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Abstract: The purpose of this investigation is to introduce different forms of multiplicative inverse functional 

equations, to solve them and to establish the stability results of them in the framework of matrix normed spaces. 

A suitable counter-example is also provided to prove the instability of the results for a singular case. The 

applications of the equations dealt in this study are discussed with the fluid resistances of blood vessels and also 

an important concept in Raman spectroscopy.  
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1. Introduction & Preliminaries 

Various linear spaces of bounded Hilbert space operators such as mapping spaces, tensor products of 

operator spaces, quotients spaces in operator theory are abstractly characterized through matrix normed spaces 

[19]. The characterization of these spaces indicates that they further be considered as spaces of operator. Due to 

this result, the operator spaces theory has noteworthy application in operator algebra theory [5]. The result 

obtained in [19] is invoked to the theory of ordered operator spaces [19]. The proof given in [6] is achieved by 

the technique applied in [13].  

Here, we evoke the fundamental ideas of matrix normed spaces. We utilize the ensuing notions:   

• 𝑀𝑟(𝒜) is the set of all square matrices of order 𝑟 in a normed space 𝒜;  

• 𝑒𝑛 ∈ 𝑀1,𝑗(ℂ) denotes 𝑛th element is 1, and the other elements are 0;  

• 𝐸𝑚𝑛 ∈ 𝑀𝑟(ℂ) means (𝑚, 𝑛)th-element is 1, and the other elements are 0;  

• 𝐸𝑚𝑛 ⊗ 𝑢 ∈ 𝑀𝑟(𝒜) indicates (𝑚, 𝑛)th-element is 𝑢, and the other elements are 0.  

• For 𝑢 ∈ 𝑀𝑟(𝒜), 𝑣 ∈ 𝑀𝑠(𝒜),  

 𝑢 ⊕ 𝑣 = (
𝑢 0
0 𝑣

). 

Definition 1.1  Let 𝒜 be a normed space with norm ‖⋅‖. Then 𝒜 is called as a matrix normed space with norm 
‖⋅‖𝑟 if and only if 𝑀𝑟(𝒜) is a normed space with norm ‖⋅‖𝑟 for each integer 𝑟 > 0 and ‖𝒳𝑢𝒴‖𝑠 ≤
‖𝒳‖ ‖𝒴‖ ‖𝑢‖𝑟 is true for 𝒳 ∈ 𝑀𝑠,𝑟(ℂ), 𝑢 = (𝑢𝑖𝑗) ∈ 𝑀𝑟(𝒳) and 𝒴 ∈ 𝑀𝑟,𝑠(ℂ).  

Definition 1.2  (𝒜, ‖⋅‖𝑟) is a matrix complete normed space (or matrix Banach space) if and only if 𝒜 is a 

complete normed space (or Banach space) and a matrix normed space with norm ‖⋅‖𝑟.  

Definition 1.3  Let 𝒜 be a matrix normed space with norm ‖⋅‖𝑟. Then 𝒜 is said to be an 𝐿∞- matrix normed 

space if ‖𝑢 ⊕ 𝑣‖𝑟+𝑠 = 𝑚𝑎𝑥{‖𝑢‖𝑟 , ‖𝑣‖𝑠} holds for all 𝑢 ∈ 𝑀𝑟(𝒜) and all 𝑣 ∈ 𝑀𝑠(𝒜). 

Suppose 𝐴1 and 𝐴2 are vector spaces. Then for a given mapping 𝑞: 𝐴1 ⟶ 𝐴2 and for an integer 𝑟 > 0, 

define 𝑞𝑟: 𝑀𝑟(𝐴1) ⟶ 𝑀𝑟(𝐴2) by  

 𝑞𝑟([𝑢𝑚𝑛]) = [𝑞(𝑢𝑚𝑛)] 
for all [𝑢𝑚𝑛] ∈ 𝑀𝑟(𝐴1). More information pertinent to matrix normed spaces are available in [12, 27]  

The inspiration for the stability theory of mathematical equations is due to the question raised in [28] 

regarding homomorphisms in group theory. There are various responses provided in [1, 8, 11, 14, 15] to the 

question posed in [28]. For the first time, the functional equation  

 𝑝(𝜃1 + 𝜃2) =
𝑝(𝜃1)𝑝(𝜃2)

𝑝(𝜃1)𝑝(𝜃2)
 (1.1) 
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where the mapping 𝑟 is defined in the domain of real numbers excluding zero, is dealt with and its stableness is 

investigated pertinent to the fundamental stability theory in [17]. The equation (1.1) is called as reciprocal or 

multiplicative inverse or rational functional equation whose solution is a reciprocal function 𝑝(𝜃) =
𝑘

𝜃
, where 

𝜃(≠ 0) ∈ ℝ and 𝑘 is any real constant.  

The non-Archimedean stability of the multiplicative inverse fourth power functional equation  

 𝑞(𝜃1 + 𝜃2) =
𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4 (1.2) 

 is obtained in [10]. It can be easily verified that the multiplicative inverse fourth power mapping 𝑞(𝜃) =
1

𝜃4 

satisfies equation (1.2).  

 Later, there are several published papers on solutions, stability results and applications of various forms of 

multiplicative inverse or rational type or reciprocal functional equations in the literature. For further details, one 

can refer to [3, 9, 16, 18, 20, 21, 22, 23, 24, 25, 26].  

