the signal can be viewed as the sum of a smooth (“coarse”) part—reflects main features of the 
signal (approximation signal) and a detailed (“fine”) part—faster fluctuations represent the details of the signal [15]. 

In the present work MATLAB codes have been developed to implement filter bank and finally to remove the noise. 

2.3.2  Thresholding 

Thresholding is the next stage for denoising a non-stationery signal like PCG after wavelet decomposition using 

DWT. It is a non-linear processing technique that operates on one of the coefficients after decomposition using 

wavelet transform at a time. Threshold is a specific value, to be decided according to the type and nature of the 

thresholding function, in the amplitude scale of the signal so that the signal occupies a specific value depending on 

whether it is greater than or less than the threshold value. Various algorithms are in use for implementing 

thresholding operation. 

In most of the cases, the useful part of the signal is present either in the lower part of the frequency band of the range 

of frequency in which the signal varies or the variation of the signal is very smooth. On the other hand, the unwanted 

pat of the signal in the form of noise either appears in the higher frequency region or varies randomly. Hence a 
signal with the above features when decomposed using DWT technique, the noise part of the signal appear in the 

higher frequency band which can be eliminated using thresholding process. Hence to denoise any non-stationery 

signal like PCG, the following processes are adopted: the signal is first decomposed into detail coefficients and 

approximation coefficients using filter banks of wavelet function, properly choosing the threshold level and 

thresholding function to quantify the high frequency components of the wavelet decomposition and reconstruction 

of the signal using IDWT to make the signal free from noises [16]. 

There are good numbers of thresholding techniques but in PCG denoising widely used thresholding estimation 

techniques used are: ‘rigrsure’ [17], ‘heursure’ [18], ‘sqtwolog’ [19], and ‘minimaxi’ [20]. Based on the nature of 

shrinking of the coefficients to zero, threshold functions can be categorized into two types: Hard Thresholding 

function and Soft Thresholding function which are adopted extensively for the denoising purpose of PCG signals 

[21]. In hard threshold function, the decomposition coefficients those are less than the threshold level are set to zero 
and retains the coefficients those are higher than the threshold value thus maintaining the local properties of the 

signal. However, this causes a discontinuity in the reconstructed signal and makes it oscillating. In soft thresholding, 

coefficients lower than the threshold level, are replaced by zero while the other coefficients get shrank by the 

threshold level. The shrinkage of the wavelet coefficients using soft threshold function reduces the effect of 

singularities and transients that cannot be resolved by hard thresholding which produces higher SNR value than the 

soft threshold function [6]. 

As is clear from the above discussion, soft thresholding function exhibits a much better continuity but provides a 

constant deviation as is clear from the characteristics of the thresholding functions (Fig. 5) shown below. 

 

 
 

Fig.5: Thresholding Functions 

 

A judicious selection of threshold value affects the DWT based denoising process largely, since a lower value of 

threshold may not be effective to curb the noise from the signal whereas a large value of threshold may adversely 
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affect the signal components [22], hence a trial and error method has been adopted to choose the suitable threshold 

level looking into the noise level and signal level of interest. 

 

2.3.3  Reconstruction of HSS using IDWT filter bank 

Signal reconstruction is a process of forming the signal back from its samples taken at equal intervals without any 
loss of information contained in the original signal. The words reconstruction and synthesis of a signal are used 

interchangeably. Synthesis is a process to assemble the original signal from equally spaced samples without any 

deformation of the original signal. After denoising the PCG using DWT filter bank analysis and thresholding, the 

reconstruction of the outputs of the thresholding units can be done to get back the noise free PCG signal. IDWT is a 

synthesis process to reconstruct the original signal from the approximation coefficients and detail coefficients after 

thresholding using the same wavelet function and level of decomposition as used during analysis process [23].  

During reconstruction, the detail coefficients and approximation coefficients obtained at the outputs of the 

thresholding unit are first upsampled by two by adding zero in the middle of the sample signals in order to 

artificially enhance the sampling rate. These samples are then allowed to pass through high pass and low pass 

synthesis filters and then added together. This process is repeated for same number of processing steps using the 

same wavelet function as has been done in decomposition process.   

