

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5248

Energy Efficient Floating Point Fft/Ifft Processor For Mimo-Ofdm

Applications

C. Padma1, Dr. P. Jagadamba2, Dr. P. Ramana Reddy3

1Research Scholar, Department of ECE, JNTUA, Ananthapuramu, Andhra Pradesh, India

2Assistant Professor (Sr), Department of ECE, SKIT, Srikalahasti, Andhra Pradesh, India
3Professor, Department of ECE, JNTUA, Ananthapuramu, Andhra Pradesh, India

padmasekhar85@gmail.com1

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021
Abstract: There are several methods to accomplish Fast Fourier Transform and Inverse Fast Fourier Transform processor for

multiple inputs multiple output-orthogonal frequency division multiplexing applications. It requires high performance and

low power implementation methodologies for reducing the hardware complexity and cost. In conventional fixed point

arithmetic calculation is complex to utilize because the dynamic range of computations must be limited in order to overcome

overflow and under flow problems. This paper presents floating point arithmetic optimization technique to implement radix-2

butterfly structures for the reduction of complex multipliers presented. Implementations of 32 bit floating point multiplier and

floating point adder are presented by using single precision and compare the synthesis results with conventional system. In

order to reduce the error we used floating point arithmetic for the butterfly structure. Energy efficient multiplier based on

modified booth algorithm is used in radix-2 butterflies. By adopting this architecture the FFT/IFFT implementation using

Xilinx FPGA Vertex-7 will improve the 25% logic utilization and the reduction in space utilization. Using arithmetic

reduction the power delay product for radix 2 butterfly is reduced by 2.5% compared to normal implementation.

Keywords: Decimation In Frequency (DIF), Multiple Inputs Multiple Output-Orthogonal Frequency Division Multiplexing

(MIMO-OFDM), Fast Fourier Transform (FFT), Complex Multipliers

1. Introduction

Orthogonal frequency division multiplexing is a one of the leading modulation technique in wire line and

wireless communication system. OFDM has integrated to numerous communication standards like WLAN,

WPAN, Optical OFDM and UWB requires a high performance and low power FFT/IFFT to meet the demand of

higher data rates.

Fast Fourier Transform is an algorithm that computes discrete Fourier transform of a sequence or its Inverse

transform. Each frequency component represents its contributing amount to the original signal and the phase

offset of the sinusoid available in the complex value of that frequency. Many researchers proposed optimized

algorithms and multiple architectures to implement efficient FFT/IFFT computational units, that can be classified

into sequential (memory-based) and pipelined. The major pipelined FFT architectures are Single-path delay

feedback (SDF) and Multipath delay commutator (MDC), offers high-performance with increase in hardware

resources.

Complex multipliers and adders are required to design butterfly structures in Decimation in frequency (DIF)

as well as Decimation in Time (DIT). Implementation of complex multipliers is more critical than complex

adders. Using optimization of complex multipliers will enrich the performance of FFT/IFFT computation in real

time applications.

The different algorithms for FFT are Hexagonal [1], Cooley-Tukey [2], Prime-factor [3] and Bruun [4]. To

reduce the amount of operations within the Fourier Transform calculation at each stage Cooley-Tukey is that the

popular FFT algorithm, which recursively breaks a discrete time series into smaller. More processing paths are

often implemented in parallel at the value of additional hardware and power to get higher throughput, In [5], for

MIMO OFDM applications a new frequency scaling and dynamic voltage FFT processor presented to reduce

hardware cost and power consumption. In [6] and [7] super-pipeline FFT cores were proposed to reduce power

consumption.

Currently hardware design engineer is trying to implement efficient architectures to compute FFT algorithm

in order to satisfy the real time application and high speed requirements. To meet out this requirement pipelined

hardware architectures [8]- [12] are used widely to cater for high performance and with small latency for real

time applications as well as low power and reasonably low silicon area. [13] A 1-dimensional (1D) FFT

mailto:padmasekhar85@gmail.com1

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5249

architecture with 16-bit 64-point sequential algorithm implemented to achieve an area efficient, high-speed

processor suitable for WLAN.

