

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5687

Automate The Mapping Phase Of Drug Side Effects Using NLP Techniques

1Dr. D. V. Lalita Parameswari, 2Y. Sowmya Reddy, 3Dr. Ch. Mallikarjuna Rao
1Sr. Assistant professor,

Department of CSE

G. Narayanamma Institute of Technology Science (For Women), Hyderabad.

Email: lplalitap97@gmail.com

2Assistant professor,

Department of CSE

Anurag University,

Hyderabad.

Email: ysowmyacse@cvsr.ac.in

3Professor,

Department of CSE

Gokaraju Rangaraju Institute of Engineering and Technology

Hyderabad 500090,

Telangana state, India

Email: chmksharma@yahoo.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021

Abstract: Drug safety is an important science to detect threats related to medication consumption. Drug

monitoring is often referred to as drug defence. For example, medicine's side effects can be caused by

interactions, excessive doses and violence. In addition, information must be collected and mapped to predefined

terms to find models in which the unintended effects are induced. This mapping is today manually conducted by

experts, which can be very time consuming and challenging. In this paper the aim is to automate the mapping

phase of side effects using techniques for machine learning.The model was created using data of pre-existing

mappings of literal side effect expressions. The last design used the pre-trained BERT language model and the

latest findings were obtained inside the NLP. The final model was correct at 80.21 percent in the evaluation of

the test range. Some wordings were found to be very difficult to define for our model, mainly because of

uncertainty or lack of literal knowledge. Since a threshold was introduced that left the most difficult to identify

wordings for manual mapping, which is very important to make mapping correctly. However, this method could

still be improved because suggested terms were created from the model, which could be used as support for the

manual mapping specialist.

Keywords: Machine Learning, NLP, BERT, MedDRA.

1. Introduction

Pharmacovigilance is defined by the World Health Organisation (WHO) as” the science and activities relating to

the detection, assessment, understanding and prevention of adverse effects or any other possible drug-related

problems.” [1] Pharmacovigilance is important for identifying risks related to medicine intake caused by

interactions, high dosage, misuse etc. where the detection of these risks can be crucial to ensure patient safety.

The Uppsala Monitoring Centre (UMC) is working alongside WHO as part of the WHO Programme for

International Drug Monitoring (PIDM) for the common goal of “a systematic collection of information on

serious adverse drug reactions during the development and particularly after medicines have been made

available for public use”.[2] One tool developed and maintained by UMC, for the purpose of drug safety, is

VigiBase.[3] It is WHOs global database, containing millions of individual case safety reports (ICSRs) from

countries all over the world that are part of PIDM. The ICSRs are reports containing suspected adverse drug

reactions (ADRs) which are reported and collected from both patients and healthcare professionals, by the

National Authorities of each member country of the PIDM. An ADR is a term used to describe the unintended

side effects of drugs that pharmacovigilance experts are trying to detect.

When expressing an ADR in free text, the very same reaction can be explained in many different ways: ”I have

a headache”, ”my head hurts” and ”I have a pain in my head” are all verbatim expressions of the same

condition: Headache. It is of great importance to classify these expressions as equal in order to find possible

correlations between drugs and side effects. In order to do this, normalization can be performed, mapping the

different verbatim expressions to the same condition label. As of today this mapping is done manually by coding

specialists who choose a fitting label based on the verbatim. The labels used for mapping are the terms found in

The Medical Dictionary for Regulatory Activities (MedDRA) which is a terminology that contains several

mailto:lplalitap97@gmail.com
mailto:ysowmyacse@cvsr.ac.in
mailto:chmksharma@yahoo.com

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5688

10,000 of medical terms. This manual mapping can be a very time consuming task and requires the work of

specialists. When leaving this task for human evaluation there is also the aspect of subjectivity which can result

in similar verbatim being mapped to different labels by different coding specialists.

This work aims to develop an algorithm that can automate the process of mapping verbatim expressions of

ADRs to MedDRA terms. The results of this project can be beneficial for the supervisor in multiple ways. For

example in improving their mapping of verbatims in the side effect reports. At the time they only rely on direct

matches to MedDRA and therefore might be missing valuable information. Both in pharmacovigilance and

clinical trials experts are manually performing data entry. The proposed algorithm could therefore be a resource

to improve these processes.

2. Background

The Medical Dictionary for Regulatory Activities (MedDRA) is a terminology that contains several 10,000 of

medical terms presented in a hierarchical order containing five layers displayed in figure 1.[4] MedDRA is

continuously updated with new medical concepts being added or existing concepts being modified. In this paper

MedDRA version 22.1, released in September 2019, is used. [5] In this version the highest level layer of

MedDRA ’System Organ Class’ (SOC) contained 27 terms while the lowest level layer ’Lowest Level Term’

(LLT) contained over 80,000 terms. The highest level layer (SOC) contains the most general terms and for each

layer the terms get more specific. The ’Preferred term’ (PT) is the term used to label the side effects in VigiBase

and it consists of almost 24,000 terms. The most specific term (LLT) can contain for example synonyms or

different spellings of the PT, as well as the PT itself.

Every PT is primarily assigned to one SOC but can also be secondarily assigned to several other SOCs. An

example is the PT “Asthma” that is found under its primary SOC “Respiratory, thoracic and mediastinal

disorders” (SOC) but also “Immune system disorders” (SOC) as secondary. Each LLT is however uniquely

related to one PT.

Figure 1: The five layers of the MedDRA hierarchy.Figure 2: An example showing the MedDRA hierarchy for

the PT ’Lactose intolerance’.

Figure 2 shows an example of how ’Lactose Intolerance’ is categorized in MedDRA. First we have ’Metabolism

and nutrition disorders’ (SOC) which is a very general term, afterwards comes the more specific ’Food

intolerance syndromes’ which is a ’High level group term’ (HLGT). From the HLGT of food intolerance we

specify even more unto ’Sugar intolerance (excl glucose intolerance)’ which is a ’High level term’ (HLT).

