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Abstract: There are several methods to accomplish Fast Fourier Transform and Inverse Fast Fourier Transform processor for 

multiple inputs multiple output-orthogonal frequency division multiplexing applications. It requires high performance and 

low power implementation methodologies for reducing the hardware complexity and cost. In conventional fixed point 

arithmetic calculation is complex to utilize because the dynamic range of computations must be limited in order to overcome 

overflow and under flow problems. This paper presents floating point arithmetic optimization technique to implement radix-2 

butterfly structures for the reduction of complex multipliers presented. Implementations of 32 bit floating point multiplier and 

floating point adder are presented by using single precision and compare the synthesis results with conventional system. In 

order to reduce the error we used floating point arithmetic for the butterfly structure. Energy efficient multiplier based on 

modified booth algorithm is used in radix-2 butterflies. By adopting this architecture the FFT/IFFT implementation using 

Xilinx FPGA Vertex-7 will improve the 25% logic utilization and the reduction in space utilization. Using arithmetic 

reduction the power delay product for radix 2 butterfly is reduced by 2.5% compared to normal implementation. 

 

Keywords:  Decimation In Frequency (DIF), Multiple Inputs Multiple Output-Orthogonal Frequency Division Multiplexing 

(MIMO-OFDM), Fast Fourier Transform (FFT), Complex Multipliers 

 

1. Introduction 

 

Orthogonal frequency division multiplexing is a one of the leading modulation technique in wire line and 

wireless communication system. OFDM has integrated to numerous communication standards like WLAN, 

WPAN, Optical OFDM and UWB requires a high performance and low power FFT/IFFT to meet the demand of 

higher data rates. 

 

Fast Fourier Transform is an algorithm that computes discrete Fourier transform of a sequence or its Inverse 

transform. Each frequency component represents its contributing amount to the original signal and the phase 

offset of the sinusoid available in the complex value of that frequency. Many researchers proposed optimized 

algorithms and multiple architectures to implement efficient FFT/IFFT computational units, that can be classified 

into sequential (memory-based) and pipelined. The major pipelined FFT architectures are Single-path delay 

feedback (SDF) and Multipath delay commutator (MDC), offers high-performance with increase in hardware 

resources. 

 

Complex multipliers and adders are required to design butterfly structures in Decimation in frequency (DIF) 

as well as Decimation in Time (DIT). Implementation of complex multipliers is more critical than complex 

adders. Using optimization of complex multipliers will enrich the performance of FFT/IFFT computation in real 

time applications. 

 

The different algorithms for FFT are Hexagonal [1], Cooley-Tukey [2], Prime-factor [3] and Bruun [4]. To 

reduce the amount of operations within the Fourier Transform calculation at each stage Cooley-Tukey is that the 

popular FFT algorithm, which recursively breaks a discrete time series into smaller. More processing paths are 

often implemented in parallel at the value of additional hardware and power to get higher throughput, In [5], for 

MIMO OFDM applications a new frequency scaling and dynamic voltage  FFT processor presented to reduce 

hardware cost and power consumption. In [6] and [7] super-pipeline FFT cores were proposed to reduce power 

consumption. 

 

Currently hardware design engineer is trying to implement efficient architectures to compute FFT algorithm 

in order to satisfy the real time application and high speed requirements.  To meet out this requirement pipelined 

hardware architectures [8]- [12] are used widely to cater for high performance and with small latency for real 

time applications as well as low power and reasonably low silicon area. [13] A 1-dimensional (1D) FFT 
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architecture with 16-bit 64-point sequential algorithm implemented to achieve an area efficient, high-speed 

processor suitable for WLAN.  

