Some Labelings On Cycle With Parallel P4 Chord

A. Uma Maheswari ${ }^{1}$, S. Azhagarasi ${ }^{2}$, Bala Samuvel. J ${ }^{\mathbf{3}}$
${ }^{1,2,3} \mathrm{PG} \&$ Research Department of Mathematics,
Quaid-E-Millath Government College for Women, Chennai- 02
${ }^{1}$ umashiva2000@yahoo.com ${ }^{2}$ kothaibeauty @ gmail.com ${ }^{3}$ bsjmaths@ gmail.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract

In this paper we focused, to obtain some results on labeling of cycle graph, Cycle $C_{2 m}$ ($m \geq 3$) and $C_{2 m+l}(m \geq 3)$ with parallel (path) P_{4} chords. We have proved, every cycle $C_{2 m}(m \geq 3)$ and $C_{2 m+1}(m \geq 3)$ with parallel (path) P_{4} chords is a vertex odd mean graph and vertex even mean graph, though it satisfied their labeling. And also graph is proved for Square Sum labeling and Square Difference Labeling on cycle $C_{2 m}$ ($m \geq$ 3) and $C_{2 m+1}(m \geq 3)$ with parallel (path) P_{4} chords. Keywords: Cycle with parallel (path) P_{4} chords, Vertex odd mean labeling, Vertex even mean labeling, Square sum labeling, Square Difference Labeling

Subject Classification: 05C78

Introduction

Rosa introduced the labeling of graph in the year 1967[1]. A.Gallian has given survey for graph labeling in detail [3]. S.Somasundaram and R. Ponraj, found mean labeling and published results for some graphs[7]. Revathi [6] has established and proved the graphs for vertex even mean and vertex odd mean labeling. In [8], Ajitha, Arumugam \& Germina, established results for some graphs which admits square sum labeling. Square difference labeling is introduced and proved by J.Shiama [9]. We can able to study mean labeling for cycle graphs[4]. In [5] Graceful labeling is proposed for C_{n} with parallel (path) P_{k} chords.

Labelings on C_{n} where ($n \geq 6$) attains parallel Chords with path P_{3} proved by A.Uma Maheswari \& V.Srividya [2]. In [10], [11] further results are proposed for vertex even \& odd mean labeling, for new families of cycle with chord (parallel). In [12] certain labeling are proved for $C_{n}(n \geq 6)$ with parallel (path) P_{3} as a Chord.

Throughout this paper, consider the cycle $C_{2 m}(m \geq 3)$ and $C_{2 m+1}(m \geq 3)$ with parallel P_{4} chords. We have proved that the Cycle $C_{2 m}(m \geq 3)$ and $C_{2 m+1}(m \geq 3)$ with parallel P_{4} chords admits labeling for Vertex Odd mean and Even mean. In addition, we also proved that these Graphs satisfies Square Sum and square difference labeling.

Definition 1.1: [6]

A graph G, with vertices (p) and edges (q), if there exist function (injective) $f: V(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ such that the induced function $f^{*}: E(G) \rightarrow N$ is given by $f^{*}(u v)=\frac{f(u)+f(v)}{2}$ where each edge $u v$ are distinct by the vertex odd mean labeling.

Definition 1.2: [8]

A graph G is called square sum graph, if it admits an 1-1 and onto labeling mapping $f: V(G) \rightarrow$ $\{0,1,2 \ldots, p-1\}$ given by the induced function $f^{*}=E(G) \rightarrow N$, defined by $f^{*}=[f(u)]^{2}+[f(v)]^{2}$ is injective for every edge $u v$ are distinct.

Definition 1.3: [6]

A graph G, with vertices (p) and edges (q), if there exist an injective function $f: V(G) \rightarrow\{2,4,6, \ldots$ $2 q\}$ such that the induced mapping $f^{*}: E(G) \rightarrow N$ is given by $f^{*}(u v)=\frac{f(u)+f(v)}{2}$ are where all edges $u v$ are distinct is said to be vertex even mean graph by its labeling.