Under this category we find the PT ’Lactose intolerance’ that we were looking for. As can be seen the chosen

PT has four corresponding LLTs. Among the LLTs we find the PT ’Lactose intolerance’, ’Lactose intolerant’ as

well as synonyms including different spellings ’Lactose diarrhea/diarrhoea’.

3. Methodology

3.1 Natural Language Processing

Natural language processing (NLP) concerns the interaction between the human language and computers. In

theory, translating human language to computers could be an easy task: words are just collections of characters

and sentences are collections of words. However it can be more difficult in practice since the human language

can be ambiguous as well as ever changing and evolving. Yoav Goldberg states in his book Neural Network

Methods for Natural Language Processing that” People are great at producing language and understanding

language, and are capable of expressing, perceiving, and interpreting very elaborate and nuanced meanings. At

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5689

the same time, while we humans are great users of language, we are also very poor at formally understanding

and describing the rules that govern language.” [6]

Classification is the technique of categorizing data to a set of discrete output values, referred to as classes or

labels. The classification algorithm is created from patterns found in pre-existing mappings. By finding the

features that create these patterns and determine how the data is mapped, any new observations can be mapped

according to this information. The goal is to find enough features to be able to correctly map any new

(unknown) data to the correct class. In an example of classifying vehicles to the labels ”bus”, ”car” or

”motorcycle” the features could for example be the number of wheels, the length of the vehicle and the presence

of a steering wheel. An unknown vehicle with more than 4 wheels should probably be classified as ”bus” while

an unknown vehicle without a steering wheel should be classified as ”motorcycle”. These patterns could be

found by looking at multiple buses, cars and motorcycles and finding how they distinguish from one another[10]

Classification is seen as a supervised learning technique in machine learning since it uses previously made

classifications to make future predictions. The pre-existing mappings are referred to as the gold standard (GS)

and they are seen as the benchmark. Within the NLP-field the data used is in text format, usually as words or

sentences. When classifying data in this form the task is more specifically referred to as text classification. Some

well-known examples are: sentiment analysis (text classified as having positive or negative sentiment) and

language detection (predicting what language the text is written in)[7].

A. Multi-class classification

The simplest form of classification is called binary classification and is done with only two classes. Examples of

binary classification are classifying data to True/False based on some criterion, for example classifying e-mails

to being spam/not-spam or reviews of a product to being positive/negative.

When there are more than two classes it is considered a multi-class classification problem. As the number of

classes increases the classification problem gets increasingly difficult to solve. To explain this increasing

difficulty we can compare a binary classification problem (2 classes) with a multi-class problem of 100 classes.

To exemplify the problem a” dummy classifier” could be used, that simply classifies everything to the same

class. Statistically (not considering imbalanced classes) this would mean that in the binary classification we get

50% accuracy while in the case of 100 classes we get 1% accuracy. More generally we would get accuracy =

nrOfClasses1, clearly showing the relation between a decreased accuracy with an increased number of classes.

In practice the algorithms are usually better than this” dummy classifier”, but as the number of classes increases

any algorithm will have more outputs to consider, decreasing the possibility for a correct classification.

B. Imbalanced classes

Having imbalanced classes means that the number of observations from different classes, used to train the

classifier, is disproportionate. This can lead to bias within the model as it is trained to classify more often

towards the most represented classes which can give results that seem more promising than they really are. Let

us say there is a binary classification problem where the goal is to detect spam e-mails and the observations are

95% non-spam and 5% spam. The”dummy classifier” that always classifies to nonspam would then give an

accuracy of around 95%, which seems great, even if nothing has really been implemented[11].

C. Multi-label classification

Commonly within classification each observation is mapped to a single class. With multi-label classification

however the observations are mapped to a set of classes, one or multiple ones.

D. Hierarchical classification

Usually all classes are equally differentiated from one another. If however the classes are part of a hierarchy

they will be more or less related. This relation can be used with a hierarchical classifier that can start mapping

data to a low-level and increase the level of detail.

3.2 Text representation

For any classification problem the input needs to be numerical since that is the only representation that a

computer can comprehend. When working with NLP-problems we are using text as input and before doing any

calculations we need some method to translate the text into numbers. There are multiple proposed solutions for

text representation some of which are presented in this section.

A. Bag of words

One simple approach of representing text is Bag Of Words (BOW) which takes the words and its number of

occurrences in a document into account. If two documents consists of the same words, they are seemingly

similar and could therefore belong to the same class. By creating vectors that reflect on the term frequency,

similarities between documents could be found by vector comparisons.

The data representation will be a vector were each position corresponds to a word that is present in some of the

documents. Each document will then have their own vector were each number represents the occurrence of the

word in the document. This way of representing each word with a vector of N positions with a ”1” in the

position representing that word and ”0” for the other N-1 positions is called a one-hot encoding.

Document 1 = ”Headache”

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5690

Document 2 = ”Drug exposure during pregnancy”

Document 3 = ”Drug exposure”

Using the three documents above as an example the corpus used would consist of the words: ”drug” ”during”

”exposure” ”headache” ”pregnancy”. Since the corpus consists of five words, the vector representation will be

five dimensions. Comparing the vector representation below it is clear to see that document 2 has more in

common with document 3 than document 1, as expected.

Document 1 = ”Headache” = [0 0 0 1 0]

Document 2 = ”Drug exposure during pregnancy” = [1 1 1 0 1]

Document 3 = ”Drug exposure” = [1 0 1 0 0]

B. Tf-idf

The Bag of words representation is based on term frequency but it doesn’t take into account the fact that words

are more or less commonly used. Some words like ”the”, ”of”, ”a”, ”that” appear more often in the English

language and these words might have a high frequency in multiple documents, even if these documents should

not be seen as similar. ”Term frequency - inverse document frequency”, often shortened tf-idf, deals with this

weakness by weighting the frequency of each term with the number of documents where they are present.