 In order to explore applications further, we extend equation (1.2) to new forms as, multiplicative inverse 

fourth power difference functional equation  

 𝑞 (
𝜃1+𝜃2

2
) − 𝑞(𝜃1 + 𝜃2) =

15𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4 (1.3) 

 and a multiplicative inverse fourth power adjoint functional equation  

 𝑞 (
𝜃1+𝜃2

2
) + 𝑞(𝜃1 + 𝜃2) =

17𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4  (1.4) 

We prove the equivalency of equations (1.3) and (1.4) to achieve their solutions. The stability results of (1.3) 

and (1.4) are investigated via direct and fixed point techniques in the domain of matrix normed spaces. An apt 

instance is demonstrated to substantiate the non-stability result. The inferences of equations (1.3) and (1.4) are 

acquired by employing them in certain occurences in fluid dynamics and Raman spectroscopy. In the entire 

study, let us assume that 𝜃2 ≠ −𝜃1 to avoid singularity in the main results. Also, unless or otherwise specified, 

we consider 𝒜 to be a matrix normed space containing non-singular square matrices of 𝑚 with a norm ‖⋅‖ so 

that ‖𝜃‖ ≤ 1 for all 𝜃 ∈ 𝒜 and ℬ to be a matrix complete normed space, respectively with norm ‖⋅‖𝑟. Then, 

applying Taylor’s series expansion, we can find 𝜃
1

𝑝 after truncating to (𝑝 + 1) terms [2]. Thus, the rational 

powers of 𝜃 can be computed for all 𝜃 ∈ 𝒜. For a mapping 𝑞: 𝒜 ⟶ ℬ and for easy computation, let the 

difference operators 𝐷𝑞: 𝒜 × 𝒜 ⟶ ℬ and 𝐷𝑞𝑟: 𝑀𝑝(𝒜 × 𝒜) ⟶ 𝑀𝑟(ℬ) be defined by 

𝐷𝑞(𝜃1, 𝜃2) = 𝑞 (
𝜃1 + 𝜃2

2
) − 𝑞(𝜃1 + 𝜃2) −

15𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)1/4 + 𝑞(𝜃2)1/4]4
 

 𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

]) 

                                         = 𝑞𝑟 (
[𝜃1𝑚𝑛

] + [𝜃2𝑚𝑛
]

2
) − 𝑞𝑟([𝜃1𝑚𝑛

] + [𝜃2𝑚𝑛
]) −

15𝑞𝑟([𝜃1𝑚𝑛
])𝑞𝑟([𝜃2𝑚𝑛

])

[𝑞𝑟([𝜃1𝑚𝑛
])

1/4
+ 𝑞𝑟[𝜃2𝑚𝑛

]1/4]
4 

for all 𝜃1, 𝜃2 ∈ 𝒜, and all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜).  

2. Identicalness of equations (1.3) and (1.4) 

In the ensuing theorem, we prove that equations (1.3) and (1.4) are equivalent to each other.  

Theorem 2.1  Let 𝑞: ℝ⋆ ⟶ ℝ be a mapping. Then, the following statements are equivalent.  

• 𝑞 is solution of (1.2).  

• 𝑞 is solution of (1.3).  

• 𝑞 is solution of (1.4).  

 Hence, the mapping 𝑞 is a multiplicative inverse fourth power mapping.  

Proof.  

1. We assume that 𝑞 is a solution of (1.2). Then 𝑞 satisfies (1.2). Now, plugging (𝜃1, 𝜃2) by (
𝜃

2
,

𝜃

2
) in (1.2) and 

then multiplying by 16, we obtain  

 𝑞 (
𝜃

2
) = 16𝑞(𝜃) (2.1) 

 for all 𝜃 ∈ ℝ⋆. Now, replacing (𝜃1, 𝜃2) by (
𝜃1

2
,

𝜃2

2
) in (1.2) and in lieu of (2.1) in the resulting equation, one 

finds  

 𝑞 (
𝜃1+𝜃2

2
) =

16𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4 (2.2) 

 for all 𝜃1, 𝜃2 ∈ ℝ⋆. Now, subtracting (1.2) from (2.2), we arrive at (1.3).  
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2. Suppose 𝑞 is a solution of (1.4). Then, it satisfies (1.4). Now, if (𝜃1, 𝜃2) is replaced by (
𝜃

2
,

𝜃

2
) in (1.4) and 

simplified further, then we have  

 𝑞 (
𝜃

2
) = 16𝑞(𝜃) (2.3) 

 for all 𝜃 ∈ ℝ⋆. Using (2.3) in (1.3) and further simplifying, we obtain  

 𝑞(𝜃1 + 𝜃2) =
𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4 (2.4) 

 for all 𝜃1, 𝜃2 ∈ ℝ⋆. Now, reinstating (𝜃1, 𝜃2) by (
𝜃1

2
,

𝜃2

2
) in (2.4) and then employing (1.3), we get  

 𝑞 (
𝜃1+𝜃2

2
) =

16𝑞(𝜃1)𝑞(𝜃2)

[𝑞(𝜃1)
1
4+𝑞(𝜃2)

1
4]

4 (2.5) 

 for all 𝜃1, 𝜃2 ∈ ℝ⋆. Summing (2.5) with (2.4), we obtain (1.4).  

3. Suppose 𝑞 is a solution of (1.4). Then it satisfies (1.4). By the analogous reasoning stated above, when 

(𝜃1, 𝜃2) is substituted by (
𝜃

2
,

𝜃

2
) in (1.4) and simplified additionally, we have  

 𝑞 (
𝜃

2
) = 16𝑞(𝜃) (2.6) 

 for all 𝜃 ∈ ℝ⋆. Utilizing the result of (2.6) in (1.4), it leads to (1.2).  