Canonical signed digit is a special technique to encode a value in a signed digit representation which itself is

a unique representation and allows one number to be represented in many ways. Canonical signed digit technique

of multiplication increases the speed of multiplication [14]. Further synthesis shows that due to reduced partial

products, canonical signed digit multiplier has reduced dynamic power consumption and reduced area. In

addition to fulfilling these three major aspects of floating point multiplier, CSD technique is proven to be useful

in implementing multiplier with reduced complexity, because the cost of multiplication may be a direct function

of the amount of non-zero bits within the multiplier [15]. The learning of the digit-slicing method has been

explained in [16] for the digital filters. Digit-slicing FFT hardware design and implementation is discussed in

[17]. In order to accomplish multiplier less FFT architecture Distributed

arithmetic based method proposed [18]. “For Orthogonal Frequency Division Multiple – Access (OFDMA) [19]

A mixed pipelined/cached 128 to 1024 point FFT was designed using power-aware twiddle factor

multiplication”. [20] A radix - 24/22/23 based MDF FFT architecture is proposed for IEEE 802.16e applications

in order to minimize the complexity in twiddle factor complex multiplication. For Wireless Personal Area

Network (WPAN) applications [21] proposed memory based architecture in a 2.4 GS/s 8 data path-pipelined

FFT processor provides low throughput for lesser radix. In [22, 23] by using Ripple Carry Adder (RCA) single

precision floating point is discussed and it is distinguished with different floating-point multiplier. The design is

developed based on the TSMC 180nm technology and modelled in verilog HDL. In [24] FFT implemented using

modified booth multiplier and CLA is discussed and the author suggested that it requires less power and delay.

The paper is arranged as follows. Section II gives introduction to FFT algorithms. Different types of

implementation are discussed in Section III. In section IV Modified implementation FFT using floating point

multiplier-based radix-2 DIF butterfly is explained. Results and Discussions of the proposed designs are given in

the Section V and finally Conclusion and Future Scope are discussed in Section VI.

2. II Fast Fourier Transform - Algorithms

In the radix-r algorithm radix-r butterflies are the basic building blocks to perform the basic computations.

How the SFG structure is derived (for the radix-2 case) is shown in figure 1, only the proof of the first stage will

be shown, the other proofs are analogous. The butterfly obtained is a radix-2 DIF (decimation-in-frequency)

 (1)

 (2)

Cooley-Tukey algorithm is almost used to calculate the DFT and FFT. The amount of operations is diminish

from O(N2) for the DFT to O(N log2N) for the FFT for this algorithm. The flow graph for sixteen-point “radix-2

FFT” constructed on Cooley-Tukey algorithm, deteriorate using decimation in frequency (DIF) is shown in

below Figure 1. The FFT design consists of n = log2N stages.

Figure 1 16-point radix-2 DIF FFT Flow graph

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5250

In general the complex multiplier can be comprehended by one adder, one subtractor and four real multipliers

as shown in equation 3. In VLSI implementation this complex multiplier structure covered large chip area.

(ar+jai)(br+jbi)= (arbr-aibi) +j (aibr+arbi) (3)

The basic radix-2 butterfly diagram for DIF is shown below figure 2. It can be shown that A and B designate

the complex input to the present stage or complex output from previous stage, where C and D designate the

complex output of this stage or complex input to the subsequent stage. The WN is represented as a twiddle factor.

Figure 2 Radix-2 DIF butterfly

This proposed complex multiplier are often realized by five real adder/ subtractor and only three real

multipliers shown on equation (4); this may save an enormous area in hardware implementation as shown in

Figure 3.

+

-

+

-

+

+

+

+

+

+

ar

br

bi

ai

ar-ai

br-bi

ar+ai

br(ar-ai)

br(ar+ai)

ai(br-bi)

Real Part

Imaginary part

br(ar-ai) + ai(br-bi)

br(ar+ai) + ai(br-bi)

Figure 3 Hardware architecture for complex multiplier

(ar+jai)(br+jbi)={(brar-brai)+(ai br- ai bi)}+j{(bi ar+ bi ai)+(ai br- ai bi)} (4)

3. Different types of implementation

The vital metrics to compute the performance of the FFT structure incorporate the arithmetic complexity,

recursive structure of the FFT algorithm and therefore the overhead for memory access. Most of the radix-2

circuit’s needs complex-multipliers and a ROM to store twiddle factor. The FFT circuit comprise of many

subtractors, adders and multipliers for complex numbers, that’s why a suitable representation should be select

reasonably for, obtain good accuracy. All FFT architectures utilize”fixed-point arithmetic”; until latterly that

“floating-point arithmetic” based FFTs is expand. As a portion of the implemented sketch, IEEE 754 single

precision floating point characterization design is worn to constitute data. Floating-Point representations produce

a good dynamic range and also ease the utilization of FFT processors as co-processors in association with

“general purpose processors” (GPP). Although there has been substantial examination on the hardware

implementation of the FFT algorithms, there are few inherent disadvantages of conventional works. They’re

create and optimized as FPGA, ASIC and DSP are fixed type platform, fixed type FFT algorithms and glued

design parameters like input and output data, word length (L) and transform size (N).