Definition 1.4: [9]

A graph G , is called square difference graph, if it admits labeling with an 1-1 and onto mapping f : $V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ given by the induced function $f *: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$, defined by $f *(u v)=\mid[f *(u)]^{2}-[f$ $*(v)]^{2} \mid$ is injective for every edge $u v$ are distinct.

Definition 1.5: [5]

Cycle with parallel P_{4} chords is obtained from the graph, $C_{n}: u_{0} u_{1} u_{2} \ldots \ldots . u_{n-1} u_{0}$ by attaching disjoint paths P_{4} 's between two vertices $u_{1} u_{n-1}, u_{2} u_{n-2}, \ldots u_{\alpha} u_{\beta}$ of C_{n} where $\alpha=\left\lfloor\frac{n}{2}\right\rfloor-1$,

$$
\beta=\left\lfloor\frac{n}{2}\right\rfloor+2 \text { (or) } \beta=\left\lfloor\frac{n}{2}\right\rfloor+1,
$$ when n is odd \& even as shown in Fig. 1a and 1b.

In this paper, $\mathrm{C}_{2 m}(m \geq 3)$ has $4 m-2$ vertices and $5 m-3$ edges and for $\mathrm{C}_{2 m+1}(m \geq 3)$, has $4 m-1$ vertices and $5 m-2$ edges.

Fig.1a Cycle C_{8} with parallel P_{4} chord

Fig.1b Cycle C_{9} with parallel P_{4} chord

II. Main Results

Theorem 1: For $m \geq 3$ every cycle $C_{2 m}$ with (path) P_{4} which are parallel chords admits vertex even mean labeling.
Proof: Consider the graph G, $C_{2 m}(m \geq 3)$ with parallel P_{4} chords. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 m-3}$ are the vertices of Graph. Labeling of vertex are $f: V(G) \rightarrow\{2,4,6, \ldots 2(5 m-3)\}$,

$$
\begin{aligned}
& f\left(v_{4 j-4}\right)=2(4 j-3) ; 1 \leq j \leq m \\
& f\left(v_{4 j-3}\right)=4(2 j-1) ; 1 \leq j \leq m \\
& f\left(v_{4 j-2}\right)=8 j-2 ; 1 \leq j \leq m-1 \\
& f\left(v_{4 j-1}\right)=8 j \quad ; 1 \leq j \leq m-1
\end{aligned}
$$

The above labeling function of vertices ensures the labeling are unique.
Let $E(G)$, given by $E(G)=\bigcup_{i=1}^{7} E_{i}$ where,

$$
\begin{aligned}
& E_{1}=\left\{\left(v_{4 j-4} v_{4 j-3}\right) ; \mathrm{j}=1\right\} \\
& E_{2}=\left\{\left(v_{4 j-4} v_{4 j}\right) ; 1 \leq j \leq m-1\right\} \\
& E_{3}=\left\{\left(v_{4 j-3} v_{4 j+1}\right) ; 1 \leq j \leq m-1\right\} \\
& E_{4}=\left\{\left(v_{4 j-3} v_{4 j-2}\right) ; 1 \leq j \leq m-1\right\} \\
& E_{5}=\left\{\left(v_{4 j-1} v_{4 j}\right) ; 1 \leq j \leq m-1\right\} \\
& E_{6}=\left\{\left(v_{4 j-2} v_{4 j-1}\right) ; 1 \leq j \leq m-1\right\} \\
& E_{7}=\left\{\left(v_{4 m-4} v_{4 m-3}\right)\right\}
\end{aligned}
$$

Induced function $f^{*}: E(G) \rightarrow N$, is defined as,

$$
\begin{aligned}
& f^{*}\left(v_{4 j-4} v_{4 j-3}\right)=8 j-5 ; j=1 \\
& f^{*}\left(v_{4 j-4} v_{4 j}\right)=2(4 j-1) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 j-3} v_{4 j+1}\right)=8 j ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 j-3} v_{4 j-2}\right)=8 j-3 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 j-1} v_{4 j}\right)=8 j+1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 j-2} v_{4 j-1}\right)=8 j-1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 m-4} v_{4 m-3}\right)=8 m-5
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Hence, $\mathrm{C}_{2 m}(m \geq 3)$ with path P_{4} chords which are parallel is a vertex even mean graph.