 Hence 𝑞 is a multiplicative inverse fourth power mapping.  

3. Stabilities of equation (1.3) via direct technique  

In this part, we determine the stabilities of equation (1.3) in the domain of matrix normed spaces. The 

following lemma is a key element to achieve our major results.  

Lemma 3.1   [4] The following assertions are true:  

• ‖𝐸𝑚𝑛 ⊗ 𝜃1‖𝑟 = ‖𝜃1‖ for 𝜃1 ∈ 𝒜.  

• ‖𝜃1𝑚𝑛
‖ ≤ ‖[𝜃1𝑚𝑛

]‖
𝑟

≤ ∑𝑟
𝑚,𝑛=1 ‖𝜃1𝑚𝑛

‖ for [𝜃1𝑚𝑛
] ∈ 𝑀𝑟(𝒜).  

• lim
𝑟→∞

𝜃1𝑟
= 𝜃1 if and only if lim

𝑟→∞
𝜃1𝑟𝑚𝑛

= 𝜃1𝑚𝑛
 for 𝜃1𝑟

= [𝜃1𝑟𝑚𝑛
], 𝜃1 = [𝜃1𝑚𝑛

] ∈ 𝑀𝑟(𝒜).  

Theorem 3.2  Let a mapping 𝑞𝑟: 𝒜 ⟶ ℬ satisfies  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ∑𝑟
𝑚,𝑛=1 𝜓(𝜃1𝑚𝑛

, 𝜃2𝑚𝑛
) (3.1) 

 where 𝜓: 𝒜 × 𝒜 ⟶ [0, ∞) is a function such that  

 ϒ(𝜃1, 𝜃2) = 16 ∑∞
𝑙=1

1

16𝑙 𝜓 (
𝜃1

2𝑙 ,
𝜃2

2𝑙 ) < ∞, (3.2) 

 for all 𝜃1, 𝜃2 ∈ 𝒜, and all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, there a unique solution 𝑄: 𝒜 ⟶ ℬ of 

(1.3) exists with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1 Υ(𝜃𝑚𝑛 , 𝜃𝑚𝑛) (3.3) 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. Firstly, let us assume 𝑟 = 1 in (3.1) and proceed to prove the result. Hence, we have  

 ‖𝐷𝑞(𝜃1, 𝜃2)‖ ≤ 𝜓(𝜃1, 𝜃2) 

for all 𝜃1, 𝜃2 ∈ 𝒜. Then, a unique multiplicative inverse fourth power mapping 𝑄: 𝒜 ⟶ ℬ exists which is 

unique and  

 ‖𝑞(𝜃) − 𝑄(𝜃)‖ ≤ Υ(𝜃, 𝜃) 

for all 𝜃 ∈ 𝒜. Now, let a mapping 𝑄: 𝒜 ⟶ ℬ be defined as 𝑄(𝜃) = lim
𝑙→∞

1

16𝑙 𝑞 (
𝜃

2𝑙) for all 𝜃 ∈ 𝒜. In view of the 

outcome of Lemma 3.1, we find  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1 ‖𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)‖ ≤ ∑𝑟

𝑚,𝑛=1 𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛) 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). Therefore, 𝑄: 𝒜 ⟶ ℬ is a unique solution of (3.3) and hence it is multiplicative 

inverse fourth power mapping, as required. This completes the proof.  

Corollary 3.3  Suppose 𝑠 > −4 and 𝜆(≥ 0) ∈ ℝ. Let a mapping 𝑞: 𝒜 ⟶ ℬ satisfies  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ∑𝑟
𝑚,𝑛=1 𝜆(‖𝜃1𝑚𝑛

‖
𝑠

+ ‖𝜃2𝑚𝑛
‖

𝑠
) (3.4) 

for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique with the 

result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1

32𝜆

2𝑠+4−1
‖𝜃𝑚𝑛‖𝑠 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The required outcome goes along with the proof of Theorem 3.2 by letting 𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) =

𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+ ‖𝜃2𝑚𝑛

‖
𝑠
).  

Theorem 3.4  Let a mapping 𝑞: 𝒜 ⟶ ℬ satisfies (3.1). Suppose a function 𝜓: 𝒳 × 𝒳 ⟶ [0, ∞) satisfies  

 Υ(𝜃1, 𝜃2) = 16 ∑∞
𝑙=0 16𝑙𝜓(2𝑙𝜃1, 2𝑙𝜃2) < ∞ (3.5) 
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 for all 𝜃1, 𝜃2 ∈ 𝒜. Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1 Υ(𝜃𝑚𝑛 , 𝜃𝑚𝑛) 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The proof goes through the same way as in Theorem 3.2, and so it is excluded.  

Corollary 3.5  Suppose 𝑠 < −4 and 𝜆(≥ 0) ∈ ℝ. Let a mapping 𝑞: 𝒜 ⟶ ℬ satisfies (3.4). Then, a solution 

𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique and with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1

32𝜆

1−2𝑠+4
‖𝜃𝑚𝑛‖𝑠 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The proof is a direct consequence of Theorem 3.4 by considering 𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) = 𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+

‖𝜃2𝑚𝑛
‖

𝑠
).  

  The ensuing lemma plays a key role in proving our major results.  

Lemma 3.6   [27]. Let 𝐹 be a 𝐿∞-matrix normed space. Then ‖[𝜃𝑚𝑛]‖𝑟 ≤ ‖[‖𝜃𝑚𝑛‖]‖𝑟  for all [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝐹).  