There are different ways to implement the FFT (serial and parallel) algorithm. Previously designer used

fixed point implementation and compared different architecture, different algorithms and word lengths. We will

describe in this paper the implementation of FFT using single precision floating point.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5251

4. Implementation of fft using floating point

The criteria that need to be considered when choosing between alternate FFT algorithms developed within

the hardware are execution speed, system cost, and hardware design effort, programming effort, flexibility and

precision. However, for concurrent signal processing system the primary criteria is latency. There are different

FFT algorithms which have been implemented to diminish the number of computations. FFT could be

implemented on hardware with efficient algorithm and the complexity of N- input FFT unit is divided into two

sub (N/2) units continuing this decomposition until we get 2 inputs FFT is called butterfly unit. The proposed

architecture which is shown in figure 2 is employed to implement the “two point FFT butterfly unit”.

Table 1 Computational complexity for the direct DFT computation and Cooley-Tukey FFT algorithm

FFT

Points (N)

Conventional DFT Proposed FFT

No. of

Complex

Multipliers (N2)

No. of

Complex adders

N(N-1)

No. of

Complex

Multipliers

(N/2)log2
N

No. of

Complex Adders(

Nlog2
N)

 8 64 56 12 24

16 256 240 32 64

32 1024 992 80 160

64 4096 4032 192 384

128 16384 16256 448 896

256 65536 65280 1024 2048

512 262144 261632 2304 4608

1024 1048576 1047552 5120 10240

The proposed architecture in table 1 shows the number of floating point multiplication and floating point

addition required to implement various input data.

Table 2 Comparison of Multipliers and Adders in both normal and proposed FFT

Size

(N)

No.

of

stages

(log2
N)

No. of

BUs/stag

e (N/2)

To

tal No.

of

BUs

No. of complex

multipliers

No. of complex

adders

Norm

al

FFT

Proposed

FFT

Normal

FFT

Propo

sed

FFT

8 3 4 12 48 36 72 108

16 4 8 32 128 96 192 288

32 5 16 80 320 240 480 720

64 6 32 19

2

768 576 1152 1728

128 7 64 44

8

1792 1344 2688 4032

256 8 128 10

24

4096 3072 6144 9216

512 9 256 23

04

9216 6912 13824 20736

1024 10 512 51

20

20480 15360 30720 46080

5. Result and discussion

The floating point adder having single precision (32 bit) is coded using HDL language. The simulation result

of adder and synthesis report is shown in figure 3 and 5. The modified booth algorithm for the mantissa term

and the exponent term is normal adder is used to implement 32 bit floating point multiplication. The result of

fully hardware unit is done and the simulation result is shown in figure 4. The synthesis report for the floating

point multiplicationis shown in figure 6.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5252

Figure 3 Simulation result of floating point adder

Figure 4 floating point multiplier simulation results

Figure 5 Floating point adder synthesis report

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5253

Figure 6 Synthesis report for proposed floating point multiplier

The following table 3 gives the utilization summary for the floating point adder. The device used is

3s500epq208-5

Description No. of device used Total obtainable devices Utilization

(%)

No. of Slices 1205 4656 25%

No. of 4 input LUTs 2143 9312 23%

Number of bonded IOBs 96 158 60%

Path delay : 63.247 ns

The following table 4 compare the normal and proposed floating point multiplier implementation

Description No of device used Total

number

available

% utilization

Nor

mal

Proposed Nor

mal

Propo

sed

Number of Slices 228

0

1850 4656 49

%

40%

Number of 4 input

LUTs

457

0

3700 9312 49

%

40%

Number of bonded

IOBs

96 50 158 60

%

31%

Path delay : Normal : 49.484ns Proposed: 38.275ns

From the above table it is found that the delay is reduced from 49.48ns to 38.27ns. The performance

improvement by 1.3 times with respect to normal floating point multiplier using kogge stone adder and modified

booth multiplier for the mantissa multiplication.