 

Canonical signed digit is a special technique to encode a value in a signed digit representation which itself is 

a unique representation and allows one number to be represented in many ways. Canonical signed digit technique 

of multiplication increases the speed of multiplication [14]. Further synthesis shows that due to reduced partial 

products, canonical signed digit multiplier has reduced dynamic power consumption and reduced area. In 

addition to fulfilling these three major aspects of floating point multiplier, CSD technique is proven to be useful 

in implementing multiplier with reduced complexity, because the cost of multiplication may be a direct function 

of the amount of non-zero bits within the multiplier [15].  The learning of the digit-slicing method has been 

explained in [16] for the digital filters. Digit-slicing FFT hardware design and implementation is discussed in 

[17]. In order to accomplish multiplier less FFT architecture Distributed 

arithmetic based method proposed [18]. “For Orthogonal Frequency Division Multiple – Access (OFDMA) [19] 

A mixed pipelined/cached 128 to 1024 point FFT was designed using power-aware twiddle factor 

multiplication”.  [20] A radix - 24/22/23 based MDF FFT architecture is proposed for IEEE 802.16e applications 

in order to minimize the complexity in twiddle factor complex multiplication. For Wireless Personal Area 

Network (WPAN) applications [21] proposed memory based architecture in a 2.4 GS/s 8 data path-pipelined 

FFT processor provides low throughput for lesser radix. In [22, 23] by using Ripple Carry Adder (RCA) single 

precision floating point is discussed and it is distinguished with different floating-point multiplier.  The design is 

developed based on the TSMC 180nm technology and modelled in verilog HDL. In [24] FFT implemented using 

modified booth multiplier and CLA is discussed and the author suggested that it requires less power and delay. 

 

The paper is arranged as follows. Section II gives introduction to FFT algorithms. Different types of 

implementation are discussed in Section III.  In section IV Modified implementation FFT using floating point 

multiplier-based radix-2 DIF butterfly is explained. Results and Discussions of the proposed designs are given in 

the Section V and finally Conclusion and Future Scope are discussed in Section VI. 

 

2. II Fast Fourier Transform - Algorithms 

 

In the radix-r algorithm radix-r butterflies are the basic building blocks to perform the basic computations. 

How the SFG structure is derived (for the radix-2 case) is shown in figure 1, only the proof of the first stage will 

be shown, the other proofs are analogous. The butterfly obtained is a radix-2 DIF (decimation-in-frequency) 

 

    (1) 

  (2)  

Cooley-Tukey algorithm is almost used to calculate the DFT and FFT. The amount of operations is diminish 

from O(N2) for the DFT to O(N log2N) for the FFT for this algorithm.   The flow graph for sixteen-point “radix-2 

FFT” constructed on Cooley-Tukey algorithm, deteriorate using decimation in frequency (DIF) is shown in 

below Figure 1. The FFT design consists of n = log2N stages. 

 

 
Figure 1 16-point radix-2 DIF FFT Flow graph  
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In general the complex multiplier can be comprehended by one adder, one subtractor and four real multipliers 

as shown in equation 3. In VLSI implementation this complex multiplier structure covered large chip area. 

(ar+jai)(br+jbi)= (arbr-aibi) +j (aibr+arbi)     (3) 

 

The basic radix-2 butterfly diagram for DIF is shown below figure 2. It can be shown that A and B designate 

the complex input to the present stage or complex output from previous stage, where C and D designate the 

complex output of this stage or complex input to the subsequent stage. The WN is represented as a twiddle factor. 

 
 

Figure 2 Radix-2 DIF butterfly 

 

This proposed complex multiplier are often realized by five real adder/ subtractor and only three real 

multipliers shown on equation (4); this may save an enormous area in hardware implementation as shown in 

Figure 3. 
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Figure 3 Hardware architecture for complex multiplier 

  

(ar+jai)(br+jbi)={(brar-brai)+(ai br- ai bi)}+j{(bi ar+ bi ai)+(ai br- ai bi)}  (4) 

 

3.  Different types of implementation 

 

The vital metrics to compute the performance of the FFT structure incorporate the arithmetic complexity, 

recursive structure of the FFT algorithm and therefore the overhead for memory access. Most of the radix-2 

circuit’s needs complex-multipliers and a ROM to store twiddle factor.  The FFT circuit comprise of many 

subtractors, adders and multipliers for complex numbers, that’s why a suitable representation should be select 

reasonably for, obtain good accuracy. All FFT architectures utilize”fixed-point arithmetic”; until latterly that 

“floating-point arithmetic” based FFTs is expand.  As a portion of the implemented sketch, IEEE 754 single 

precision floating point characterization design is worn to constitute data. Floating-Point representations produce 

a good dynamic range and also ease the utilization of FFT processors as co-processors in association with 

“general purpose processors” (GPP). Although there has been substantial examination on the hardware 

implementation of the FFT algorithms, there are few inherent disadvantages of conventional works. They’re 

create and optimized as FPGA, ASIC and DSP are fixed type platform, fixed type FFT algorithms and glued 

design parameters like input and output data, word length (L) and transform size (N). 

