Cartesian Product Of S−Valued Graphs

M. Abirami 1, G. Govindharaj 2 and M. Sundar 3

1 Bannari Amman Institute Of Technology, Sathyamangalam, India.
2 M. Kumarasamy College Of Engineering, Karur, India.
3 Bannari Amman Institute Of Technology, Sathyamangalam, India.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Keywords: S−Valued Graphs, Semiring And Cartesian Product.
Ams Classifications: 16y60, 05c25, 05c76

INTRODUCTION
The Theory Of S-Valued Graphs Is Introduced By Dr.M.Chandramouleeswaran In The Year The Year 2015 [4]. Since Then, Many Works Have Been Carried Out Such As Regularity Conditions, Domination Parameters, Connectivity And Colouring Of Graphs By Various Authors [2]. Recently, We Introduced The Idea Of S’ Valued Graphs By Means Of Cartesian Product. The Concept Of Defining Cartesian Product Between Two Graphs Is That The Assignment Of Labels To The Vertices And Edges. By Considering The Vertex Valued Function Σ And The Cartesian Product Of Graphs, Edge Labels Have Been Assigned. As Of Now, All The Authors Worked In S−Valued Graphs Are Allotted The Weights To The Vertices From The Members Within The Semiring S And Use The Canonical Preorder On S To Label The Edge Weights.
Here, We Establish A New Kind Of Graphs Namely, S•− Valued Graphs By Labelling The Weights To The Edges By Considering The Binary Operation ‘•’ In The Semiring And It Is Denoted By G•S. Thereafter, We Define The Cartesian Product Of S’− Valued Graphs And Study The Regularity Conditions On S’− Valued Graphs.

PRELIMINARIES

0.X = X.0 = 0 ∀X ∈ S.

Definition 2.2. [3] The Relation ≼ Is Claimed To Be A Canonical Pre-Order In S If For A, B ∈ S, A ≼ B If And Only If There Exists ε ∈ S Such That A + ε = B.

Definition 2.3. [4] A Semiring Valued Graph Is A Combination Of A Graph G = (V, E) And A Semiring S, Is Defined To Be The Graph G•S = (V, E, Σ, Ψ) Where Σ: V → S; Ψ: E → S Is Defined By

ψ(x, y) = \begin{cases}
\min \{\sigma(x), \sigma(y)\} & \text{if } \sigma(x) ≤ \sigma(y) \text{ or } \sigma(y) ≤ \sigma(x) \\
0 & \text{otherwise}
\end{cases}

Definition 2.4. A Semiring Valued Graph G•S is
(1) S•− vertex regular if σ(v) is same ∀v ∈ V.
(2) S•− edge regular if ψ(u, v) is same ∀(u, v) ∈ E.
(3) S•− regular if both (1) and (2) will be true.

Definition 2.5. [5] A Semiring valued graph G•S is termed to be a degree regular S− valued graph (d•S− regular graph) if deg•S(v) = (a, n), for all v ∈ V and for some α ∈ S , n ∈ N.

Definition 2.6. [6] The Cartesian Product Of G And H Is A Graph, Denoted By G□H Whose Vertex Set Is V(G) × V(H). Two Vertices (G, H) And (G′, H′) Are Adjacent If G = G′ And HH′ ∈ E(H) Or GG′ ∈ E(H) And H = H′. Thus

V(G □ H) = \{(G, H) / G ∈ V(G)Andh ∈ V(H)\).
\(E(G \Box H) = ((G, H)'', H') / G = G', HH' \in E(G) \text{ Org} G' \in E(H), H = H'.\)

S'-Valued Graphs

Definition 3.1. Let \(G = V, E \neq \emptyset\) be a given graph and let \(S\) be any semiring. We define an \(S'-\)valued graph \(G^S = (V, E, S, \Psi)\), where \(\Sigma : V \rightarrow S\) and \(\Psi : E \rightarrow S\) is such that \(\Psi(x, y) = (\Sigma(x) \cdot \Sigma(y))\) for \((x, y) \in E \subseteq V \times V\).