C. Word embeddings

There are multiple problems with the earlier mentioned representations (BOW and tfidf). One being the high

dimensionality of the vectors, which will be growing with the number of terms in the corpus. Another problem

is that similar words are not connected in any way; these representations lack awareness of word meaning. With

BOW and tf-idf there will probably be similarities found between the vector representation of ”I feel pain in my

head” and ”I feel pain in my arm” but not between ”she felt pain in her head” and ”he had a headache” since the

last sentences have no common words.

In his book Speech and Language processing Jurafsky mentions terms such as word similarity and word

relatedness [7]. These concepts can be used to understand the insufficiency of using term frequency for

representation, which is simply based on the words and not the meaning behind them. Even if two words are not

synonyms they can still be more or less similar or related to one another. Cat is not a synonym of dog, but cats

and dogs are still similar words used in similar contexts. In the same manner coffee and cup are neither

synonyms nor similar words, but they are still related and associated to one another.

Word embeddings are a collection of techniques used for creating word vectors and they often include the use of

neural networks. This results in vector representations that are much denserthan the one-hot encodings

mentioned in previous sections. Another advantage of using word embeddings is that the vectors capture

semantic meaning of words from the contexts of where it appears. When training a word embedding model with

sentences, not only the target word is considered but also its surrounding words. In 2013 Google introduced a

word embedding model which later became known as word2vec [8] that became very popular for creating word

vectors. It makes use of two architectures called CBOW and Skip-gram and produces word vectors from

unsupervised training on a large text corpus.

3.3 Machine learning

Machine learning is a field within computer science. The objective is for the computer to” learn” how to solve a

problem (that it is not explicitly programmed to solve) based on data. There are different kinds of machine

learning algorithms which can be divided into separate categories. The three most common ones are supervised

learning, unsupervised learning and reinforcement learning.

Supervised learning can be used if we have access to a labeled data set of observations. The model can learn

from this set and find patterns that will help make future predictions. When there is no labeled dataset to begin

with, unsupervised learning algorithms can be used. These models tries to group data together based on

underlying patterns. Lastly reinforcement learning is based on interaction with the environment. The system

learns by rewards, were better choices are rewarded higher and thereby effecting future choices.

3.4 Deep learning

Deep learning is a sub-field within machine learning that is based on artificial neural networks (ANNs). ANNs

are a set of algorithms with a structure inspired by the signal transmission of neurons in the brain. An ANN is

built in multiple layers: starting with the input layer, ending with the output layer and then a number of hidden

layers in between. ANNs operates on numerical data and the input must be of fixed size. When working with

data that is not numerical by default, for example text, it needs to be translated into a numerical data

representation. When using deep learning algorithms the features are extracted from the data without human

intervention, as opposed to traditional machine learning algorithms. This however comes at a cost of needing a

relatively high amount of training data for the algorithm to be successful.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5691

Figure 3: The figure shows the structure of a simple ANN with a single hidden layer.

Recurrent neural networks (RNNs) is a field within neural networks with algorithms that, opposed to the simpler

neural networks, take sequential structures into account (through time or space depending on the application).

This is accomplished by internal feedback loops in the network that creates what can be referred to as

”memory”.

In a paper from 2017 [10] researchers from Google presented the concept of Transformers, built in an encoder-

decoder architecture. The conventional encoder-decoder model has a sequence of connected RNNs where each

RNN inputs a token and outputs a vector that is based on the token as well as all the previous tokens. One

disadvantage of this model is that the input has to be fed to the system sequentially, as each step is dependent on

previous calculations. The Transformer introduced an alternative to the RNN architecture, which uses something

called attention instead of recurrence. As opposed to the RNN architecture with the sequential dependency of

the input, the Transformer reads the entire word sequence at once and can learn its context both from the

previous as well as the following words. The model is thereby considered to be bidirectional.

BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is a pre-trained language

model that was released by Google in 2018. As the name might reveal, the BERT architecture consists of

multiple layers of transformer encoders. The model has received state-of-the-art results on multiple NLP tasks

[9]. BERT is trained on a huge data set consisting of the English Wikipedia (2,500M words) and the

BooksCorpus (800M words). The training is unsupervised and two different tasks are performed, namely Mask

language model (MLM) and Next sentence prediction (NSP), which creates the word representation. For MLM

the model looks at an entire sentence or piece of text trying to predict the word that has been masked out. This

task is seen as a key technical innovation as it uses the bidirectional training of Transformers for a language

modelling task. For the NSP task, the model received pairs of sentences and had to predict if the second

sentence followed the first in the original document.

The pre-trained BERT model has a general knowledge of the English language but the model needs to be fine-

tuned to perform a specific task. For a classification task this means training the model using training data to

detect how the input relates to the classes.

As input BERT takes a sequence of tokens. BERT has a corpus of tokens that can be numbers, words or

segments of words, which is used to represent the input. One benefit of the token representation is that any word

can be represented. If a word is not found within the corpus it can be broken down into multiple tokens and

possibly keep some of the original meaning. As an example BERT has no single token to represent the word

”chills” but it can instead be represented with the tokens ”chill” and ”##s”, where the ”##” represents that the

token is part of the same word as the previous token. If the word” headache” was not found in the token corpus

it would be represented by the tokens” head” and” ##ache” which in this case still contains most of the meaning.

The worst case scenario would be for a word to be broken down into each character that it consists of: not

keeping a lot of meaning but still being able to represent the word. The number of tokens is fixed length for a

given model and corresponds to the size of the input layer. If the number of tokens for a given model is 64 it

means that any input that can be represented by less tokens will be padded using a [PAD] token and if an input

needs more than 64 tokens it will be cut off.