Example 1: Vertex even mean labeling for C_{8} with parallel P_{4} chords, illustrated in Fig 2.

Fig. 2 Cycle C_{8} with parallel P_{4} chord
Theorem 2: For $m \geq 3$ every cycle $C_{2 m+1}$ with (path) P_{4} which are parallel chords admits vertex even mean labeling.
Proof: Let the graph G, cycle $C_{2 m+1}(m \geq 3)$ with parallel P_{4} chords. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-2}$ are the vertices of G. Define the labeling for vertex $f: V(G) \rightarrow\{2,4,6, \ldots 2(5 m-2)\}$ as follows:

$$
\begin{aligned}
& f\left(v_{4 j-4}\right)=2(4 \mathrm{j}-3) ; 1 \leq j \leq m \\
& f\left(v_{4 j-3}\right)=4(2 \mathrm{j}-1) ; 1 \leq j \leq m \\
& f\left(v_{4 j-2}\right)=2(4 \mathrm{j}-1) ; 1 \leq j \leq m-1 \\
& f\left(v_{4 j-1}\right)=8 \mathrm{j} \quad ; 1 \leq j \leq m \\
& f\left(v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-2
\end{aligned}
$$

The above labeling function of vertices ensures the labeling are unique.
Let $\mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{7} \mathrm{E}_{\mathrm{i}}$ where,

$$
\begin{aligned}
& \mathrm{E}_{1}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right) ; \mathrm{j}=1\right\} \\
& \mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)\right\} \text { and } \mathrm{E}_{8}=\left\{\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)\right\}
\end{aligned}
$$

Let us define the values of induced function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$, as follows to label the edges

$$
\begin{aligned}
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=8 \mathrm{j}-5 ; \mathrm{j}=1 \\
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=2(4 \mathrm{j}-1) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=8 \mathrm{j} ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=8 \mathrm{j}-3 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=8 \mathrm{j}-1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=8 \mathrm{j}+1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)=4(2 \mathrm{~m}-1) \text { and } f^{*} *\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-3
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function.
Example 2: Vertex even mean graph, C_{9} with (path) P_{4} as parallel chords, illustrated in Fig 3

Fig. 3 Cycle C_{9} with parallel P_{4} chord
Theorem 3: For $m \geq 3$ every cycle $C_{2 m}$ with (path) P_{4} which are parallel chords admits vertex odd mean labeling.

Proof: Consider G, as $C_{2 m}(m \geq 3)$ with parallel (path) P_{4} chords. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-3}$ are the vertices of G. Labeling for vertices are defined by $f: V(G) \rightarrow\{1,3,5, \ldots 2(5 m-3)-1\}$,

$$
\begin{array}{ll}
f\left(v_{4 \mathrm{j}-4}\right)=8 \mathrm{j}-7 & ; 1 \leq j \leq m \\
f\left(v_{4 \mathrm{j}-3}\right)=8 \mathrm{j}-5 & ; 1 \leq j \leq m-1 \\
f\left(v_{4 \mathrm{j}-2}\right)=8 \mathrm{j}-3 & ; 1 \leq j \leq m-1 \\
f\left(v_{4 \mathrm{j}-1}\right)=8 \mathrm{j}-1 & ; 1 \leq j \leq m-1
\end{array}
$$

