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Abstract - A finite and simple graph G is said to be equitably k − colorable if its vertices can be partitioned into k − classes 

V1, V2, … , Vk such that each Vi is an independent set and ||Vi| − |Vj|| ≤ 1 holds for every i, j. The smallest integer k for which 

G is equitable chromatic number of G and denoted by χ=(G). The equitable chromatic threshold of a graph G, denoted by 

χ=
∗ (G), is the minimum t such that G is equitably k − colorable for all k ≥ t. This paper focuses on the equitable colorability 

of rooted product of graphs, in particular, exact values or upper bounds of χ=(GoH) and χ=
∗ (GoH) when G and H are cycles, 

paths, complete graphs and complete n − partite graphs have been found. 
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Introduction 

 

     Let G = (V, E) be a simple connected graph with vertex set V(G) and edge set E(G). All the definitions which 

are not discussed in this paper one may refer [1, 2]. All graph consider in this paper are simple, finite and 

undirected. Here Pm, Cm, K1,m, Kk,m, Kx1,x2,...,xr
 and Qr respectively denotes the path, the cycle, the star, the 

complete bipartite, the complete r partite and the hypercube graph on k, m, r vertices. Graph theory is one of the 

most interesting branches of mathematics, with wide applications in the domain of physical networks, organic 

molecules, ecosystems, sociological relationships, databases, or in the flow of control in a computer program. By 

a graph coloring, it means to assign a color to each vertex of the graph such that no two adjacent vertices have 

the same color. The minimum number of colors required for coloring of a graph G is called chromatic number 

and is denoted by χ(G). The vertices of the same color form a color class. Various types of graph coloring is 

there, one among them is equitable coloring. This coloring parameter was first introduced by Meyar [3] in 1973. 

If the set of vertices of a graph G can be partitioned into k classes V1, V2, … , Vk such that each Vi is an 

independent set and the condition||Vi| − |Vj|| ≤ 1 holds for every pair (i, j), then G is said to be equitably k-

colorable. The smallest integer k for which G is equitably k-colorable is known as the equitable chromatic 

number of [7-10] G and is denoted by χ=(G). It is obvious that χ(G) ≤ χ=(G). Note that χ(G) and χ=(G) can vary 

a lot. For example, χ(K1,n) = 2 < 1 + ⌈
n

2
⌉ = χ=(K1,n) for n ≥ 3. The equitable chromatic threshold of a graph G, 

denoted by χ=
∗ (G), is the minimum t such that G is equitably k − colorable for all k ≥ t. 

     Applications of equitable coloring can be found in scheduling and timetabling. Consider, for example, a 

problem of constructing university timetables. As we know, we can model this problem as coloring the vertices 

of a graph G whose vertices correspond to classes, edges correspond to time conflicts between classes, and colors 

to hours. If the set of available rooms is restricted, then we may be forced to partition the vertex set into 

independent subsets of as near equal size as possible, since then the room usage is the highest. We can find 

another application of equitable coloring in transportation problems. Here, the vertices represent garbage 

collection routes and two such vertices are joined by an edge when the corresponding routes should not be run on 

the same day. The problem of assigning one of the six days of the work week to each route becomes the problem 

of 6-coloring of G. 

     In 1973, Meyer [3] formulated the following conjecture: Equitable Coloring Conjecture [3]. For any 

connected graph G, other than a complete graph or an odd cycle, χ=(G) ≤ Δ(G). This conjecture has been 

verified for all graphs on six or fewer vertices. Lih and Wu [10] proved that the Equitable Coloring Conjecture is 

true for all bipartite graphs. Wang and Zhang [14] considered a broader class of graphs, namely r-partite graphs. 