The design is synthesized using Cadence back end tool. The comparison Table 5 shows the synthesized

results for Kogge stone adder (KSA), ripple carry adder (RCA) and carry look ahead adder (CLA). From the

table it can be found carry look ahead adder is better in terms of power and delay.

Table 5 Different implementation of floating point adders

Parameters

Kogge

Stone Adder

(KSA)

Carry Look Ahead

Adder (CLA)

Ripple Carry

Adder (RCA)

Area (µm2) 48812 49290 48804

Cells 7121 7306 7031

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5254

Total Power (pw) 372164.619 365688.433 359375.906

Delay (ps) 7923 6149 8158

Figure 7 RTL view of Booth Recoded Multiplier using Cadence tool

Table 6 Comparison of different multipliers

Different

Implementation

Del

ay

(ns)

Area

P.D

(mW)

PDP

(pJ)

BFPM using

RCA(180nm) [22]
8.0 71946

20.30

5
162.44

BFPM using

RCA(180nm) [23]
9.2 65109

15.02

4
138.22

Modified Booth

Mult and CLA [24]

8.4

81
- 119 1009.23

Proposed BFPM

using KSA (90nm)

20.

659
59995 5.183 107.07

The proposed multiplier using KSA and the floating point adder is used for the comparison of radix 2

butterfly architecture using 4 multiplications and using modified architecture using 3 multiplications

Table 7 Comparison of radix 2 butterfly

Differ

ent

Floating

point adder

Floating

point

No.

of

No. of

multiplier

D

elay

P

ower

P

DP

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5255

Imple-

mentat

ion

multiplication adders

required

required (n

s)

(

mw)

(p

j)
D

elay

(n

s)

P

ower

(

mw)

D

elay

(n

s)

P

ower

(

mw)

Existi

ng with 4

mul

6.

149

0.

365

20

.66

5.

183

6 4 32

.96

22

.92

75

5.4

Using

3 mul

9 3 39

.11

18

.83

73

6.4

Table 8 Various point FFT Comparison

Different

implementation

Total number

of butterflies

Power delay

product using 4

multiplier (nj)

Power delay

product using 3

multiplier (nj)

8 12 9.0648 8.837

16 32 24.1728 23.565

32 80 60.432 58.912

64 192 145.036 141.389

128 448 338.419 329.907

256 1024 773.529 754.074

512 2304 1740.441 1696.666

1024 5120 3867.648 3770.368

Since radix 2 butterfly implementation using 3 multiplications require more delay due to one additional adder

circuit before multiplication. The power required to implement this is less compared with 4 multiplication unit.

The radix 2 butterfly power delay product of the proposed reduced by 2.5 % compared withthe conventional

implementation.

6. Conclusion and future work

In this paper implementations of 32 bit floating point multiplier and floating point adder are presented. The

proposed architecture for butterfly-2 structure is implementations with floating point arithmetic. The design is to

optimize the complexity of implementing radix 2 butterfly structures. Here the number of multiplication is

reduced and the power consumed by this arithmetic optimization. By adopting this architecture the FFT/IFFT

implementation will improve the performance and the reduction in space utilization for realising the proposed

structure. Here the energy utilized for the proposed work is about 2.5% reduction compared to normal

implementation of radix 2 butterfly architecture. Since the work presents is single precision FP implementation

double precision FP implementation will be the future work. The proposed design can also be expand to

implement the design in the state of the technology to reduce delay, area and power.

References

1. M. Heideman, D. Johnson, and C. Burrus, “Gauss and the history of the fast Fourier transform,”

IEEE Trans. Acoust., Speech, Signal Process., vol. 1, no. 4, pp. 14–21, 1984.

2. L. X. Jiang, C. Y. Liu, and P. Zhang, “A novel overall in-place in order prime factor FFT

algorithm,” in Proc. 5th Int. Congr. Image Signal Process. (CISP), Chongqing, China, 2012, pp.

1500–1503.

3. S. Mittal, Z. A. Khan, and M. B. Srinivas, “Area efficient high speed architecture of Bruun’s FFT

for software defined radio,” in Proc. IEEE Global Telecommun. Conf., Nov. 2007, pp. 3118–3122.