Theorem 3.7  Assume that ℬ to be a 𝐿∞-normed Banach space. Let a mapping 𝑞𝑟: 𝒜 ⟶ ℬ satisfies  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ‖[𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

)]‖
𝑟
 (3.6) 

 where 𝜑: 𝒜 × 𝒜 ⟶ [0, ∞) is a function which satisfies (3.1) for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). 

Then, a solution 𝑄: 𝒜 ⟶ ℬ of 3 exists which is unique with the result that  

 ‖[𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)]‖𝑟 ≤ ‖[ϒ(𝜃𝑚𝑛 , 𝜃𝑚𝑛)]‖𝑟 (3.7) 

 for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). Here Υ is assumed as in Theorem 3.2.  

Proof. Using the identical arguments applied to prove Theorem 3.2, we find that a multiplicative inverse fourth 

power mapping 𝑄: 𝒜 ⟶ ℬ exists and unique so that ‖𝑞(𝜃) − 𝑄(𝜃)‖ ≤ Υ(𝜃, 𝜃) for all 𝜃 ∈ 𝒜. The mapping 

𝑄: 𝒜 ⟶ ℬ is given by 𝑄(𝜃) = lim
𝑙→∞

1

16𝑙 𝑞 (
𝜃

2𝑙) for all 𝜃 ∈ 𝒜. It is not hard to demonstrate that if 0 ≤ 𝑢𝑚𝑛 ≤ 𝑣𝑚𝑛  

for all 𝑚, 𝑛, then  

 ‖[𝑢𝑚𝑛]‖𝑟 ≤ ‖[𝑣𝑚𝑛]‖𝑟 . (3.8) 

 By Lemma 3.6 and inequality (3.8), we have  

 ‖[𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)]‖𝑟 ≤ ‖[‖𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)‖]‖𝑟 ≤ ‖ϒ(𝜃𝑚𝑛 , 𝜃𝑖𝑗)‖
𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). Hence, we have the inequality (3.7), which concludes the proof.  

Corollary 3.8  Let ℬ be a 𝐿∞-complete normed space. Let 𝑠 > −4 and 𝜆(≥ 0) ∈ ℝ. Let a mapping 𝑞: 𝒜 ⟶ ℬ 

satisfies  

 ‖𝐷𝑞𝑝([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ‖[𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+ ‖𝜃2𝑚𝑛

‖
𝑠
)]‖

𝑟
 (3.9) 

 for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique with 

the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ‖[
32𝜆

2𝑠+4−1
‖𝜃𝑚𝑛‖𝑠]‖

𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The aspired result is achieved through Theorem 3.7 by taking 𝜓(𝜃1, 𝜃2) = 𝜆(‖𝜃1‖𝑠 + ‖𝜃2‖𝑠).  

Theorem 3.9  Assume that ℬ to be a 𝐿∞-complete normed space. Let a mapping 𝑞: 𝒜 ⟶ ℬ satisfies (3.6) and 

𝜓: 𝒜 × 𝒜 ⟶ [0, ∞) is a function satisfying (3.5). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists whihc is unique 

with the result that  

 ‖[𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)]‖𝑟 ≤ ‖[ϒ(𝜃𝑚𝑛 , 𝜃𝑚𝑛)]‖𝑟 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). Here ϒ is defined as in Theorem 3.4.  

Proof. The required result follows via the proof of Theorem 3.7, and so the details are neglected.  

Corollary 3.10  Let ℬ be a 𝐿∞-complete normed space. Let 𝑠 < −4 and 𝜆(≥ 0) ∈ ℝ. Let a mapping 𝑞: 𝒜 ⟶ ℬ 

satisfies (3.9). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists whihc is unique with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛] − 𝑄𝑟([𝜃𝑚𝑛]))‖𝑝 ≤ ‖[
32𝜆

1−2𝑠+4
‖𝜃𝑚𝑛‖𝑠]‖

𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The similar arguments as in the proof of Theorem 3.9 will lead to the proof of this corollary by taking 

𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) = 𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+ ‖𝜃2𝑚𝑛

‖
𝑠
). 

4. Stabilities of (1.3) via fixed point technique 

Employing fixed point method, we obtain the stabilities of equation (1.3) in the framework of matrix normed 

spaces.  

Theorem 4.1  Let a mapping 𝑞: 𝒜 ⟶ ℬ satisfies  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ∑𝑟
𝑚,𝑛=1 𝜓(𝜃1𝑚𝑛

, 𝜃2𝑚𝑛
) (4.1) 

 where 𝜓: 𝒜 × 𝒜 ⟶ [0, ∞) is a function such that there exists an 𝑃 < 1 with  

 𝜓(𝜃1, 𝜃2) ≤
𝐿

16
𝜓 (

𝜃1

2
,

𝜃2

2
), (4.2) 
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 for all 𝜃1, 𝜃2 ∈ 𝒜, for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, there a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) which 

is unique with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑟
𝑚,𝑛=1

16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛) (4.3) 

 for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  
Proof. First, let us consider 𝑟 = 1 in (4.1) and proceed to prove the result. Then, we have  

 ‖𝐷𝑞(𝜃1, 𝜃2)‖ ≤ 𝜓(𝜃1, 𝜃2) 

for all 𝜃1, 𝜃2 ∈ 𝒜. Substituting 𝜃1 = 𝜃2 = 𝜃 in above inequality and then multiplying by 16 on its both sides, 

we get  

 ‖𝑞(𝜃) − 16𝑞(2𝜃)‖ ≤ 16𝜓(𝜃, 𝜃) (4.4) 

 for all 𝜃 ∈ 𝒜. Suppose the following is the generalized metric defined on a set 𝑋 = {ℎ: 𝒜 ⟶ ℬ}:  