They proved that Meyer’s conjecture is true for complete graphs from this class. Also, the conjecture was 

confirmed for outerplanar graphs [12] and planar graphs with maximum degree at least 13 [13]. We also have a 

stronger conjecture: Equitable Δ − Coloring conjecture[7]. If G is a connected graph of degree Δ, other than a 

complete graph, an odd cycle or a complete bipartite graph K2n+1,2n+1 for any n ≥ 1, then G is equitably Δ − 

Colorable. The Equitable Δ − Coloring Conjecture holds for some classes of graphs, e.g., bipartite graphs [10], 

outerplanar graphs with Δ ≥ 3 [12] and planar graphs with Δ ≥ 13 [13]. The detailed survey of this type of 

coloring is found in Lih [15]. 

     The following work makes provision for the preliminaries on equitable coloring of cartesian, weak tensor, 

strong tensor, corona products and follows the equitable coloring of rooted products. Using some specific 
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properties we arrive at some exact values of equitable chromatic number and equitable chromatic threshold 

number. 

 

Preliminaries 

 

     Before we go through the main results, we want several preliminary results.  

Definition 2.1 [11] For graphs G and H, the Cartesian product of G and H is the graph G ◻ H with vertex set 

V(G ◻ H) = {(x, y): x ∈ V(G), y ∈ V(H)}, and edge set E(G ◻ H) = {(x, u)(y, v): x = y with uv ∈ E(H), or xy ∈
E(G) with u = v}.  

Theorem 2.2 [5] If G1 and G2 are equitably k − colorable, then G1 ◻ G2 is equitably k − colorable.  

Theorem 2.3 [4] Let G and H be two graphs with V(G) = V(H) such that E(G) ⊆ E(H).Then χ=(G) ≤ χ=(H).  

Theorem 2.4 [4] χ(G1 ◻ G2) = max{χ(G1), χ(G2)}.  

Theorem 2.5 [4] χ=(G1 ◻ G2) = max{χ(G1), χ(G2)}.  

Corollary 1 [4] χ=
∗ (G1 ◻ G2) ≤ max{χ=

∗ (G1), χ=
∗ (G2)}.  

Definition 2.6 [4] The strong tensor product of graphs G and H is the graph G × H with vertex set V(G) × V(H) 

and edge set {(x, y)(x′, y′): {x, y), (x′, y′)} ∈ E(G ◻ H) ∪ E(G × H)}.  

Theorem 2.7 [4] Let G1, G2 be graphs with atleast one edge each. Then 

                    χ=(G1 ⊠ G2) ≥ max{χ(G1), χ(G2)} + 2. 

Theorem 2.8 [17] The weak tensor product of graphs G and H is the graph G × H with vertex set V(G) × V(H) 

and edge set {(x, y)(x′, y′): xx′ ∈ E(G) and yy′ ∈ E(H)}.  

Theorem 2.9 [18] χ(Km × Kn) = min(m, n).  

Theorem 2.10 [5] χ=(Km × Kn) = min(m, n). 

      χ=(Cm × Cn) = χ=
∗ (Cm × Cn) = {

2 if mn is even
3 otherwise

 

Theorem 2.11 [16] The corona of two graphs G and H is the graph GoH formed one copy of G and |V(G)| copies 

of H, where the ith vertex in the ith copy of H.  

Result 1 Let G1 = K3,3 and G2 = K1,1,2 . Then χ=(G1 ◻ G2) = 4.  

Graph products are interesting and useful in many situations. For example, Sabbidussi [21] showed that any 

graph has the unique decomposition into prime factors under the Cartesian product. Feigenbaum and Sch affer 

[19] showed that the strong tensor product admits a polynomial algorithm for decomposing a given connected 

graph into its factors. An analogous result with respect to weak tensor product is due to Imrich [20]. The 

complexity of many problems, also equitable coloring, that deal with very large and complicated graphs is 

reduced greatly if one is able to fully characterize the properties of less complicated prime factors. 

 

Equitable coloring of rooted products 

 

     Here we discuss about the equitable coloring on the rooted product of graphs. A graph in which one vertex is 

fixed as a root vertex to distinguish it from other vertices is called a rooted graph. Let G be a graph with n 

vertices and H be a sequence of n rooted graphs H1, H2, … , Hn. The rooted product graph G(H) is obtained from 

the graphs G, H1, H2, … , Hn by identifying the root vertex of Hi with the ith vertex of G [6].  