4. J. B. Birdsong and N. I. Rummelt, “The hexagonal fast fourier transform,” in Proc. IEEE Int. Conf.

Image Process. (ICIP), Sep. 2016, pp. 1809–1812.

5. Y. W. Lin, Y. Chen, C. Y. Lee and Y. C. Tsao, “A 2.4-Gsample/s DVFS FFT processor for MIMO

OFDM communication systems”, IEEE Journal Solid-State Circuits, no.5, volume. 43, pp. 1260–

1273, May 2008.

6. A. Chandrakasanand A. Wang, “A 180-mV subthreshold FFT processor using a minimum energy

design methodology”,IEEE Journal. Solid-State Circuits,no.1, volume. 40, pp. 310–319, Jan. 2005.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 5248-5256

 Research Article

5256

7. D. Jeon, M. Seok, C. Chakrabarti, D. Blaauw, and D. Sylvester, “A super-pipelined energy efficient

subthreshold 240 MS/s FFT core in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp.

23–34, Jan. 2012.

8. L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally pipelined FFT processor,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp. 585–589, Jul. 2006.

9. M. Garrido, R. Andersson, F. Qureshi, and O. Gustafsson, “Multiplierless unity-gain SDF FFTs,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 9, pp. 3003–3007, Sep. 2016.

10. S. He and M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” in

Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 131–134.

11. M. Sänchez, M. Garrido, M. López, and J. Grajal, “Implementing FFT based digital

12. channelized receivers on FPGA platforms,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 4, pp.

1567–1585, Oct. 2008.

13. A. Cortés, I. Vélez, and J. F. Sevillano, “Radix rkFFTs: Matricial representation and SDC/SDF

pipeline implementation,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2824– 2839, Jul. 2009.

14. Raja J, Mangaiyarkarasi P, Moorthi K (2015) Area efficient lowpower high performance cached

FFT processor for MIMOOFDM application. Int J ApplEng Res 10:11853–11868

15. Vishwanath B.R.L &Theerthesha.T.S, “Multiplier using canonical signed digit code”, International

journal for research in applied science & engineering technology

(IJRASET), (2015)

16. Rajdeepkaur and Tarandipsingh,“Design of 32-point mixed radix FFT processor using

17. CSD multiplier”, fourth international conference on parallel distributed grid computing (2016)

18. Z. A. M. Sharrif, "Digit slicing architecture for real time digital filters." vol. Ph.D UK:

Loughborough University, 1980.

19. Yazan Samir and T. Rozita, "The Effect Of The Digit Slicing Architecture On The FFT Butterfly,"

in 10th International Conference on Information Science, Signal Processing and their Applications

(ISSPA 2010) Kuala Lumpur, Malaysia, 2010, pp. 802-205.

20. Laguri N, Anusudha K (2014) VLSI implementation of efficient split radix FFT based on distributed

arithmetic. In: IEEE Int. conference on Green Computing Communication and Electrical

Engineering (ICGCCEE), pp 1–5

21. C. Chen, C. Hung and Y. Huang, An energy-efficient partial FFT processor for the OFDMA

communication system in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no.

2, pp. 136–140, 2010

22. Patil MS, Chhatbar TD, Darji AD (2010) “An area efficient and low power implementation of 2048

point FFT/IFFT processor for mobile WiMAX”. In: 2010 International Conference on Signal

Processing and Communications (SPCOM), Bangalore, pp 1–4

23. S. Tang, J. Tsai and T. Chang, "A 2.4-GS/s FFT processor for OFDM-based WPAN applications,"

in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 451– 455, 2010

24. Bhavesh Sharma, Ruchika Mishra et,al, (2015). Comparison Of Single Precision Floating Point

Multiplier Using Different Multiplication Algorithm. International Journal of Electrical, Electronics

and Data Communication 2320-2084. 3. 106-109.

25. Sharma, B., &Bakshi, A. “Design And Implementation Of An Efficient Single Precision Floating

Multiplier Using Vedic Multiplication”, International Journal of Scientific and Engineering

Research, Vol.6, Issue 4, April-2015.

26. Senoj Joseph, I. Shyam, K. SalaiMathiazhagan, R. Vishnu, “FFT Implementation using Modified

Booth Multiplier and CLA”, International Journal of Engineering and Advanced Technology

(IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020.