It implies that vertices are labeled and distinct.
Let $\mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{7} \mathrm{E}_{\mathrm{i}}$ where,

$$
\begin{aligned}
& \mathrm{E}_{1}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right) ; \mathrm{j}=1\right\} \\
& \mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} v_{\mathrm{jj}-1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)\right.
\end{aligned}
$$

Defining the induced function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$, as follows

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=2(4 \mathrm{j}-3) ; \mathrm{j}=1 \\
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=8 \mathrm{i}-3 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=8 \mathrm{i}-1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=4(2 \mathrm{j}-1) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=2(4 \mathrm{j}-1) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=8 \mathrm{j} ; 1 \leq j \leq m-1 \\
& f^{*} *\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)=8 \mathrm{~m}-6
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Hence G, $C_{2 m}(m \geq 3)$ with parallel (path) P_{4} as a chords is said to be vertex odd mean graph.

Example 3: Vertex odd mean graph, C_{8} with parallel (path) P_{4} chords is, illustrated in Fig. 4

Fig. 4 Cycle C_{8} with parallel P_{4} chord

Theorem 4: For $m \geq 3$ every cycle $C_{2 m+1}$ with (path) P_{4} which are parallel chords is admits vertex odd mean labeling.

Proof: Consider G, as $C_{2 m+1}(m \geq 3)$ with (path) P_{4} chords as a parallel. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-2}$ are vertices of G. where the vertex labeling $f: V(G) \rightarrow\{1,3,5, \ldots, 2(5 m-2)-1\}$ as follows:

$$
\begin{aligned}
& f\left(v_{4 \mathrm{j}-4}\right)=8 \mathrm{j}-7 \quad ; 1 \leq j \leq m \\
& f\left(v_{4 \mathrm{j}-3}\right)=8 \mathrm{j}-5 \quad ; 1 \leq j \leq m \\
& f\left(v_{4 \mathrm{j}-2}\right)=8 \mathrm{j}-3 \quad ; 1 \leq j \leq m-1 \\
& f\left(v_{4 \mathrm{j}-1}\right)=8 \mathrm{j}-1 \quad ; 1 \leq j \leq m-1 \\
& f\left(v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-3
\end{aligned}
$$

The vertices are distinctly labeled.
Let $\mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{8} \mathrm{E}_{\mathrm{i}}$ where,
$\mathrm{E}_{1}=\left\{\left(v_{4 j-4} v_{4 j-3}\right) ; \mathrm{j}=1\right\}$
$\mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$\mathrm{E}_{3}=\left\{\left(\nu_{4 \mathrm{j}-3} \mathrm{v}_{4 \mathrm{j}+1}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$\mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} \mathrm{v}_{4 \mathrm{j}-2}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$\mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} \mathrm{v}_{4 \mathrm{j}-1}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$\mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$\mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)\right\} \&$

$$
\mathrm{E}_{8}=\left\{\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)\right\}
$$

Defining the induced edges by the function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$, follows

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=2(4 \mathrm{j}-3) ; \mathrm{j}=1 \\
& f^{*} *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=8 \mathrm{j}-3 ; 1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=8 \mathrm{j}-1 ; 1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=2(4 \mathrm{j}-2) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=2(4 \mathrm{j}-1) ; 1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& f^{*}\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=8 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{m}-1 \\
& f^{*} *\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-5 \text { and } \\
& f^{*}\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-4
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Hence $\mathrm{G}, C_{2 m+1}$ with (path) P_{4} which are parallel chords is a vertex odd mean graph.

Example 4: C_{9} with (path) P_{4} chords as parallel is vertex odd mean graph, illustrated in Fig.5.