 𝑑(𝑢, 𝑣) = inf{𝜆 ∈ ℝ+: ‖𝑢(𝜃) − 𝑣(𝜃)‖ ≤ 𝜆𝜓(𝜃, 𝜃), ∀𝜃 ∈ 𝒜}, 
with the convention that inf𝜓 = +∞. It is not hard to show the completeness of 𝑋. Suppose a mapping 𝐽 from 𝑋 

to 𝑋 with the property that 𝐽𝑢(𝜃) = 16𝑢(𝜃), for all 𝜃 ∈ 𝒜. Assume 𝑑(𝑢, 𝑣) = 𝜆 for given 𝑢, 𝑣 ∈ 𝑋. Then, we 

have  

 ‖𝑢(𝜃) − 𝑣(𝜃)‖ ≤ 𝜆𝜓(𝜃, 𝜃) 

for all 𝜃 ∈ 𝒜. Therefore, we find  

 ‖𝐽𝑢(𝜃) − 𝐽𝑣(𝜃)‖ = ‖16𝑢(2𝜃) − 16𝑣(2𝜃)‖ ≤ 𝜆𝜓(𝜃, 𝜃) 

for all 𝜃 ∈ 𝒜. Consequently, 𝑑(𝑢, 𝑣) = 𝜆 produces 𝑑(𝐽𝑢, 𝐽𝑣) ≤ 𝜃𝜆. This indicates that  

 𝑑(𝐽𝑢, 𝐽𝑣) ≤ 𝜆𝑑(𝑢, 𝑣) 

1. 𝑄 is a fixed point of the mapping 𝐽, that is,  

 𝑄(2𝜃) =
1

16
𝑄(𝜃) (4.5) 

 for all 𝜃 ∈ 𝒜. We notice that the mapping 𝑄 is unique and it is fixed point of 𝐽 in the set  

 𝑀 = {𝑔 ∈ 𝑆: 𝑑(𝑄, 𝑔) < ∞}. 
This indicates the uniquess of 𝑄 and hence it satisifes (5) with a 𝜆 ∈ (0, ∞) satisfying ‖𝑞(𝜃) − 𝑄(𝜃)‖ ≤
𝜆𝜓(𝜃, 𝜃), for all 𝜃 ∈ 𝒜;  

2. 𝑑(𝐽𝑙𝑞, 𝑄) approaces 0 as 𝑙 tends to ∞. This produces the existence of the limit lim𝑙→∞16𝑙𝑞(2𝑙𝜃) 

approaching to 𝑄(𝜃) for all 𝜃 ∈ 𝒜;  

3. 𝑑(𝑞, 𝑄) ≤
1

1−𝑃
𝑑(𝑞, 𝐽𝑞), which gives the inequality 𝑑(𝑞, 𝑄) ≤

16

1−𝑃
.  

 Hence, we have  

 ‖𝑞(𝜃) − 𝑄(𝜃)‖ ≤
16

1−𝑃
𝜓(𝜃, 𝜃) (4.6) 

 for all 𝜃 ∈ 𝒜. In lieu of (4.2) and (4.1), we obtain that  

 ‖𝐷𝑄(𝜃1, 𝜃2)‖ = lim
𝑙→∞

16𝑙‖𝐷𝑞(2𝑙𝜃1, 2𝑙𝜃2)‖ 

                            ≤ lim
𝑙→∞

16𝑙𝜓(2𝑙𝜃1, 2𝑙𝜃2) 

                            ≤ lim
𝑙→∞

16𝑙𝜓(𝜃1,𝜃2)

2𝑙𝑃𝑙 = 0 

 for all 𝜃1, 𝜃2 ∈ 𝒜. Thus, we have  

 𝑄 (
𝜃1+𝜃2

2
) − 𝑄(𝜃1 + 𝜃2) =

15𝑄(𝜃1)𝑄(𝜃2)

[𝑄(𝜃1)
1
4+𝑄(𝜃2)

1
4]4

 

for all 𝜃1, 𝜃2 ∈ 𝒜, which indicates that 𝑄: 𝒜 ⟶ ℬ is a multiplicative inverse fourth power mapping. By Lemma 

3.1 and (4.6), we have  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑝
𝑚,𝑛=1 ‖𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)‖ 

                                               ≤ ∑𝑛
𝑚,𝑛=1

16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛) 

 for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜), which shows that 𝑄: 𝒜 ⟶ ℬ is unique satisfying (4.3).  

Corollary 4.2  Let 𝑠, 𝜆 be positive real numbers with 𝑠 < 4. Let 𝑞: 𝒜 ⟶ ℬ be a mapping such that  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ∑𝑟
𝑚,𝑛=1 [𝜆(‖𝜃1𝑚𝑛

‖
𝑠

+ ‖𝜃2𝑚𝑛
‖

𝑠
)] (4.7) 

 for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, there exists a unique mapping 𝑄: 𝒜 ⟶ ℬ satisfying (1.3) 

such that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑝
𝑚,𝑛=1

32𝜆

1−2𝑠+4
‖𝜃𝑚𝑛‖𝑠 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The proof of this corollary is obtained via Theorem 4.1 by letting 𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) = 𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+

‖𝜃2𝑚𝑛
‖

𝑠
) for all 𝜃1, 𝜃2 ∈ 𝒜. Then, we can choose 𝑃 = 2𝑠+4 to obtain the desired result.  