When using the fine-tuned BERT model for classification it produces an output layer of logits, with a layer size

corresponding to the number of classes. Logits are integer values ranging from -∞ to ∞ and represents the

unnormalized predictions of the model. The logits can be turned into a distribution of probabilities using the

SoftMax function. Each class will then be represented by a value showing the models probability for each

possible class being the correct class of a given input. When using the SoftMax function on the logits layer to

create a vector of probabilities, taking the sum of that vector will always add up to 1. The SoftMax function is

defined as:

 Where S is the resulting SoftMax vector, e is the standard exponential function and y is the vector of logits

ranging from position i = 1,2,...n.

3.5 Data division

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5692

In machine learning tasks it is a common practice to split the obtained data set into separate disjoint subsets for

training, validation and testing. The training set is used to fit the model. It is from this set that the model learns

patterns. The validation set is used to repeatedly evaluate the model. Since the validation set is disjoint from the

training set it will provide new data for the model. From the results of the evaluation of the validation set,

parameter tuning can be performed. In conclusion the model indirectly learns from the validation set. Lastly the

test set is used to evaluate the final model. No further changes should be made to the model after evaluating

against the test set as these results are seen as the actual performance of the model.

4. Data

Data was retrieved from a frozen version of VigiBase, containing all reports up to 5th of January 2020. From

this source 9,869,169 rows of annotated data could be retrieved, each containing one verbatim and one label.

The verbatims are the inputs to our system, the observations that we want to classify. They are freely entered

text containing a single up to multiple tens of words, expressing ADRs in multiple different languages. The

labels are the preferred terms (PTs) from the MedDRA hierarchy that the verbatims have been mapped to. This

mapping is done by an expert while making the ICSR. MedDRA is, like VigiBase, ever changing. In this project

MedDRA version 22.1 was used [5]. In this version there are 23,954 PTs, however in our labeled data set only

16,408 (∼68,5%) are representedAn initial approach was exploring the data to get a feeling of what kind of

difficulties there were and what methodologies could be fitting to solve them. An early finding was that even as

the verbatims were pulled from free text fields, they were not all unstructured. A large number of verbatims

were already in the form of LLTs, the lowest level term of the MedDRA hierarchy.The verbatims are expressed

in free text and can contain all sorts of characters. In the data there exist alphabetical characters, special

characters and numbers. They can contain abbreviations and spelling mistakes to list a few. Among the English

verbatims a common use of non-alphabetic characters are numbers used to report on medical measurements.

Examples of verbatims including such measurements are ”mxd raised 1.7x10ˆ9/l”, ”lipase (over 4000u/l)” and

”high white blood cell count 80”.The verbatims in the given data set are of varying length, consisting of

between 1 to 53 words. However, around 70% of the verbatims only contain up to 3 words. For the purpose of

word counting a word was defined to be a number of characters separated from other characters with spacing.

Each row of data is only mapped to one class, although the verbatim can contain multiple reported side effects.

This means that even though there will only be a single correct class for each row of data (that is our gold

standard), there might be multiple fitting classes for the verbatim. This will complicate our classification process

and is something to keep in mind when evaluating the algorithm.As presented in the PT-level in MedDRA

contains 23,954 terms. Having this enormous selection of labels means dealing with an extreme multi-class

problem. When examining the annotated data the imbalances of the classes is a fact. Looking at the training data

only 13,978 classes are represented, meaning that we already lost ∼42% of possible classes. In table 1 the

imbalances of the data becomes clear. Even if the training data set contains 13,978 classes, the table shows that

only the 100 most common classes are used to label 54,9% of the data set. This implies that the 45,1% left is

split between the other 13,878 classes in different measures.

Table 1: This table shows how much of the training set that is covered for a number ofPTs most commonly used

for labeling this set.

Number of PTs Data covered

100 54,9 %

500 80,7 %

1,000 89,1 %

2,000 94,9 %

3,000 97,1 %

4,000 98,2 %

5,000 98,8 %

7,000 99,5 %

10,000 99,8 %

A. Language Filtering

Since the data consists of verbatims from ICSRs retrieved from countries all over the world, multiple languages

will be present in the data. This work will be limited to working with English verbatims and therefore it is

important to find a method that can successfully separate the English from the non-English verbatims. A number

of methods where tested to find the most effective one for this task. In this section the different methods are

presented. The methods were all evaluated on the same set of 2000 data rows that were randomly sampled from

the whole data set. The 2000 verbatim were manually labeled as ”English” or ”non-English”, resulting in 478

non-English and 1522 English verbatims.

B. Sort by country

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5693

An early and easy approach was to examine if we could simply choose to include data from countries where a

majority was written in English. The countries were chosen based on a manual overview of the data. The

countries chosen were: United Arab Emirates, Australia, Canada, Egypt, United Kingdom of Great Britain and

Northern Ireland, Greece, India and Korea. However, this method led to a giant data loss since many countries

had to be excluded because of the presence of non-English verbatims, even though there was a lot of useful

english data also present in these data sets.

C. Regular expression

When examining the differences in the English vs Non-English data it was clear to see a common difference in

the characters present. There was data containing only nonalphabetical characters (Chinese/Japanese) and data

containing vowels like” a, ` e´ and ¨ı” (French/Italian). By using regular expression these rows could be found

and discarded.

D. Python libraries

The python library langid was used to remove some non-English rows. The function langid.classify(verbatim)

was invoked for every verbatim. Every call made with a verbatim that resulted in ”en” (classified as English by

langid) was kept and all other verbatim were removed.

E. Dictionary

A dictionary was created using a combination of all words in the lexical database WordNet [11] and all the

words present in any Lowest Level Term in MedDRA (any numbers or special characters where not added).