Fig. 5 Cycle C_{9} with parallel P_{4} chords
Theorem 5: For $m \geq 3$ every cycle $C_{2 m}$ with (path) P_{4} chords which are parallel is admits square sum labeling.
Proof: Consider G, $C_{2 m}(m \geq 3)$ with parallel (path) P_{4} chords. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 m-3}$ are vertices of G. Labeling of vertex is defined as $f: V(G) \rightarrow\{0,1,2, \ldots, 4 \mathrm{~m}-3\}$

$$
f\left(\mathrm{v}_{\mathrm{j}}\right)=j ; 0 \leq j \leq 4 m-3
$$

Hence, vertices are labeled with above function are distinct.
Let $\mathrm{E}(\mathrm{G})$ be the edge set given for $\mathrm{C}_{2 \mathrm{n}}, \mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{7} \mathrm{E}_{\mathrm{i}}$ where,

$$
\begin{aligned}
& \mathrm{E}_{1}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right) ; j=1\right\} \\
& \mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)\right\}
\end{aligned}
$$

Defining the induced edge function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$,

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=32 \mathrm{j}^{2}-56 \mathrm{j}+25 ; \mathrm{j}=1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=32 \mathrm{i}^{2}-16 \mathrm{j}+10 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=32 \mathrm{j}^{2}-32 \mathrm{j}+16 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=32 \mathrm{j}^{2}-40 \mathrm{j}+13 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=32 \mathrm{j}^{2}-24 \mathrm{j}+5 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=32 \mathrm{j}^{2}-8 \mathrm{j}+1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)=32 \mathrm{~m}^{2}-56 \mathrm{~m}+25
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Hence, Graph G $C_{2 m}(m \geq 3)$ with parallel (path) P_{4} chords is a square sum graph.

Example 5: A cycle C_{8} with parallel P_{4} chords is square sum graph, illustrated in Fig. 6

Fig. 6 Cycle C_{8} with parallel P_{4} chords
Theorem 6: For $m \geq 3$ every cycle $C_{2 m+1}$ with (path) P_{4} which are Parallel chords is admits square sum labeling.
Proof: Consider G, as $C_{2 m+1}(m \geq 3)$ with (path) P_{4} chords as a parallel. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-2}$ are vertices of G. Labeling of vertex are defined by $f: V(G) \rightarrow\{0,1,2, \ldots, 4 \mathrm{~m}-2\}$,

$$
f\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{j} \quad ; 0 \leq \mathrm{j} \leq 4 \mathrm{~m}-2
$$

The above labeling function will label all vertices are distinct.
Let $E(G)$ be the edge set given for $C_{2 n+1}, E(G)=U_{i=1}^{8} E_{i}$ where,

$$
\begin{aligned}
& \mathrm{E}_{1}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right) ; \mathrm{j}=1\right\} \\
& \mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right) ; 1 \leq j \leq m-1\right\} \\
& \mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m \leq 1 \leq\right. \\
& \mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)\right\} \text { and } \\
& \mathrm{E}_{8}=\left\{\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)\right\},
\end{aligned}
$$

Defining the induced edges by the function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$,

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=32 \mathrm{j}^{2}-56 \mathrm{j}+25 ; \mathrm{j}=1 \\
& f *\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=32 \mathrm{j}^{2}-16 \mathrm{j}+10 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{j}-4} v_{4 j}\right)=32 \mathrm{j}^{2}-32 \mathrm{j}+16 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=32 \mathrm{j}^{2}-40 \mathrm{j}+13 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=32 \mathrm{j}^{2}-24 \mathrm{j}+5 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-1} 1 v_{4 \mathrm{j}}\right)=32 \mathrm{j}^{2}-8 \mathrm{j}+1 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)=32 \mathrm{~m}^{2}-48 \mathrm{~m}+20 \text { and } \\
& f *\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)=32 \mathrm{~m}^{2}-40 \mathrm{~m}+13
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Therefore, the Graph G, $C_{2 m+1}(m \geq 3)$ with parallel P_{4} chords is a square sum graph.

Example 6: A Cycle C_{9} with parallel P_{4} chords is square sum graph, illustrated in Fig 7.