 
Figure. 6. Typical outputs of reconstruction LPF and HPF 

 

Hence to conclude, the denoising of HSS includes DWT Decomposition to obtain the approximation coefficients 

and detail coefficients, thresholding to compress the data by selecting a suitable thresholding function and 

thresholding level and finally IDWT synthesis to reconstruct the original signal after freeing it from embedded 

noise. A detail block diagram of the whole denoising process consists of Decomposition using DWT, Thresholding 

and Reconstruction using IDWT techniques is presented below (Fig. 7) where x(n) is the HSS signal obtained after 

baseline wander removal and normalization and y(n) is the HSS after denoising:  
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Figure 7: Block diagram of DWT based decomposition and IDWT based reconstruction for denoising HSS 

 

III. RESULTS AND DISCUSSIONS 

It has been observed and reported by various researchers that DWT is a suitable technique for denoising of PCG 
signals. The procedure of the signal denoising based on DWT consists of three steps; decomposition of the signal, 

thresholding and reconstruction of the signal. As the decomposition and reconstruction process of the signal employ 

the same MWT and number of DL, the main challenge to obtain the best performance of the denoiser largely 

depends upon the factors like (i) selection of the suitable MWT, (ii) optimization of the number of DL and (ii) type 

of thresholding function being adopted. However, researchers have yet to establish the type of MWT and the DL 

that can yield the best performance for denoising PCG signal. The present work is centered on Daubechies (db), 

Coiflets (coif), Symlets (sym), Biorthogonal (bior), Reverse Biorthogonal (rbio) MWT families used for analysis of 

non-stationery type of signals like PCG. Empirical or visual observations can be used for the selection of suitable 

MWT along with prior knowledge and experiences [24]. There are two types of thresholding techniques in use: Hard 

thresholding and Soft thresholding for the purpose of denoising PCG signals. The most known threshold selection 

algorithms are minimax, universal and rigorous sure (rigresure) threshold estimation techniques [25].  
In order to optimize the MWT and DL, 22 PCG signals of different nature obtained from the open source mentioned 

earlier have been denoised by using various types of orthonormal MWT with varying DL and seven types of soft 

thresholding functions. The performances of the MWT and related DL considered in the experiments performed are 

evaluated based on the following performance metrics: Signal-to-Noise Ratio (SNR), and Root Mean Square Error 

(RMSE).   

SNR is used to compare the performances of the denoising system. A value of 16 – 24 dB signifies a good 

performance in PCG denoising system [22]. The formula used for obtaining the SNR in dB is as under: 

 

SNR = 10 log10 (

1
N

∑ (xa(n))2N
n=1

1
N

∑ (xa(n) − y(n))2N
n=1

) 
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Where 

𝑁 =  Length of a signal 

𝑥𝑎(𝑛) =  Actual PCG signal (With Noise) 

𝑦(𝑛) =  Denoised PCG signal  (after DWT denoising) 

 

RMSE is used to avoid the issues concerning sample size. Values of RMSE range from 0 to 1. A value of RMSE 
below 0.08 is now considered to be a good fit for a denoising system [22]. The following formula has been used in 

the present work for the calculation of RMSE: 

 

RMSE = √
1

N
∑(xa(n) − y(n))2

N

n=1

 

The results obtained after exhaustive experiments performed using a total of 73 MWT out of which 20 in 

Daubechies (db), 20 in Symlets (Sym), 5 in  Coiflets (Coif), 14 in Biorthogonal (Bior) and 14 in Reverse 

Biorthogonal (rbio) families of MWT with decomposition levels varying from 1 to 10 and considering seven TFs 

namely Minimax, Universal, Block James Stein, Bayes Mean, Bayes Median, Bayes Soft and Sure threshold in soft 

thresholding domain are presented in the following Tables {1-3} to draw the final conclusions. The best 
performances of the denoising operations have been observed for different TF and at different DL are presented in 

the following table (Table 1) considering a single PCG signal obtained from the open database as mentioned earlier. 

Table 1: Comparison of SNR values obtained using various Thresholding functions and MWT at various DL 

Type of 

TF 
MWT DL 1 DL 2 DL 3 DL 4 DL 5 DL 6 DL 7 DL 8 DL 9 DL 10 

Minimaxi db20 4.0061 7.0104 10.0274 13.0208 16.0190 18.7075 15.1010 12.7870 12.0665 12.0542 

Universal 

Threshold 
sym20 4.0194 7.0350 10.0379 13.0512 16.0795 18.7945 14.2645 11.6652 10.9009 10.8883 

Block JS rbio5.5 3.9166 6.9399 9.9856 13.0107 16.0058 17.8444 18.6775 19.0698 19.2182 19.2392 

Bayes 
Mean 

sym20 4.0068 7.0103 10.0204 13.0301 16.0087 18.7146 19.5434 19.8222 19.9778 20.1290 

Bayes 

Soft 
db19 4.0087 7.0160 10.0126 13.0350 16.0395 18.7438 19.1806 19.1806 19.1806 19.2144 

Bayes 

Median 
sym18 4.0119 7.0216 10.0300 13.0585 16.0664 18.7398 19.5060 19.8150 19.9742 20.0792 

SURE 

(Steins 

Unbiased 

Estimate 

of Risk) 

sym20 4.0152 7.0262 10.0309 13.0512 16.0508 18.7481 19.4886 19.6943 19.8090 19.9717 

 

From the above table it is observed that the highest SNR is obtained while the PCG signals are denoised using the 

combination of sym 20 MWT at DL = 10 and Bayes Mean as the thresholding function. The next experiment 

conducted is to check the denoising performances of the best combinations of the MWT, DL and the thresholding 

functions for 22 PCG signals obtained from open data source and to obtain the average values of SNR and RMSE. 
 