Theorem 4.3  Suppose a mapping 𝑞: 𝒜 ⟶ ℬ satisfies (4.1). Assume that there exists a function 𝜓: 𝒜 × 𝒜 ⟶
[0, ∞) with a 𝑃 < 1 such that  

 𝜓(𝜃1, 𝜃2) ≤ 16𝐿𝜓(2𝜃1, 2𝜃2) (4.8) 
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 for all 𝜃1, 𝜃2 ∈ 𝒜. Then, a unique mapping 𝑄: 𝒜 ⟶ ℬ exists and satisfies (1.3) such that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑝
𝑚,𝑛=1

16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛) 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  
Proof. Suppose (𝑋, 𝑑) is the generalized metric space defined as in Theorem 4.1. Now, we consider a mapping 

𝐽: 𝑋 ⟶ 𝑋 such that  

 𝐽𝑔(𝜃) =
1

16
𝑔 (

𝜃

2
) 

for all 𝜃 ∈ 𝒜. By virtue of (4.4), we find that  

               ‖𝑞(𝜃) −
1

16
𝑞 (

𝜃

2
)‖ ≤ 𝜓 (

𝜃

2
,

𝜃

2
) ≤

𝑃

16
𝜓(𝜃, 𝜃) 

for all 𝜃 ∈ 𝒜. Then 𝑑(𝑞, 𝑄) ≤
1

16
. Therefore, we have  

 𝑑(𝑞, 𝐽𝑄) ≤
16𝑃

1−𝑃
. 

The enduring part of proof is obtained through similar arguments as in Theorem 4.1.  

Corollary 4.4  Let 𝑠, 𝜆 be positive real numbers with 𝑠 > −4. Let 𝑞: 𝒜 ⟶ ℬ be a mapping satisfying (4.7). 

Then, there exists a unique mapping 𝑄: 𝒜 ⟶ ℬ satisfying (1.3) with the result that  

 ‖𝑞([𝜃𝑚𝑛]) − 𝑄([𝜃𝑚𝑛])‖𝑟 ≤ ∑𝑝
𝑚,𝑛=1

32𝜆

2𝑠+4−1
‖𝜃𝑚𝑛‖𝑠 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. It is easy to prove this corollary through Theorem 4.3 by taking 𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) = 𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+

‖𝜃2𝑚𝑛
‖

𝑠
) and then choosing 𝑃 = 2−(𝑠+4).  

  In the ensuing outcomes, let us assume that ℬ is an 𝐿∞-complete normed space and 𝑞: 𝒜 ⟶ ℬ is a 

mapping.  

Theorem 4.5  Let a function 𝜓: 𝒜 × 𝒜 ⟶ [0, ∞) satisfies (4.2) and  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ‖𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

)‖
𝑟
 (4.9) 

 for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique and 

satisfying the following approximation  

 ‖𝑞([𝜃1𝑚𝑛
]) − 𝑄([𝜃1𝑚𝑛

])‖
𝑝

≤ ‖
16

1−𝑃
𝜓(𝜃1𝑚𝑛

, 𝜃1𝑚𝑛
)‖

𝑝
 (4.10) 

 for all 𝜃1 = [𝜃1𝑚𝑛
] ∈ 𝑀𝑟(𝒜).  

Proof. Using the similar arguments akin to the proof of Theorem 4.1, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists such 

that  

 ‖𝑞([𝜃𝑚𝑛]) − 𝑄([𝜃𝑚𝑛])‖ ≤ ‖
16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛)‖ 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). It is easy to show that if 0 ≤ 𝑢𝑚𝑛 ≤ 𝑣𝑚𝑛  for all 𝑚, 𝑛, then  

 ‖[𝑢𝑚𝑛]‖𝑟 ≤ ‖[𝑣𝑚𝑛]‖𝑟 . (4.11) 

 By Lemma 3.1 and (4.11), we have  

 ‖[𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)]‖𝑟 ≤ ‖[‖𝑞(𝜃𝑚𝑛) − 𝑄(𝜃𝑚𝑛)‖]‖𝑟 ≤ ‖
16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛)‖

𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜). Hence, we acquire the inequality (4.10).  

Corollary 4.6  Let 𝑠, 𝜆 > 0 be real numbers with 𝑠 < −4. Let the mapping 𝑞 satisfies  

 ‖𝐷𝑞𝑟([𝜃1𝑚𝑛
], [𝜃2𝑚𝑛

])‖
𝑟

≤ ‖[𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+ ‖𝜃2𝑚𝑛

‖
𝑠
)]‖

𝑟
 (4.12) 

 for all 𝜃1 = [𝜃1𝑚𝑛
], 𝜃2 = [𝜃2𝑚𝑛

] ∈ 𝑀𝑟(𝒜). Then, a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) which is unique and satisfying 

the ensuing approximation  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ‖[
32𝜆

1−2𝑠+4
‖𝜃𝑚𝑛‖𝑠]‖

𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  
Theorem 4.7  Let the mapping 𝑞 and a function 𝜓: 𝒜 × 𝒜 ⟶ [0, ∞) satisfy (4.8) and (4.9), respectively. Then, 

a solution 𝑄: 𝒜 ⟶ ℬ of (1.3) exists which is unique and satisfies the following inequality  

 ‖𝑞([𝜃𝑚𝑛]) − 𝑄([𝜃𝑚𝑛])‖𝑟 ≤ ‖
16

1−𝑃
𝜓(𝜃𝑚𝑛 , 𝜃𝑚𝑛)‖

𝑟
 (4.13) 

 for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  

Proof. The desire result is obtained similar to Theorem 4.5.  