 

There are different ways to implement the FFT (serial and parallel) algorithm.  Previously designer used 

fixed point implementation and compared different architecture, different algorithms and word lengths.  We will 

describe in this paper the implementation of FFT using single precision floating point. 
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4.  Implementation of fft using floating point  

 

The criteria that need to be considered when choosing between alternate FFT algorithms developed within 

the hardware are execution speed, system cost, and hardware design effort, programming effort, flexibility and 

precision. However, for concurrent signal processing system the primary criteria is latency. There are different 

FFT algorithms which have been implemented to diminish the number of computations. FFT could be 

implemented on hardware with efficient algorithm and the complexity of N- input FFT unit is divided into two 

sub (N/2) units continuing this decomposition until we get 2 inputs FFT is called butterfly unit.  The proposed 

architecture which is shown in figure 2 is employed to implement the “two point FFT butterfly unit”. 

 

Table 1 Computational complexity for the direct DFT computation and Cooley-Tukey FFT algorithm  

 

 

FFT 

Points (N) 

Conventional DFT  Proposed FFT  

No. of 

Complex 

Multipliers (N2) 

No. of 

Complex adders 

N(N-1) 

No. of 

Complex 

Multipliers 

(N/2)log2
N 

No. of 

Complex Adders( 

Nlog2
N) 

 8  64 56 12 24 

16 256 240 32 64 

32 1024 992 80 160 

64 4096 4032 192 384 

128 16384 16256 448 896 

256 65536 65280 1024 2048 

512 262144 261632 2304 4608 

1024 1048576 1047552 5120 10240 

 

The proposed architecture in table 1 shows the number of floating point multiplication and floating point 

addition required to implement various input data. 

Table 2 Comparison of Multipliers and Adders in both normal and proposed FFT 

Size 

(N) 

No. 

of 

stages 

(log2
N) 

No. of 

BUs/stag

e (N/2) 

To

tal No. 

of 

BUs 

No. of complex 

multipliers 

No. of complex 

adders 

Norm

al 

FFT 

Proposed 

FFT 

Normal 

FFT 

Propo

sed 

FFT 

8 3 4 12 48 36 72 108 

16 4 8 32 128 96 192 288 

32 5 16 80 320 240 480 720 

64 6 32 19

2 

768 576 1152 1728 

128 7 64 44

8 

1792 1344 2688 4032 

256 8 128 10

24 

4096 3072 6144 9216 

512 9 256 23

04 

9216 6912 13824 20736 

1024 10 512 51

20 

20480 15360 30720 46080 

 

 

5.  Result and discussion 

  

The floating point adder having single precision (32 bit) is coded using HDL language.  The simulation result 

of adder and synthesis report is shown in figure 3 and 5.  The modified booth algorithm for the mantissa term 

and the exponent term is normal adder is used to implement 32 bit floating point multiplication. The result of 

fully hardware unit is done and the simulation result is shown in figure 4.  The synthesis report for the floating 

point multiplicationis shown in figure 6. 
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Figure 3 Simulation result of floating point adder 

 

 
Figure 4 floating point multiplier simulation results 

 

 
Figure 5 Floating point adder synthesis report 
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Figure 6 Synthesis report for proposed floating point multiplier 

 

The following table 3 gives the utilization summary for the floating point adder.  The device used is 

3s500epq208-5 

Description No. of device used Total obtainable devices Utilization 

(%) 

No. of Slices 1205 4656 25% 

No. of 4 input LUTs 2143 9312 23% 

Number of bonded IOBs 96   158 60%   

Path delay :                                                                     63.247 ns 

 

The following table 4 compare the normal and proposed floating point multiplier implementation 

Description No of device used Total 

number 

available 

% utilization 

Nor

mal 

Proposed Nor

mal 

Propo

sed 

Number of Slices 228

0 

1850 4656 49

% 

40% 

Number of 4 input 

LUTs 

457

0 

3700 9312 49

% 

40% 

Number of bonded 

IOBs 

96   50 158 60

%   

31% 

Path delay :       Normal :    49.484ns Proposed: 38.275ns 

 

From the above table it is found that the delay is reduced from 49.48ns to 38.27ns.  The performance 

improvement by 1.3 times with respect to normal floating point multiplier using kogge stone adder and modified 

booth multiplier for the mantissa multiplication. 