When evaluating this method each verbatim was split up into separate words and each word compared against

the dictionary. The verbatim then received a score of score = englishWords
words where words refer to the number of

words in the verbatim and englishWords the number of words in the verbatim found in the dictionary. Finally,

since the goal of this language sorting was to make sure that all data we operate the project on is in actually in

English, we based the threshold of the score upon the precision. The precision was set to be .99 allowing for a

.01 error rate of non-English verbatim.From evaluation of the results the final choice for retrieving only the

English data was a combination of the Dictionary and Regular expression methods mentioned above. Using this

method left 6,986,110 rows of data (∼70% of the original set).

F. Modules

The modules are different approaches taken to solve the problem of this work. They are based on simple string

matching algorithms as well as the more advanced technology of the BERT model. The reason for creating these

modules was to compare the results of different algorithms as well as exploring if a combination of different

algorithms would be more beneficial for solving the problem.

i. String matching - LLT

From explorations of the training data it was discovered that there were many verbatims that were already

written as MedDRA terms. To further explore this finding, a string matching algorithm for classification was

constructed. The algorithm was designed to compare each verbatim to a dictionary consisting of all LLTs. All

the LLTs were lowercased to match the lowercased verbatims. If a match was found, that verbatim would be

classified to the LLTs corresponding PT.

ii. String matching - training

The second algorithm used the same approach of string match comparisons, but comparing the verbatim we

want to classify to the verbatims in the training data. We wanted to make use of previous data by classifying

accordingly. If any match was found, the verbatim would be labeled as it was labeled in the training data. An

initial problem with this approach was that the very same verbatim expression can be labeled differently in the

training data, resulting in multiple labeling options. To solve this problem all the verbatims in the training data

was compiled into a dictionary of distinct verbatim expressions. Each distinct verbatim worked as a dictionary

key connected to a PT label value. When creating the dictionary, each distinct verbatim would get the PT that it

was most commonly labeled as in the training data.

iii. BERT

We used a pre-trained BERT base model and fine-tuned it for our classification task using the 4,890,274 rows

present in the training data set and trained for 4 epochs. The input layer was set to 32 and the output layer to

5,000, meaning we input 32 tokens and have 5,000 possible classes as output. As can be seen in table 1

considering the whole data set the 5,000 most commonly used labels covers 98.8% of the data labeling.When

using the fine-tuned BERT model for classification it produces an output layer of logits, with a layer size

corresponding to to the number of classes, in our case 5,000. We take the SoftMax of the logits and classify the

verbatim to the class with the corresponding logit of highest SoftMax value.

Thresholds

Because the verbatims are constructed in free text fields some might be very difficult to classify. They could for

example include measurements, abbreviations, multiple symptoms or other ambiguity. In order to avoid

misclassification, one option would be to not classify the most difficult verbatims. The values of the logit layer

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5694

reflects on the confidence of the BERT model making good predictions. By taking the values of the logits into

account in the classification process we could decide how confident we need the model to be.

Since the value of the logits represent the confidence of the corresponding class being correct, we decided to use

this value as a threshold. This is referred to as the valthreshold. As discovered in the explorations there are cases

where multiple side effects are reported in the same verbatim. This could lead to multiple logits getting high

values. To increase the certainty of the prediction we make, we chose to also include another threshold based on

the difference between the highest and second highest logit. The smaller the difference between the two highest

logits, the less certainty that the highest value results in a correct prediction, as we have high confidence in

multiple classes. The second threshold is referred to as the diff-threshold.

In practice each verbatim is classified with the PT corresponding to the highest logit value, if the logit value

exceeded the valthreshold and the difference between the highest and second highest logit values exceeded the

diff-threshold. For any verbatim for which the logit values do not satisfy the thresholds, no classification is

made. But even if the confidence of BERT’s prediction is not seen as good enough to classify a verbatim, there

might still be good suggestions among the top predictions. With any verbatim that is left unclassified the top 5

highest ranked PTs (based on the highest logits from the BERT output layer) will therefore be provided. If these

verbatims are left for manual mapping it means that the 5 suggestions could be a resource in the process.

Three different modules of BERT were created with the thresholds based on the maximum f1-score, the

maximum f0.5-score and the maximum f0.2-score for both the highest value logit (valthreshold) and the difference

between the highest and second highest logit (diff-threshold).

G. Evaluation

The modules were evaluated in different combinations to find a pipeline of modules that gave us the best results

on the validation set. The pipelines were evaluated by accuracy (number of correct predictions) and error rate

(number of incorrect predictions). If this pipeline were to be used in clinical trials it would be very important to

not be making incorrect mappings. Because of this we want to keep the error rate as low as possible.

The evaluation of the pipelines was based on comparisons between the predictions and the gold standard (GS) as

well as an error analysis performed on the different modules of the final pipeline. The basis for the error analysis

was produced by a panel of terminology specialists at UMC. They were asked to review 200 randomly selected

verbatims from each module, where the predicted PT was different from the GS. The terminology specialists

looked at each verbatim and chose a PT that they would code that verbatim to. Each verbatim was then given a

label that shows how the terminology specialists’ PT relates to the (by our system) predicted PT and the gold

standard PT.

In table 2 the possible labels and their corresponding description are shown. TS refers to the PT chosen by the

terminology specialists, GS refers to the PT that is our gold standard and P refers to the (by our system)

predicted PT. The label”-1” was given when the specialists felt there was not enough information in the

verbatim to give it a PT label. ”0” was given when the specialists chose a PT that was not predicted by our

system, neither the gold standard. ”1” is the case when the specialist chose the same PT as our system predicted,

and ”2” when they chose the same as the gold standard. The last label ”3” was chosen when the verbatim

contained information linking to multiple PTs, were the specialists would split up the verbatim and code the

parts separately.

As mentioned in the output of the manual mapping module is five suggested PTs. In this evaluation ”0” was

given when none of the five suggestions (or the GS) was the same as the specialists’ choice and ”1” when one of

the five suggestions matched their chosen PT.