Corollary 4.8  Let 𝑠 > −4, 𝜆 > 0 be real numbers. Let the mapping 𝑞 satisfies (4.12). Then, a unique mapping 

𝑄: 𝒜 ⟶ ℬ exists with the result that  

 ‖𝑞𝑟([𝜃𝑚𝑛]) − 𝑄𝑟([𝜃𝑚𝑛])‖𝑟 ≤ ‖[
32𝜆

1−2𝑠+4
‖𝜃𝑚𝑛‖𝑠]‖

𝑟
 

for all 𝜃 = [𝜃𝑚𝑛] ∈ 𝑀𝑟(𝒜).  
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Proof. The proof follows by taking 𝜓(𝜃1𝑚𝑛
, 𝜃2𝑚𝑛

) = 𝜆(‖𝜃1𝑚𝑛
‖

𝑠
+ ‖𝜃2𝑚𝑛

‖
𝑠
) and then choosing 𝑃 = 2−(𝑠+4) in 

Theorem 4.7.  

Remark 4.9 The stability results associated with equation (1.4) are similar to the results of equation (1.3). 

Hence, we omit the results of equation (1.4). 

5. An instance for the failure of stability of equation (1.3) 

Persuaded through the excellent illustration proved in [7], in this section, we demonstrate an apt example to 

prove the failure of stability of equation (1.3) for the critical case when 𝑠 = −4 in Corollaries 3.3, 3.5, 3.8 and 

3.10.  

Theorem 5.1  Let a mapping 𝜙: ℝ⋆ ⟶ ℝ be defined as follows:  

 𝜙(𝜃) = {

𝜇

𝜃4 ,  𝑖𝑓  1 < 𝜃 < ∞ 

𝜇,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where 𝜇 is a positive constant and a mapping 𝑞: ℝ⋆ ⟶ ℝ defined by  

 𝑞(𝜃) = ∑∞
𝑘=0 16−𝑘𝜙(2−𝑘𝜃)            𝑓𝑜𝑟 𝑎𝑙𝑙    𝜃 ∈ ℝ⋆. 

Then the mapping 𝑞 satisfies the ensuing approximation  

 |𝐷𝑞(𝜃1, 𝜃2)| ≤
752

15
𝜇 (|

1

𝜃1
|

4

+ |
1

𝜃2
|

4

) (5.1) 

 for every 𝜃1, 𝜃2 ∈ ℝ⋆. Then, a multiplicative inverse fourth power mapping 𝑄: ℝ⋆ ⟶ ℝ and a positive constant 

𝜌 do not exist so that  

 |𝑞(𝜃) − 𝑄(𝜃)| ≤ 𝜌 |
1

𝜃
|

4

        𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦    𝜃 ∈ ℝ⋆. (5.2) 

 Proof. Firstly, let us show that 𝑞 is bounded. In lieu of the mapping 𝑞’s definition, we obtain |𝑞(𝜃)| ≤

∑∞
𝑘=0 16−𝑘𝜙(2−𝑘𝜃) = ∑∞

𝑘=0
𝜇

16𝑘 =
16𝜇

15
 which indicates that 𝑞 is bounded. Let us show that 𝑞 satisfies the 

inequality (1). Suppose |
1

𝜃1
|

4

+ |
1

𝜃2
|

4

≥ 1. Then the left hand side of (1) is not greater than or equal to 
752𝜇

15
. On 

the contrary, suppose that 0 < |
1

𝜃1
|

4

+ |
1

𝜃2
|

4

< 1. Then there exists a positive integer 𝑟 such that  

 
1

16𝑟+1 ≤ |
1

𝜃1
|

4

+ |
1

𝜃2
|

4

<
1

16𝑟, (5.3) 

 which in turn gives rise to 16𝑟 (
1

𝜃1
)

4

< 1, 16𝑟 (
1

𝜃1
)

4

< 1 and hencet, we have  

 
1

16𝑟−1 (𝜃1) > 1,
1

16𝑟−1 (𝜃2) > 1,
1

16𝑟−1 (𝜃1 + 𝜃2) > 1,
1

16𝑟−1 (
𝜃1+𝜃2

2
) > 1. 

 Therefore, for every 𝑘 = 0,1, … , 𝑟 − 1, we notice that  

               
1

16𝑟 (𝜃1) > 1,
1

16𝑟 (𝜃2) > 1,
1

16𝑟 (𝜃1 + 𝜃2) > 1,
1

16𝑟 (
𝜃1+𝜃2

2
) > 1 

 and 𝐷𝑞(16−𝑘𝜃1, 16−𝑘𝜃2) = 0. for 𝑘 = 0,1,2, … , 𝑟 − 1. In view of the definition of 𝑞 and (5.3), we obtain  

 |𝐷𝑞(𝜃1, 𝜃2)| ≤ ∑∞
𝑘=𝑟

𝜇

16𝑘 + ∑∞
𝑘=𝑟

𝜇

16𝑘 +
15

16
∑∞

𝑘=𝑟
𝜇

16𝑘 

                         ≤
47𝜇

15

1

16𝑘 ≤
752𝜇

15

1

16𝑘+1 ≤
752𝜇

15
(|

1

𝜃1
|4 + |

1

𝜃2
|4) 

 for every 𝜃1, 𝜃2 ∈ ℝ⋆, which indicates that 𝑞 satisfies (5.1) for all 𝜃1, 𝜃2 ∈ ℝ⋆. Next is to prove that (1.3) 

fails to be stable for 𝑠 = −4 in Corollaries 3.3, 3.5, 3.8 and 3.10. Suppose a reciprocal fourth power mapping 

𝑄: ℝ⋆ ⟶ ℝ and a constant 𝜌 > 0 satisfy (5.2). Since 𝑞 is bounded above and using the result of Corollaries 3.3, 

3.5, 3.8 and 3.10, the mapping 𝑄(𝜃) must be a reciprocal fourth power mapping and 𝑄(𝜃) =
𝑘

𝜃4 for any 𝜃 ∈ ℝ⋆. 