 
Figure 1: C7 o C5 

 

Theorem 3.1 Let G1 and G2 be any two graphs. Then χ=(G1oG2) = Max{χ(G1), χ(G2)}.  

 

Proof. Since 𝑉(𝐺1𝑜𝐺2) = 𝑉(𝐺1 ◻ 𝐺2). 𝐸(𝐺1𝑜𝐺2) ⊆ 𝐸(𝐺1 ◻ 𝐺2). It follows that 𝜒=(𝐺1𝑜𝐺2) ≤ 𝜒=(𝐺1 ◻ 𝐺2). 

Hence  

 𝜒=(𝐺1𝑜𝐺2) ≤ 𝜒=(𝐺1 ◻ 𝐺2) = 𝑀𝑎𝑥{𝜒(𝐺1), 𝜒(𝐺2)}. (1) 

Also since 𝐺1, 𝐺2 ≤ 𝐺1𝑜𝐺2. 𝜒=(𝐺1), 𝜒=(𝐺2) ≤ 𝜒=(𝐺1𝑜𝐺2). Hence  
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 𝑚𝑎𝑥(𝜒=(𝐺1), 𝜒=(𝐺2)) ≤ 𝜒=(𝐺1𝑜𝐺2) (2) 

From (1) and (2) 𝜒=(𝐺1𝑜𝐺2) = 𝑀𝑎𝑥{𝜒(𝐺1), 𝜒(𝐺2)}.  
Note: In view of the Theorem 2.1, 𝜒=(𝐺1𝑜𝐺2) ≤ 𝜒=(𝐺1 ◻ 𝐺2). 

The equality need not hold for every pair of graphs. Here is an example where equality fails. Let 𝐺1 = 𝐾3,3 and 

𝐺2 = 𝐾1,1,2. We have 𝜒=(𝐺1) = 2 and 𝜒=(𝐺2) = 3 but 𝜒=(𝐺1 ◻ 𝐺2) = 4, 𝜒=(𝐺1𝑜𝐺2) = 3. Hence 𝜒=(𝐺1𝑜𝐺2) <

𝜒=(𝐺1 ◻ 𝐺2).  

Theorem 3.2 If 𝐺1 and 𝐺2 are equitably 𝑘 − colorable then 𝐺1𝑜𝐺2 is equitably 𝑘 colorable.  

 

Proof. By theorem 2.2 𝐺1 ◻ 𝐺2 is equitably 𝑘 − colorable.𝐺1𝑜𝐺2 is a subgraph of 𝐺1 ◻ 𝐺2 with 𝑉(𝐺1𝑜𝐺2) =
𝑉(𝐺1 ◻ 𝐺2), such that 𝐸(𝐺1𝑜𝐺2) ⊆ 𝐸(𝐺1 ◻ 𝐺2). So 𝐺1𝑜𝐺2 is also equitably 𝑘 − colorable.  

Corollary 2 𝜒=
∗ (𝐺1𝑜𝐺2) ≤ 𝑚𝑎𝑥{𝜒=

∗ (𝐺1), 𝜒=
∗ (𝐺2)}  

 

Proof. By Theorem 2.3 𝜒=
∗ (𝐺1𝑜𝐺2) ≤ 𝜒=

∗ (𝐺1 ◻ 𝐺2) ≤ 𝑚𝑎𝑥{𝜒=
∗ (𝐺1), 𝜒=

∗ (𝐺2)}.  

Lemma 3.3 Let 𝐺 = 𝐺1𝑜𝐺2, where each 𝐺𝑖 is a path,a cycle, a hypercube or a complete graph. Then 𝜒(𝐺) =
𝜒=(𝐺) = 𝜒=

∗ (𝐺) = 𝑚𝑎𝑥{𝜒(𝐺𝑖)/𝑖 = 1,2}.  