Table 2: The labels used for evaluating the incorrect samples from the different modules

Label Description

-1 The verbatim has no fitting label

0 (TS != P) AND (TS != GS)

1 TS = P

2 TS = GS

3 The verbatim should be coded to multiple labels

5. Results

5.1 Language sorting

The results of methods presented for sorting out English data is shown in the table 3. The different methods

were evaluated on a set of 2,000 randomly sampled rows which were manually labeled as English or non-

English.From table 3 we find that the method Countries had a high precision of almost .99, but a low recall of

71. It shows that when data was solely selected from a few countries, the selected data was mainly in English.

However a lot of English data (from other countries) were filtered out.The RE approach had a prefect recall of 1

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5695

meaning that all the English samples were classified as English. The low precision of around .78 however shows

that this method did not filter out non-English data strictly enough as there were still much left in the data set.

Python LangID had relatively good results in both precision (.92) and recall (.89) but was out-performed by the

Dictionary method that got a precision of .99 and a recall of.96.When combining the Dictionary method with

the RE, having a perfect recall, the precision was slightly improved without any negative effect on the recall.

This led to the best precision and fscore of all the methods which led to the final choice of the Dictionary + RE

as the method for language sorting.

Table 3: The different methods for distinguishing English verbatims, evaluated with a sample set of 2,000

manually labeled rows of data.

Method Precision Recall F1-score

Countries 0.9899 0.7063 0.8244

RE 0.7841 1 0.8790

Python LangID 0.9192 0.8890 0.9038

Dictionary 0.9898 0.9560 0.9726

Dictionary + RE 0.9905 0.9560 0.9729

5.2 Thresholds

Table 4 shows the three different thresholds used for the BERT module. Each one of these three thresholds

corresponds to one ”diff”-threshold and one ”val”-threshold. The values used for” diff” (difference in highest

and second highest logit) and ”val” (the value of the highest logit) were chosen because they were maximizing

three different f-scores (F1-score, F0.5-score and F0.2-score).

Table 4: The different thresholds used to improve the predictions made by BERT

Threshold Diff Val

F1 0.4 9.2

F0.5 2.0 10.8

F0.2 4.1 12.6

When evaluating the validation set on the BERT module, the distribution of the correctly classified verbatims

are displayed to the left in figure 4. The y-axis shows the value of the highest value logit (referred to as ”val”).

The x-axis shows the difference between the highest and second highest value logits (referred to as ”diff”). To

the right in figure 4 the distribution of the incorrectly classified data is displayed. It may look as if the graph

showing the incorrect predictions has more data because of the intensity of the heat map. However this is a

result of the graphs being generated separately, thereby the intensity is not comparable.

Comparing the distributions in the graphs, the incorrectly classified verbatims are much more centered towards

the lower values of both ”diff” and ”val”, while the correctly classified verbatims are more centered around

higher values. The three different boxes present in both graphs show how the three different thresholds

introduced in table 4 affect the number of occurrences of correct and incorrect predictions in the validation set.

Everything inside the box will be left unclassified for that specific threshold, while everything outside the box is

classified by BERT. As can be seen the higher the threshold boundary, the fewer incorrect predictions are made.

However, this also means that more of the correct predictions will be left unclassified. The overlapping

distribution of the two graphs shows that no threshold will completely eliminate the errors. Choosing a threshold

will really be a trade-off of getting the best possible accuracy without overstepping the accepted error rate.

Figure 4: Two heat map graphs displaying the data distribution from the by BERT correctly and incorrectly

predicted verbatims. The graphs also show the three different thresholds from table 4. The graphs were

generated separately and the intensity can therefore not be compared.

5.3 Pipeline

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5696

A number of possible pipelines were evaluated based on different combinations of modules presentedwith

different thresholds presented in table 4. The pipelines are shown in table 5 and the evaluation is done on the

validation set.In pipeline 1 the BERT model is classifying the whole validation set. The accuracy is 0.8376

which can be interpreted as a good result considering the difficult examples that exists in the data set. However

the drawback of this pipeline is the high error rate of 0.1624, which would never be accepted for the potential

use case of the system. To let BERT classify every verbatim seemingly was a too simple approach. When

restricting the classification with different thresholds in pipeline 2-4 both the accuracy and the error rate drops

as the threshold boundary is increased.

The results of pipeline 5 shows that more than half of the verbatims in the validation set are actually in the form

of LLTs. Even as the error rate for this pipeline setup is relatively low (around 1%) the presence of these errors

is still surprising. They occur when a verbatim, that is also a LLT, is mapped to another PT than the one that the

LLT is corresponding to.When apart from LLTs also basing the predictions on training data (meaning

classifying a verbatim in the validation set as it was classified in the training set) the error rate increases from

1,1 % to 3,58% (comparing pipeline 5 and 6). This shows that the exact same verbatim can be classified

differently, which strengthen the hypothesis that the mapping is sometimes based on additional information.

Because of the high error rate brought by basing future predictions on exact matches in the training data (as can

be seen in pipeline 6, 8 and 9) this module was not kept in the final pipeline.

Pipeline 7 is a combination of the modules separately run in pipeline 4 and 5. When comparing these pipelines

it is found that the combination really improves the accuracy without increasing the error rate notably. The

improved accuracy of adding the LLTmatching before predicting with BERT can possibly be a result of BERT

being limited to a number of classes (in this case 5,000). The LLT-matching can predict any of the almost

24,000 classes as long as the verbatims are in the form of LLTs, which a notable section seemingly.

Pipeline 10 can also be compared to pipeline 7. The pipelines consist of the same modules but using different

thresholds for the BERT prediction. With the relaxed threshold in pipeline 10 the accuracy approximately

increases from 71% to 79%. However pipeline 7 was considered a better option as the error rate more than

doubled with the relaxed thresholds.