Example 3.2. Let \(S = B(5, 3) = \{(0, 1, 2, 3, 4), +, \cdot\}\) with the binary operations \(\oplus\) and \(\odot\) defined by:

\[\begin{array}{c|ccccc}
\oplus & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 0 \\
2 & 2 & 3 & 4 & 0 & 1 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3 \\
\end{array}\]

The set where \(\odot\) is defined by:

\[\begin{array}{c|ccccc}
\odot & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 2 & 4 & 4 & 4 \\
3 & 0 & 3 & 4 & 4 & 4 \\
4 & 0 & 4 & 4 & 4 & 4 \\
\end{array}\]

Then its Cayley's Tables is given below:

\[\begin{array}{c|ccc}
\text{Consider} & \oplus & \odot & \text{The Graph Where Given}\n\hline
G = (V, E), & 0 & 1 & 2 & 3 & 4 \\
The Edge Set & 1 & 1 & 2 & 3 & 4 \\
By \ V = & 2 & 2 & 3 & 4 & 0 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3 \\
\end{array}\]

\[\begin{array}{c|ccccc}
\{v_1, v_2, v_3, v_4, v_5\} & \text{And} & E = \{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_3, v_4), (v_4, v_5)\}. \\
\text{The} & \Sigma^*-\text{valued Graph} & G^S & \text{With Respect To The Graph} & G \text{ Is Given As Follows:} \\
\text{Define} & \sigma: V \rightarrow S & \text{By} & \sigma(v_1) = 3; & \sigma(v_2) = 2; & \sigma(v_3) = 4; & \sigma(v_4) = 1; & \sigma(v_5) = 3. \\
The \Sigma^*-\text{vertex Set Of} & G^S \text{is} & V = \{1, 2, 3, 4\}. \\
\text{Define} & \psi: E \rightarrow S & \text{Then The} & \Sigma^*-\text{edge Set Of} & G^S \text{is} & E = \{3, 4\}. \\
The Graph & G \text{And Its Corresponding} & \Sigma^*-\text{valued Graph} & G^S_1 \text{is Given Below:} & \text{Example 4.2.} & \text{Let} \ S = \{0, a, b, c, +, \cdot\} \text{Be The Semiring With Its Cayley Tables}\n\end{array}\]

4. **Cartesian Product of \(S^*-\)Valued Graphs**

Definition 4.1. Let \(G_1^S = (V_1, E_1, \sigma_1, \psi_1)\) and \(G_2^S = (V_2, E_2, \sigma_2, \psi_2)\) be two \(S^*-\)valued graphs. Then the Cartesian product of \(S^*-\)valued graph is denoted by \(G_3^S = G_1^S \Box G_2^S = (V \times V, E, \sigma, \psi)\) where \(V = \{w_{ij} = (v_i, u_j) | v_i \in V_1 \text{ and } u_j \in V_2\}\) and two vertices \(w_{ij} \text{ and } w_{k}\) are adjacent if \(i = k \text{ and } u_ju_k \in E_2 \text{ or } j = l \text{ and } v_iv_k \in E_1\).

Define \(\sigma: V \times V \rightarrow S \times S \) by \(\sigma(v_i, u_j) = \sigma(w_{ij}) = \left(\sigma_1(v_i) \cdot \sigma_2(u_j)\right)\) and \(\psi: E \rightarrow S \) by \(\psi(e_{ij}^{kl}) = \psi((v_i, u_j)(v_k, u_l)) = \left(\sigma_1(v_k) \cdot \psi_2(u_j, u_l)\right)\) if \(i = k \text{ and } u_ju_l \in E_2\) and \(\psi_1(v_i, u_k) \cdot \sigma_2(u_j)\) if \(j = l \text{ and } v_iv_k \in E_1\).
Proof: Let $G_1^* = (V_1, E_1, \sigma_1, \psi_1)$ and $G_2^* = (V_2, E_2, \sigma_2, \psi_2)$ be two given S^*-Regular Graphs.

Claim: $G_1^* \Box G_2^*$ is S^*-Vertex Regular

Since G_1^* and G_2^* are S^*-Regular Graphs, $\sigma_1(v_i) = s_1$ and $\sigma_2(u_j) = s_2$, for some $s_1, s_2 \in S$.

Now, by Definition, $\sigma(w_{ij}) = \sigma_1(v_i) \cdot \sigma_2(u_j) = s_1 \cdot s_2 = s$, for some $s \in S$.

This implies that $\sigma(w_{ij})$ is equal for all $w_{ij} \in V$, for all i, j.

Hence $G_1^* \Box G_2^*$ is Vertex Regular.

But In S^*-Valued Graphs, The Cartesian Product Two S^*-Vertex Regular Graphs Is Need Not Be S^*-Edge Regular.

For Example, Consider The Semiring Discussed In The Example 3.2.

Theorem 4.5. The Cartesian Product Of Any Two S^*-Vertex Regular Graphs Is S^*-Edge Regular Only If The Semiring Considered Must Be Multiplicatively Idempotent.

Proof: Let $G_1^* = (V_1, E_1, \sigma_1, \psi_1)$ and $G_2^* = (V_2, E_2, \sigma_2, \psi_2)$ be any two S^*-Vertex Regular Graphs, $\sigma_1(v_i) = s_1$ and $\sigma_2(u_j) = s_2$, for some $s_1, s_2 \in S$.