Fig. 7 Cycle C_{9} with parallel P_{4} chords

Theorem 7: For $m \geq 3$ every cycle $C_{2 m}$ with (path) P_{4} which are parallel chords is admits square difference labeling.
Proof: Consider G, has $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-3}$ be the vertices. Labeling of vertex is defined by $f: V(G) \rightarrow\{0,1,2$, ..., 4m-3\},

$$
f\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{j} \quad ; 0 \leq \mathrm{j} \leq 4 \mathrm{~m}-3
$$

Hence vertices labeled are distinct.
Let $\mathrm{E}(\mathrm{G})$ be the edge set given for $\mathrm{C}_{2 \mathrm{~m}}, \mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{7} \mathrm{E}_{\mathrm{i}}$ where,
$\mathrm{E}_{1}=\left\{\left(v_{4 j-4} v_{4 j-3}\right) ; \mathrm{j}=1\right\}$
$\mathrm{E}_{2}=\left\{\left(v_{4 i-3} v_{4 j+1}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 j}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{4}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{7}=\left\{\left(\nu_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)\right\}$ these edges set $\mathrm{C}_{2 \mathrm{~m}}(\mathrm{~m} \geq 3)$.
Defining the induced edges by the function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$,

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}-3}\right)=32 \mathrm{j}^{2}-56 \mathrm{j}+25 ; \mathrm{j}=1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=8(4 \mathrm{jj}-1) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=8(4 \mathrm{j}-2) ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=8 \mathrm{j}-5 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=8 \mathrm{j}-3 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=8 \mathrm{j}-1 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-3}\right)=8 \mathrm{~m}-7
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Therefore, the Graph G, $C_{2 m}$ ($m \geq 3$) with (path) P_{4} chords with parallel is a square Difference graph.

Example 7: C_{8} with (path) P_{4} chords as a parallel is a square Difference graph, illustrated in Fig 8.

Fig. 8 Cycle C_{8} with parallel P_{4} chords
Theorem 8: For $m \geq 3$ every cycle $C_{2 m+1}$ with (path) P_{4} which are parallel chords I admits square difference labeling.
Proof: Consider, G has $v_{0}, v_{1}, v_{2}, \ldots, v_{4 \mathrm{~m}-2}$ are the vertices of G. The vertex labeling is defined by $f: V(G) \rightarrow$ $\{0,1,2, \ldots, 4 \mathrm{~m}-2\}$,
$f\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{j} ; 0 \leq j \leq 4 m-2$
Hence vertices are labeled distinctly.
Let $\mathrm{E}(\mathrm{G})$ be the edge set given for $\mathrm{C}_{2 \mathrm{~m}+1}, \mathrm{E}(\mathrm{G})=\mathrm{U}_{i=1}^{8} \mathrm{E}_{\mathrm{i}}$ where,
$\mathrm{E}_{1}=\left\{\left(v_{4 j-4} v_{4 j-3}\right) ; j=1\right\}$
$\mathrm{E}_{2}=\left\{\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{3}=\left\{\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{4}=\left\{\left(v_{4 j-3} v_{4 j-2}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{5}=\left\{\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{6}=\left\{\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right) ; 1 \leq j \leq m-1\right\}$
$\mathrm{E}_{7}=\left\{\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)\right\}$ and
$\mathrm{E}_{8}=\left\{\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)\right\}$
Defining the induced edges by the function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$,

$$
f *\left(v_{4 j-4} v_{4 j-3}\right)=32 \mathrm{j}^{2}-56 \mathrm{j}+25 ; \mathrm{j}=1
$$