Table 5: Evaluation of possible pipelines on the validation set

id Module 1 Module 2 Module 3 Accuracy Error rate Unclassified

1 BERT - - 0.8376 0.1624 0

2 BERT F1 - - 0.8054 0.0714 0.1232

3 BERT F0.5 - - 0.7520 0.0334 0.2146

4 BERT F0.2 - - 0.6258 0.0111 0.3631

5 LLT - - 0.5549 0.0110 0.4341

6 LLT Training - 0.7046 0.0358 0.2596

7 LLT BERT F0.2 - 0.7106 0.0169 0.2725

8 LLT BERT F0.2 Training 0.7649 0.0387 0.1964

9 LLT Training BERT F0.2 0.7612 0.0389 0.1999

10 LLT BERT F0.5 - 0.7923 0.0365 0.1712

5.4 Final model

For the final model, pipeline number 7 from table 5 was chosen because of its low error rate and relatively high

accuracy. In figure 5 the details of how the selected pipeline works are shown. The first two modules LLT and

BERT are the automatic part of the pipeline that perform classification. The resulting correct and incorrect

classifications are displayed in the figure. The data that could not get automatically classified is left to the last

module Manual mapping where the 5 top suggestions from BERT are given. The figure shows if the correct

label is found within the top 5 suggestions or not.

When evaluating the pipeline on the validation set the accuracy is measured to 71.06% (LLT-matching: 55.49%

and BERT: 15.57%) compared to the 80,21% (LLT-matching: 66.50% and BERT: 13.71%) when evaluating on

the test set. The increase in accuracy can evidently be explained by a bigger part of the test set consisting of

LLT terms, compared to the validation set. The sets were split over time and the increase in LLTs among the

later received verbatims could be explained by how newer reporting systems choose to input this information.

The results of the manual mapping module shows that the suggestions generated by BERT are rather accurate.

For the validation set about 77% of the verbatims left for manual mapping has the correct label found in the top

5 suggestions, for the test set the corresponding results were about 82%. This shows that the suggestions could

actually be a useful resource for someone who were to map these verbatims manually.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5697

Figure 5: Evaluation of the final pipeline.

The results on the validation set are shown in black while the results of the test set are shown in red. The

percentages are given as fractions of each entire data set.

5.5 Classification examples

Table 6, 7 and 8 shows examples of data from the test set that is incorrectly predicted in the different modules of

the pipeline. The examples were selected to show as many different scenarios of wrong predictions and

classifications as possible.

Table 6 displays verbatims in the form of LLTs that was incorrectly classified. The verbatim pregnant is

classified as Pregnancy but was labeled in the validation set as Exposure during pregnancy. Seemingly the label

contains more information than the verbatim, making the classification, which is solely based on the verbatim,

very difficult. Another example from the same table is the verbatim feels bad that is labeled Malaise but

classified as Feeling abnormal.

In table 7 the classification Lipase increased made by BERT for a verbatim labeled as Hyperlipasaemia is

found. The classification is incorrect as the correct label was not captured, however hyperlipasaemia is a

diagnosis given for someone with increased lipase. A similar case, found in the same table, is a verbatim that is

classified as Pyrexia (which is the diagnostic term for having a fever) while the label is set to Body temperature

increased.

Presented in table 8 are examples of verbatims that were not classified by BERT and where the label was not

found in the top 5 suggestions. The verbatim swollen tongue, dyspnoea, dysphagia, drooling, cough is labeled as

Drooling. In the top 5 suggestions we find labels such as Dyspnoea, Cough and Swollen tongue, which are all

symptoms expressed in the verbatim.

Table 6: Examples of data incorrectly classified by LLT-matching

Verbatim Label (PT) Classification (PT)

Pregnant Exposure during pregnancy Pregnancy

application site reaction Skin reaction Application site reaction

painful rash Pain of skin Rash

feels bad Malaise Feeling abnormal

bunion operation Foot deformity Bunion operation

Table 7: Examples of data incorrectly classified by BERT

Verbatim Label (PT) Classification (PT)

lipase (over 4000u/l) Hyperlipasaemia Lipase increased

high temperature all over the body Body temperature increased Pyrexia

Imbalance Walking disability Balance disorder

increased anger Mood swings Anger

does not have af Off label use Atrial fibrillation

Table 8: Examples of data that was unclassified by BERT (because the logit values did not pass the thresholds)

where the correct label was not found in the top 5 suggestions.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5698

Verbatim Label (PT) Top 5 suggestions (PT)

multiple tumors in

mediastinum

Mediastinum neoplasm [’Colon cancer’, ’Malignant neoplasm

progression’, ’Neoplasm malignant’, ’Second

primary malignancy’, ’Neoplasm’]

tablet breakage Prescribed underdose [’Product physical issue’, ’Product quality issue’,

’Wrong technique in product usage process’,

’Product container issue’,

’Product complaint’]

raised ketone Acetonaemia [’Blood ketone body present’, ’Urine ketone

body present’, ’Ketoacidosis’, ’Dehydration’,

’Bone disorder’]

fracture (traumatic) Femoral neck fracture [’Fracture’, ’Upper limb fracture’, ’Fall’,

’Stress fracture’, ’Multiple fractures’]

swollen tongue, dyspnoea,

dysphagia, drooling, cough.

Drooling [’Dyspnoea’, ’Cough’, ’Swollen tongue’,

’Anaphylactic reaction’, ’Dysphagia’]

5.6 Error analysis

In this section the results of the error analysisare shown in table 9. For this evaluation 200 random samples of

incorrectly predicted verbatims were chosen from each module (LLT-, BERT- and the manual mapping module)

and classified by terminology specialists at UMC.

For the LLT module the specialists classified all the 200 verbatims with the same PT as our system. They also

noted that in 105 of the 200 cases (just over 50%) the verbatim was the exact same as the PT chosen by them

and our LLT module. These results are not surprising as the LLT module is based on direct string matches and

should therefore hypothetically have a high accuracy. As mentioned previously, looking at table 6, the correct

labels sometimes seems to be based on more information than solely the verbatim. In this error analysis

however, the terminology specialists, similarly to our pipeline, only consider and have access to the verbatim.