Claim: $G_1^* \Box G_2^*$ Is S^*-Regular

Now, by Definition, $\sigma(w_{ij}) = \sigma_1(v_i) \cdot \sigma_2(u_j) = s_1 \cdot s_2 = s$, for some $s \in S$.

This implies that $\sigma(w_{ij})$ is equal for all $w_{ij} \in V$, for all i, j.

Hence $G_1^* \Box G_2^*$ is Vertex Regular.

By Definition

$\psi(e_{ij}^{kl}) = \psi((v_i, u_j)(v_k, u_l)) = \begin{cases} \sigma_1(v_i) \cdot \psi_2(u_j, u_l) & \text{if } i = k \text{ and } u_j u_l \in E_2 \\ \psi_1(v_i, v_k) \cdot \sigma_2(u_j) & \text{if } j = l \text{ and } v_i v_k \in E_1 \end{cases}$
\[(\sigma_1(v_i) \cdot \sigma_2(u_j)) \text{ if } i = k \text{ and } u_ju_l \in E_2 \]
\[(\sigma_1(v_i) \cdot \sigma_1(u_j)) \text{ if } j = l \text{ and } v_iu_k \in E_1 \]
\[(\sigma_1(v_i) \cdot \sigma_2(u_j)) \text{ if } i = k \text{ and } u_ju_l \in E_2 \]
\[(\sigma_1(v_i) \cdot \sigma_2(u_j)) \text{ if } j = l \text{ and } v_iu_k \in E_1 \]

This is true for all \(e_{ij}^{kl} \in E \), therefore \(G_1^S \cap G_2^S \) is \(S^* \)-edge regular and hence \(S^* \)-regular.

Theorem 4.7. The Cartesian product of any two \(S^* \)-edge regular graphs is \(S^* \)-edge regular only if the semiring considered must be additively idempotent.

Proof: Let \(G_1^S = (V_1, E_1, \sigma_1, \psi_1) \) and \(G_2^S = (V_2, E_2, \sigma_2, \psi_2) \) be any two \(S^* \)-edge regular graphs. Claim: \(G_1^S \cap G_2^S \) is \(S^* \)-edge regular.

By definition

\[\psi(e_{ij}^{kl}) = \psi((v_i, u_j)(v_k, u_l)) = (\sigma_1(v_i) \cdot \psi_2(u_j, u_l)) \text{ if } i = k \text{ and } U_iL_j \in E_2 \]
\[\psi_1(v_i, v_k) \cdot \Sigma_2(u_j) \text{ if } j = l \text{ and } V_iV_k \in E_1 \]
\[\psi_1(v_i) \cdot (\Sigma_2(u_j) \cdot \Sigma_1(L_k)) \text{ if } I = K \text{ and } U_iL_j \in E_2 \]
\[\psi_1(v_i) \cdot (\Sigma_1(v_k) \cdot \Sigma_2(u_j)) \text{ if } J = L \text{ and } V_iV_k \in E_1 \]
\[\psi_1(v_i) \cdot \Sigma_2(u_j) \text{ if } I = K \text{ and } U_iL_j \in E_2 \]
\[\psi_1(v_i) \cdot \Sigma_2(u_j) \text{ if } J = L \text{ and } V_iV_k \in E_1 \]

This is true for all \(e_{ij}^{kl} \in E \), therefore \(G_1^S \cap G_2^S \) is \(S^* \)-edge regular.

Corollary 4.8. If \(G_1^S, G_2^S \) are two \(S^* \)-vertex regular graphs and \(S \) is an additively idempotent semiring then their Cartesian product is \(G_3^S \) is \(S^* \)-regular.

Remark 4.9. If \(G_1^S, G_2^S \) are two \(S^* \)-regular graphs and \(S \) is an additively idempotent semiring, then \(S^* \)-regular and \(S \)-regular coincide.

Example 4.10. The Cartesian product of any two \(d_S \)-regular \(S^* \)-valued graphs is not be \(d_S \)-regular. Consider the following two \(d_S \)-regular \(S^* \)-valued graphs \(G_1^S \) and \(G_2^S \):

\[D_1(W_{21}) = (3, 2); \ D_1(W_{22}) = (3, 2); \ D_1(W_{12}) = (4, 2). \]

Here the degrees of the vertices are different; we observe that \(G_3^S \) is not \(D_1 \)-regular.

REFERENCES

6. **Richard Hammack, Wilfried Imrich And Sandy Klavzar**: Hand Book Of Product Graphs, University Of Ljubljana And University Of Maribor, Slovenia.