Table (2): SNR values with respect to depth of decomposition and threshold functions 

(only the best results obtained are presented) 

Sl. 

No. 
Types of PCG signals 

Minimax

i TF  

(MWT: 

db20 )  

(DL=6) 

Universal 

TF  

(MWT:  

sym20)  

(DL=6) 

Block JS TF  

(MWT: 

rbio5.5 )  

(DL=10) 

Bayes 

Mean TF  

(MWT:  

sym 20)  

(DL=10) 

Bayes 

Median TF  

(MWT:  

sym18)  

(DL=10) 

Bayes soft 

TF  

(MWT:  

db19 ) 

(DL=10) 

SURE 

TF  

(MWT:  

sym20 )  

(DL=10) 

1 Normal s1& s2 19.1091 19.0431 22.2438 23.2476 23.0765 20.8827 22.4716 

2 Split s1 19.1247 19.0551 21.8080 22.5912 22.6572 20.7231 22.1940 
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3 s4 gallop 18.7374 19.0382 21.5605 22.6561 22.6427 20.5162 21.9978 

4 Midsystolic click 18.2332 19.0636 21.6362 22.8724 22.8118 20.3645 22.0988 

5 s3 gallop 18.5168 19.0434 21.4187 22.4419 22.3425 20.2600 21.9289 

6 Early systolic murmur 16.6888 19.0446 19.6473 20.9539 20.7222 19.6688 20.8385 

7 Mid systolic murmur 13.8438 14.8542 18.3768 18.6147 18.1876 16.9118 18.5628 

8 Late systolic murmur 18.1584 17.8701 19.7205 20.1079 19.6063 18.8002 20.2737 

9 Holo systolic murmur 15.2650 16.0367 18.3534 18.6806 18.0044 16.9229 18.7425 

10 
Systolic click with late 

systolic murmur 
17.7598 18.7293 20.8253 22.0486 21.8656 19.7651 21.4087 

11 s4 and late systolic murmur 15.8798 17.3950 18.9790 19.3681 18.9010 17.9508 19.3210 

12 
s3 and holo systolic 
murmur 

14.4415 15.7706 18.3563 18.4719 17.9987 16.8374 18.5178 

13 
Mitral opening snap and 

dystolic murmur 
17.1254 19.0287 20.2384 21.1250 20.9787 19.2358 20.9192 

14 Normal s1 & s2 aortic 20.4169 19.0570 22.9344 23.2623 23.0765 21.2752 22.8887 

15 Aortic stenosis 15.2649 18.7288 20.092 20.8977 20.8981 19.6943 20.4028 

16 
Aortic early diastolic 
murmur 

19.1316 18.9522 22.3732 23.3657 23.2631 20.7767 22.5933 

17 
Aortic stenosis and 

regurgitation 
14.8282 18.0114 18.9355 19.6824 19.5895 18.7566 19.4104 

18 N single s1 pulmonic 20.3568 19.0674 22.9240 23.249 23.0972 21.2865 22.8792 

19 Split s2 persistent pulmonic 18.1159 19.0162 21.1979 22.0058 21.9094 20.1874 21.5270 

20 Pulmonic split s2 sp 19.0613 19.0244 22.1285 22.7072 22.4688 20.6176 22.1681 

21 
Ejection systolic murmur 

s2 splitting 
17.7545 19.0035 20.3284 21.2990 20.9646 19.7368 21.0003 

22 
Ejection systolic murmurs2 
split pulmonic 

15.1141 18.7305 19.2294 20.1202 20.0787 19.2179 19.9598 

AVERAGE SNR 17.40581 18.34382 20.60489 21.35315 21.14278 19.5631 21.0047 

 

Table (3): RMSE values with respect to depth of decomposition and threshold functions 

(only the best results obtained are presented) 
 

Sl. 