 We generalize the above lemma as follows.  

Theorem 3.4 Let 𝐺 = 𝐺1𝑜𝐺2𝑜. . . 𝑜𝐺𝑛, where each 𝐺𝑖 is a path,a cycle, a hypercube or a complete graph. Then 

𝜒(𝐺) = 𝜒=(𝐺) = 𝜒=
∗ (𝐺) = 𝑚𝑎𝑥{𝜒(𝐺𝑖)/𝑖 = 1,2, . . . , 𝑛}.  

 

Proof. For all the above graphs 𝜒(𝐺𝑖) = 𝜒=(𝐺𝑖) = 𝜒=
∗ (𝐺𝑖) for each i. 𝜒(𝐺) ≤ 𝜒=(𝐺) ≤ 𝜒=

∗ (𝐺) ≤
𝑚𝑎𝑥{𝜒=

∗ (𝐺𝑖)} = 𝑚𝑎𝑥{𝜒(𝐺𝑖)} = 𝜒(𝐺).  
Corollary 3. 𝜒=(𝑃𝑚 𝑜 𝑃𝑛) = 2. 
 

Proof. We know that 𝜒=(𝑃𝑚  ) = 𝜒=( 𝑃𝑛) = 2, 𝜒=
∗ (𝑃𝑚 ) =  𝜒=

∗ (𝑃𝑛 ) = 2 for all 𝑚, 𝑛. So 2 = 𝜒=(𝑃𝑚 )  ≤
𝜒=(𝑃𝑚  𝑜  𝑃𝑛)  ≤ 𝜒=

∗ (𝑃𝑚 𝑜 𝑃𝑛  ) = 𝑚𝑎𝑥{2,2}. Hence 𝜒=(𝑃𝑚  𝑜 𝑃𝑛) = 2. 

 
Figure 2: 𝑃3𝑜𝑃4 

Theorem 3.5 Let 𝐺1(𝑋1, 𝑌1) and 𝐺2(𝑋2, 𝑌2) be two bipartite graphs such that one of them contains atleast one 

edge and let |𝑋2| = |𝑌2|. Then 𝜒=(𝐺1𝑜𝐺2) = 2. 
  

Proof. The graph 𝐺1𝑜𝐺2 is given in the following figure 1. The polygons represent independent sets 

𝑍1, 𝑍2, 𝑍3and 𝑍4 of |𝑋1||𝑋2|, |𝑋1||𝑌2|, |𝑌1||𝑋2|, |𝑌1||Y2| vertices respectively. The lines show the possibilites of 

existing edges. If |X2| = |Y2|, we can assign color 1 to the vertices of Z1 and Z2 and color 2 to the remaining 

vertices. The obtained coloring is equitable. 

 
Figure 3: χ=(G1oG2) 

 

Corollary 3 Let k, m, n and r be positive integers. Then the equitable chromatic numbers of the following graphs 

are all equal to 2. C2moC2n, PmoC2n, QroC2n, Km,koC2n, K1,moC2n, PmoC2n, PmoP2n, 

QroP2n, Km.koP2n, K1,moP2n, QroQr where Qr is a hypercube and Kk,m is a complete bipartite graph. 
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Proof. Immediate from the above theorem.  

Theorem 3.6 Let G1(X1, X2, . . . , Xr) and G2(Y1, Y2, . . . , Yr) be any r − partite graphs such that |Y1| = |Y2| =. . . =
|Yr|. Then X=(G1 ◻ G2) ≤ r.  
 

Proof. Use an r × r latin square.  

[

1 2
2 3

3
4

⋯
r − 1 r

r 1
⋮ ⋱ ⋮

r 1 2 ⋯ r − 2 r − 1

]  

 

 

Conclusion 

     We have found that the exact bound for the equitable chromatic number and equitable chromatic threshold 

number of rooted product of some fundamental structure graphs. 
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