Therefore, we arrive at  

 |𝑞(𝜃)| ≤ (𝜌 + |𝑘|) |
1

𝜃
|

4

. (5.4) 

 At the same time, we can choose an integer 𝑚 > 0 with 𝑚𝜇 > 𝜌 + |𝑟|. Suppose 0 < 𝑡ℎ𝑒𝑡𝑎 < 2𝑚−1, then 1 <
2−𝑘𝜃 < ∞ for every 𝑘 = 0,1, … , 𝑚 − 1. Hence, for this 𝜃, we obtain  

 𝑞(𝜃) = ∑∞
𝑘=0

𝜙(2−𝑘𝜃)

16𝑘 ≥ ∑𝑚−1
𝑘=0

(2−𝑘𝜃)4

16𝑘 = 𝑚𝜇
1

𝜃4 > (𝜌 + |𝑘|)
1

𝜃4 

which is a contradiction to (5.4). Hence, (5.3) fails to be stable for 𝑠 = −4 in Corollaries 3.3, 3.5, 3.8 and 3.10. 

 

6. Pertinence of equations (1.3) and (1.4) in fluid dynamics and Raman Spectroscopy   

  In this section, we present the pertinence of equations (1.3) and (1.4) in various field such as fluid dynamics 

and Raman spectroscopy.  

6.1. Fluid Dynamics 

The fundamental factors that are necessary to find the blood flow resistance (𝑅) within a single vessel are the 

radius of the vessel (𝑟), the length of the vessel (𝐿) and the viscoscity of the blood (𝜂). Among the above three 

factors, the most signifcant factor is the radius of the vessel in terms of quantity and physiology. Since the 
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vascular smooth muscle in the wall of the blood vessel contracts and expands, the radius of the blood vessel is a 

primary factor. Also, a very small change in the radius of vessel leads to large change in resistance, where as 

length of vessel does not change significantly and viscosity of blood normally stays within a small range (except 

when hematocrit changes). Then the fluid resistance is directionary proportional to 𝜂 and 𝐿 and inversely 

proportional to 𝑟4, which is given by  

 𝑅 =
𝑐𝜂𝐿

𝑟4  

where 𝑐 is constant of proportionality. Suppose 𝜂 and 𝐿 are kept constant, then the fluid resistance is given by  

 𝑅 =
𝑘

𝑟4. 

where 𝑘 is a constant. If 𝑟1 and 𝑟2 are the radii of two blood vessels, then the fluid resistances in those blood 

vessels can be considered as 𝑞(𝑟1) and 𝑞(𝑟2), respectively, where 𝑞 is a reciprocal fourth power mapping. Also, 

𝑞 (
𝑟1+𝑟2

2
) and 𝑞(𝑟1 + 𝑟2) represent the fluid resistances of vessel radius 

𝑟1+𝑟2

2
 and 𝑟1 + 𝑟2, respectively. The 

exposition of equation (1.3) is the difference between the fluid resistances 𝑞 (
𝑟1+𝑟2

2
) and 𝑞(𝑟1 + 𝑟2) is given by 

the ratio of 15𝑞(𝑟1)𝑞(𝑟2) and [𝑞(𝑟1)
1

4 + 𝑞(𝑟2)
1

4]
4

. Similarly, the explication of equation (4) is the sum of the 

fluid resistances 𝑞 (
𝑟1+𝑟2

2
) and 𝑞(𝑟1 + 𝑟2) is equal to the ratio of 17𝑞(𝑟1)𝑞(𝑟2) and [𝑞(𝑟1)

1

4 + 𝑞(𝑟2)
1

4]
4

.  

6.1. Raman Spectroscopy 

 In Raman spectroscopy, the solution of equations (1.3) and (1.4) can be applied in studying the nongraphite 

samples with distinct crystallite sizes and laser energies. The disorder-induced Raman bands 𝐷 and 𝐺 are 

denoted by 𝐼𝐷 and 𝐼𝐺 . Then the intensity ratio of these disorder-induced Raman bands 𝐼𝐷/𝐼𝐺  is proportional to 

the multiplicative inverse fourth power of the laser energies.   

 

7. Discussion and Conclusions 

As of our knowledge, our findings in this study are novel in the field of stability theory. This is our 

antecedent endevavour to deal with new type of reciprocal fourth power functional equations. It is shown that 

the equations (1.3) and (1.4) are equivalent to each other to conclude that their solution is reciprocal fourth 

power mapping. The stability results of different forms of reciprocal functional equations are obtained by many 

mathematicians in various spaces. But, in this work, we have considered matrix normed spaces to analyze the 

results of equations (1.3) and (1.4) and they are found to be stable except for a singular case. For the failure of 

stability result when critical case arises, we have illustrated an apt example. At the end of this study, we have 

presented pertinency of equations (1.3) and (1.4) in fluid dynamics and Raman spectroscopy.  
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