$$
\begin{aligned}
& f *\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}+1}\right)=8(4 \mathrm{j}-1) ; 1 \leq j \leq m-11 \\
& f^{*}\left(v_{4 \mathrm{j}-4} v_{4 \mathrm{j}}\right)=8(4 \mathrm{j}-2) ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-3} v_{4 \mathrm{j}-2}\right)=8 \mathrm{j}-5 ; 1 \leq j \leq m-1 \\
& f^{*}\left(v_{4 \mathrm{j}-2} v_{4 \mathrm{j}-1}\right)=8 \mathrm{j}-3 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{j}-1} v_{4 \mathrm{j}}\right)=8 \mathrm{j}-1 ; 1 \leq j \leq m-1 \\
& f *\left(v_{4 \mathrm{~m}-4} v_{4 \mathrm{~m}-2}\right)=4(4 \mathrm{~m}-3) \& \\
& f^{*}\left(v_{4 \mathrm{~m}-3} v_{4 \mathrm{~m}-2}\right)=8 \mathrm{~m}-5
\end{aligned}
$$

It is clear that, labeling of the edges are distinct by the induced function. Hence, graph admits the square difference labeling.

Example 8: C_{8} with (path) P_{4} chords are parallel, is a square Difference graph, illustrated in Fig 9.

Fig. 9 Cycle C_{9} with parallel P_{4} chords

Conclusion:

Here, we have proposed the certain results, which obtains the labeling on Cycle with Parallel (path) P_{4} Chord; We have proved that the graphs $C_{2 m}(m \geq 3)$ with Parallel P_{4} Chord and $C_{2 m+1}(m \geq 3)$ with Parallel (path) P_{4} Chord permits vertex even mean, vertex odd mean labeling. In addition to this, we also proved results for Square sum and difference labeling.

References:

A. Rosa, "On certain valuation of the vertices of a graph, Theory of graphs", Proceedings of the Symposium, Rome, Gordon and Breach, New York, pp.349-355, 1967.
A. Uma Maheswari and V. Srividya, "Some Labelings on Cycles with Parallel P Phords", JASC: Journal of Applied Science and Computations Vol VI, Issue I, Jan/2019 ISSN No: 1076-5131 Pg.No: 469-475
A. Gallian, "A Dynamic Survey of Graph labeling", Electronics Journal of Combinatorics, vol.17, \#DS6, 2014
B. Gayathri and R. Gopi, "Cycle related mean graphs," Elixir Applied Mathematics, Vol.71, pp. 25116 25124, 2014.

1. G. Sethuraman and A. Elumalai, "Gracefulness of a cycle with parallel P_{k} chords", Australian Journal of Combinatorics, vol. 32, pp.205-211, 2005.
2. N. Revathi, "Vertex odd mean and even mean labeling of some graphs," IOSR Journal of Mathematics, Vol.11, 2, pp.70-74, 2015.
3. S. Somasundaram, \& R. Ponraj, "Mean labeling of graphs," National Academy Science Letter, Vol-26, (7-8) pp. 10 - 13, 2003.
4. V. Ajitha, S. Arumugam and K.A. Germina, "On square sum graphs", AKCE Journal of Graphs and Combinatorics, Vol. 6, No.1, pp.1-10, 2009.
5. J.Shiama, "Square Difference Labeling for Some Graphs", International Journal of Computer Applications (0975-8887) Volume 44- No.4, April 2012.
6. A.Uma Maheswari and V.Srividya, "Vertex Even Mean Labeling of New Families of Graphs", International Journal of Scientific Research and Reviews, IJSRR 2019, 8(2), 902-913, ISSN: 2279-0543, Pg: 902-913
7. A.Uma Maheswari and V.Srividya, "Vertex Odd Mean Labeling of Some Cycles with Parallel Chords", American International Journal of Research in Science, Technology, Engineering \& Mathematics, 2019, Pg:73-79, p-ISSN: 2328-3491, e-ISSN: 2328-3580.
8. A.Uma Maheswari and V.Srividya, "New Labelings on cycles with Parallel P3 Chords", Journal of Emerging Technologies and Innovative Research (JETIR), May 2019, Vol-6, Issue-5, Pg: 559-564.