No. 
Types of PCG signals 

Minimaxi 

TF  

(MWT: 

db20 )  

(DL=7) 

Universal 

TF  

(MWT:  

sym20)  

(DL=6) 

Block JS TF  

(MWT: 

rbio5.5 )  

(DL=10) 

Bayes 

Mean TF  

(MWT:  

sym 20)  

(DL=10) 

Bayes 

Median TF  

(MWT:  

sym18)  

(DL=10) 

Bayes soft 

TF  

(MWT:  

db19 ) 

(DL=10) 

SURE 

TF  

(MWT:  

sym20 )  

(DL=10) 

1 Normal s1& s2 0.0132 0.0133 0.0092 0.0082 0.0083 0.0107 0.0089 

2 Split s1 0.0173 0.0174 0.0127 0.0116 0.0115 0.0144 0.0121 

3 s4 gallop 0.0187 0.018 0.0135 0.0119 0.0119 0.0152 0.0128 

4 Midsystolic click 0.0174 0.0158 0.0118 0.0102 0.0103 0.0136 0.0112 

5 s3 gallop 0.0204 0.0192 0.0146 0.013 0.0131 0.0167 0.0138 

6 Early systolic murmur 0.0198 0.0151 0.0141 0.0121 0.0124 0.0140 0.0123 

7 Mid systolic murmur 0.0292 0.0260 0.0173 0.0168 0.0177 0.0205 0.0169 

8 Late systolic murmur 0.0193 0.0200 0.0161 0.0154 0.0164 0.0179 0.0151 

9 Holo systolic murmur 0.0295 0.0270 0.0207 0.0199 0.0216 0.0244 0.0198 

10 Systolic click with late 0.0183 0.0164 0.0129 0.0112 0.0114 0.0145 0.012 
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systolic murmur 

11 
s4 and late systolic 
murmur 

0.0229 0.0192 0.016 0.0153 0.0162 0.018 0.0154 

12 
s3 and holo systolic 

murmur 
0.0263 0.0225 0.0167 0.0165 0.0174 0.0199 0.0164 

13 
Mitral opening snap and 

dystolic murmur 
0.0147 0.0118 0.0103 0.0093 0.0094 0.0115 0.0095 

14 Normal s1 & s2 aortic 0.0172 0.0201 0.0128 0.0124 0.0126 0.0155 0.0129 

15 Aortic stenosis 0.0210 0.0141 0.012 0.0110 0.011 0.0126 0.0116 

16 
Aortic early diastolic 

murmur 
0.0133 0.0136 0.0091 0.0082 0.0083 0.011 0.0089 

17 
Aortic stenosis and 

regurgitation 
0.0222 0.0154 0.0138 0.0127 0.0128 0.0141 0.0131 

18 N single s1 pulmonic 0.0173 0.0200 0.0129 0.0124 0.0126 0.0155 0.0129 

19 
Split s2 persistent 

pulmonic 
0.0200 0.0180 0.0140 0.0128 0.0129 0.0157 0.0135 

20 Pulmonic split s2 sp 0.0173 0.0174 0.0122 0.0114 0.0117 0.0145 0.0121 

21 
Ejection systolic murmur 

s2 splitting 
0.0191 0.0166 0.0142 0.0127 0.0132 0.0152 0.0132 

22 
Ejection systolic 

murmurs2 split pulmonic 
0.0303 0.0200 0.0189 0.0170 0.0171 0.0189 0.0174 

AVERAGE RMSE 0.0202 0.0180 0.0139 0.0128 0.0131 0.0156 0.0132 

The above two tables (Table 2 & 3) confirmed the conclusion that the combination comprised on sym 20 as the 

MWT with 10 Decomposition Level and Bayes Soft as the thresholding function yielded the best result in denoising 

the PCG signal. Hence this combination can be very effectively used for the denoising purpose of PCG signal for 

further processing. 

IV. CONCLUSIONS 

In order to optimize the selection of Mother wavelet type, number of decomposition level and the thresholding 

function for denoising PCG signal, available from open source mentioned earlier, rigorous experiments have been 

conducted under MATLAB® (2019a) platform. It is noteworthy to mention that the MWT with higher oscillation 

provide better results. In the present work symlet wavelet with higher oscillations in its mother wavelet produces 

better result compared to other wavelets with fewer oscillations. Though the computational complexity increases 

with the increase of number of oscillations, yet the performance of the denosier enhances as far as SNR and RMSE 

are concerned. The performance of the denoiser have been found to be better with the increase in the number of 

decomposition levels in most of the cases but decomposition level with more than 10 provides almost flat 

performances. Hence an optimum value of 10 as the number of decomposition level can be set for the denoiser. Thus 

the optimized performance for the purpose of denoising the PCG signals a combination of sym 20 as the MWT with 
10 DL and Bayes Soft as the thresholding function can be obtained.  
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