 

The design is synthesized using Cadence back end tool. The comparison Table 5 shows the synthesized 

results for Kogge stone adder (KSA), ripple carry adder (RCA) and carry look ahead adder (CLA). From the 

table it can be found carry look ahead adder is better in terms of power and delay.  

 

Table 5 Different implementation of floating point adders 

 

 

Parameters 

 

 

Kogge 

Stone Adder 

(KSA) 

 

 

Carry Look Ahead 

Adder (CLA) 

 

 

Ripple Carry 

Adder (RCA) 

Area (µm2 ) 48812 49290 48804 

Cells 7121 7306 7031 
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Total Power (pw) 372164.619 365688.433 359375.906 

Delay (ps) 7923 6149 8158 

 

 

 
Figure 7 RTL view of Booth Recoded Multiplier using Cadence tool 

 

Table 6 Comparison of different multipliers 

 

Different 

Implementation 

Del

ay 

(ns) 

Area

 

P.D 

(mW) 

PDP 

(pJ) 

BFPM using 

RCA(180nm) [22] 
8.0 71946 

20.30

5 
162.44 

BFPM using 

RCA(180nm) [23] 
9.2 65109 

15.02

4 
138.22 

Modified Booth 

Mult and CLA [24] 

8.4

81 
- 119 1009.23 

Proposed BFPM 

using KSA (90nm)  

20.

659 
59995 5.183 107.07 

 

The proposed multiplier using KSA and the floating point adder is used for the comparison of radix 2 

butterfly architecture using 4 multiplications and using modified architecture using 3 multiplications 

 

 

Table 7 Comparison of radix 2 butterfly  

Differ

ent  

Floating 

point adder  

Floating 

point 

No. 

of 

No. of 

multiplier 

D

elay 

P

ower 

P

DP 
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Imple- 

mentat

ion 

multiplication adders 

required 

required (n

s) 

(

mw)  

(p

j) 
D

elay 

(n

s) 

P

ower 

(

mw) 

D

elay 

(n

s) 

P

ower 

(

mw) 

Existi

ng with 4 

mul 

6.

149 

0.

365 

20

.66 

5.

183 

6 4 32

.96 

22

.92 

75

5.4 

Using 

3 mul 

9 3 39

.11 

18

.83 

73

6.4 

 

 

Table 8 Various point FFT Comparison 

Different 

implementation 

Total number 

of butterflies 

Power delay 

product using 4 

multiplier (nj) 

Power delay 

product using 3 

multiplier (nj) 

8 12 9.0648 8.837 

16 32 24.1728 23.565 

32 80 60.432 58.912 

64 192 145.036 141.389 

128 448 338.419 329.907 

256 1024 773.529 754.074 

512 2304 1740.441 1696.666 

1024 5120 3867.648 3770.368 

 

Since radix 2 butterfly implementation using 3 multiplications require more delay due to one additional adder 

circuit before multiplication.  The power required to implement this is less compared with 4 multiplication unit.  

The radix 2 butterfly power delay product of the proposed reduced by 2.5 % compared withthe conventional 

implementation. 

 

6.  Conclusion and future work 

 

In this paper implementations of 32 bit floating point multiplier and floating point adder are presented. The 

proposed architecture for butterfly-2 structure is implementations with floating point arithmetic.  The design is to 

optimize the complexity of implementing radix 2 butterfly structures.  Here the number of multiplication is 

reduced and the power consumed by this arithmetic optimization.  By adopting this architecture the FFT/IFFT 

implementation will improve the performance and the reduction in space utilization for realising the proposed 

structure. Here the energy utilized for the proposed work is about 2.5% reduction compared to normal 

implementation of radix 2 butterfly architecture. Since the work presents is single precision FP implementation 

double precision FP implementation will be the future work.  The proposed design can also be expand to 

implement the design in the state of the technology to reduce delay, area and power. 
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