For the BERT module in 149 cases (covering 74,5% of the samples) the specialists chose the same PT as BERT

had predicted, compared to the 15 cases (7,5%) where they chose the gold standard PT. There were also a few

cases were the verbatim could not be classified either because the specialists wanted to split it up as it should be

mapped to multiple PTs (label ”3”) or because it could not be mapped to any PT (label ”-1”). 7% of the set was

labeled as”-1” and two examples of that are the verbatims:” to be high” and” does not have af”. Another 4.5%

needed to be split up, one example is the verbatim: ”hyperglycemia/pain in hands/swelling on feet”.

When it comes to the last module, the manual mapping module, the chosen labels are more distributed over the

different options then for the other modules. In 27.5% of cases the specialist chose the same PT as one of the

five suggestions from our system while in 26.7% they chose the same as the gold standard. Another 24.5% of

the verbatims needed to be split up, 8% of verbatims could not be labeled and in 13.5 % of cases none of the

five suggestions nor the gold standard matched the PT chosen by the specialists.

Table 9: The results of the error analysis are shown as fractions for each module and the number of occurrences

of the labels are shown in parentheses. The description of the labels can be found in table 2.

Label LLT

module

BERT

module

Manual

mapping

module

-1 0 (0) 0.070 (14) 0.080 (16)

0 0 (0) 0.065 (13) 0.135 (27)

1 1 (200) 0.745 (149) 0.275 (55)

2 0 (0) 0.075 (15) 0.265 (53)

3 0 (0) 0.045 (9) 0.245 (49)

6. Conclusion

The final pipeline design consists of three different modules namely the LLT-matching module, the BERT

module and lastly the Manual mapping module. BERT is by far the most important and complex module as it

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5687-5699

 Research Article

5699

can make automatic predictions for all kinds of English verbatims. The shortcomings of the other modules are

that the LLT-matching can only make predictions for verbatims structured as LLTs and the Manual mapping is

not automatic as it involves human judgement. However through evaluation of the pipelines in table 5 it shows

that all the above mentioned modules serves a purpose in the final pipeline, leading up to that choice.

The overlapping distribution of the correctly and incorrectly predicted verbatims, in the graphs displaying

information from the output layer of BERT, shows that no threshold will completely eliminate the errors.

Choosing a threshold is really a trade-off of getting the best possible accuracy without overstepping the accepted

error rate. The threshold could be made more or less strict depending on the task of the model and its accepted

error rate.

When comparing the correct labels with either the classification in tables 6 and 7 or with the corresponding

suggestions in table 8 it is clear to see that one major problem for our model is the great number of classes and

how similar they can be. We see that even if the classification or given suggestions are incorrect (as they differ

from the actual label) the classes are in several cases similar in meaning. Another problem seems to be the

limited information gained from solely using the verbatim as input, as some labels seems to be based on more

information then what is given in the verbatim.

From the error analysis, it was discovered that, assuming that the verbatim is the only source of information,

there are cases where the gold standard might not be appropriate. This could be a result of many things. It has

been mentioned before that the gold standard might be based on additional information and as the mapping is

done manually it would not be surprising for some human errors to occur as well. The specialists that performed

the evaluation found cases of verbatims that, according to them, could not be mapped or that should be split up

into multiple verbatims before being mapped. They also found that for many of the verbatims the model’s

classifications, which were evaluated as errors, were actually matching their own proposed labels. When looking

at errors from the BERT module, the specialists had chosen the same label as BERT classified in 149 of the 200

samples (74,5%).

References

1. World Health Organization (2002), The Importance of Pharmacovigilance, Available at:

https://apps.who.int/iris/bitstream/handle/10665/42493/a75646.pdf

2. World Health Organization, The WHO Programme for International Drug Monitoring, Available at:

http://www.who.int/medicines/areas/quality safety/safety efficacy/National PV Centres Map/en

3. VigiBase, The unique global resource at the heart of the drive for safer use of medicines, Available at:

https://www.who-umc.org/vigibase/vigibase

4. Mozzicato P (2009), MedDRA An Overview of the Medical Dictionary for Regulatory Activities,

Available at: https://www.researchgate.net/publication/233524508 MedDRA An Overview of the

Medical Dictionary for Regulatory Activities

5. MedDRA (2019), Introductory Guide MedDRA Version 22.1, Available at:

https://admin.new.meddra.org/sites/default/files/guidance/file/000354 intguide 22.1.pdf

6. Goldberg Y (2017), Neural Network Methods for Natural Language Processing

7. Jurafsky D. and Martin J. H. (2019) Speech and Language Processing, Available at:

https://web.stanford.edu/jurafsky/slp3/

8. Mikolov T, Chen K, Corrado G and Dean J (2013), Efficient Estimation of Word Representations in

Vector Space, Available at: https://arxiv.org/pdf/1301.3781.pdf

9. Ramesh, (2020) "A Survey on NLP based Text Summarization for Summarizing Product Reviews,"

2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA),

Coimbatore, India, 2020, pp. 352-356, doi: 10.1109/ICIRCA48905.2020.9183355. (IEEE) (Scopus)

10. Dr. G. Ramesh (2020). A Survey on Hybrid Machine Translation, 2nd International Conference on

Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020), , Volume 184, August,

2020.

11. Dr. Gajula Ramesh (2020). Detection of Plant Diseases by analyzing the Texture of Leaf using ANN

Classifier. International Journal of Advanced Science and Technology, 29(8s), 1656 – 1664.

12. Dr. G. Ramesh (2020). Data Storage in Cloud Using Key-Policy Attribute-Based Temporary Keyword

Search Scheme (KP-ABTKS). Lecture Notes in Networks and Systems Volume 98 pp. 630–636, 2020.

https://arxiv.org/pdf/1301.3781.pdf

