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Abstract— In [1], hybrid LRU algorithm was built to execute parameterized priority queue using Least Recently 

Used model. It helped to determine the object in an optimum mode to remove from cache.  Experiment results 

demonstrated ~30% decrease of the execution time to extract data from cache store during object cache extraction 

process.  In the era of modern utility computing theory, Serverless architecture is the cloud platform concept to hide 

the server usage from the development community and runs the code on-demand basis.  This paper provides Hybrid 

LRU algorithm by leveraging Serverless Architecture benefits.  Eventually, this new technique added few 

advantages like infrastructure instance scalability, no server management, reduced cost on efficient usage, etc.  This 

paper depicts about the experimental advantage of Hybrid LRU execution time optimization using Serverless 

architecture. 

 Index Terms— Serverless, Utility computing, Big Data, Scaling, Metered payment, Enterprise Data Hub, etc. 

 

I. INTRODUCTION 

Data is foundation of the computer industry. Microsoft’s Bill Gates quoted that Data is the biggest asset in the 

modern world.  In the rapid transformation of Information Technology, enterprise data growth [15] is phenomenal. 

Enterprise Data Hub [1] is a solution to build and maintain the golden records of any enterprise as shared trustable 

enterprise data. With the big data Map Reduce algorithm, EDH is easily built using the traditional computing model. 

In recent industry days, serverless computing is highly adopted due to favorable small, self-contained units of 

computation, which makes the big data process easier to manage and scale in the cloud. Serverless computing 

programming model is highly influenced with inherit model of non-maintenance state of the underlying application.   

 

This paper depicts about the efficient way of utility computing to handle the data in the most effective logic. In 

the recent social media world, data loads continue to grow exponent. It is highly expected to see the serverless 

concepts as a standard approach for offloading functions to execute closer to end users and devices. By reducing 

costs, latency, time to market, and complexity, the serverless model is poised to become a staple of the app space. 

Key logic of this paper, is to build the serverless computing for EDH design. 

II. LITERATURE REVIEW 

A. Caching Algorithms  

Computer Industry evolves with multiple Cache replacement algorithms [8] as below: 

 

1.  Optimal Cache algorithm (OPT) 

2. Least Recently Used (LRU) 

3. Least Frequently Used (LFU) 

4. Adaptive Replacement Cache (ARC) 

5. Low Inter-reference Recency Set (LIRS) 

 

Implementation depicts about the experimental advantage of execution time optimization and efficient page/cache 

hit ratio, using hybrid LRU algorithm with the optimal combination of LRU and priority models. The placement of 

data within the memory system is crucial to reducing the number of conflict misses to the minimum possible. 
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Fig. 1. System memory models  

Computer system memory models are depicted in the above diagram with the different levels of efficiency and 

persistence. 

 

B. Enterprise Data Hub 

Enterprise Data Hub is a solution to build and maintain the golden records of any enterprise as shared trustable 

enterprise data. It is the proposed solution which is a central data repository for any enterprise with open sourced 

Big Data tools and techniques like Hadoop Distribution File System, Map Reduce, Hive, etc.  

 

.   

Fig. 2. ReferenceArchitecture of EDH 

The target output of EDH is the golden master data for an enterprise. 

C. Shift in Serverless Architecture  

In recent times, an architecture model is emerged with the name - ‘Serverless’.  In reality, this term doesn’t 

literally mean as ‘no server’.  Function as a Service (FaaS) concept emerges along with this new architecture.  It 

allows small pieces of code represented as functions to run for limited amount of time on demand basis in the cloud.  
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Fig. 3. Architecture Evolution of Serverless Computing 

As mentioned above, the traditional computing models took months to deploy any system in production with the 

life cycle in years.  Serverless Architecture is disruptive design pattern to support the modern utility computing.   On 

evolution of VM and containers concepts, serverless computation deploy the production ready code with self-

contained small units in the cloud. 

III. SERVERLESS ARCHITECTURE 

A. Industry Use Case 

Allied Market Research report estimated the global serverless architecture market is worth around $7.6 billion in 

2020, and forecasts to ~$22 billion by 2025 with annual growth rate of 28%.   

 

Fig. 4. Serverless Architecture Market by Region 

This design helps to parallelize into independent units of work in asynchronous and concurrent mode without 

worrying about the underlying infrastructure.  In terms of changing business requirements, it is highly dynamic for 

accelerated developer velocity. 

B. Message Driven Design - Illustration 

Message driven design is the best suit for the serverless computing.  In theory of computer architecture, message 

driven design is built based on the asynchronous communication.  A message is a simple data transfer object (DTO) 

with message name and details.  On arrival/dispatch of any message, the system triggers a function to execute.  It is 

the fundamental of message driven application. 

 

The context is usage of message driven design in FaaS.  Let us consider a real life application – Advertisement 

(Ad) server. Traditionally, Ad Server is designed synchronously with the response to the user click operation in a 

channel.  In terms of operation, the user clicks on the advertisement content in the browser and the server collects 
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the relevant information for further processing.  

 

It is redesigned with message consumer model using FaaS function of asynchronous message processing is a very 

popular use case for serverless architecture. This function runs within the event-driven context the vendor provides. 

FaaS is distinct to process several messages in parallel by instantiating multiple copies of the function code. 

Programmer doesn’t need to worry about the underlying infrastructure as it is taken care by serverless technologies. 

 

C. Benefits of Serverless computing 

In term of the business benefits, Serverless computing provides in four categories namely Scalability, Simplified 

server execution, Time to market and Cost advantage.  With the power of scaling demand seamless and simplified 

abstracted server execution, the product reach the market on time.   

Serverless architecture makes the availability of the program instantly and so it significantly reduces the software 

deployment cycle.   Serverless computing requires only the operational cost, no upfront capital.  The rate of cost 

advantage is depicted as below for the serverless computing. 

 

D. Limitation of Serverless computing 

By design, serverless computing is intentionally ephemeral.  As the execution is sustained for few minutes in the 

cloud, it doesn’t fit for long running tasks.  Also, it doesn’t retain any stateful data of the previous run.  

IV. TECHNICAL IMPLEMENTATION 

A. Priority Queue Design 

Computing theory depicts the impact of using different priority queues in the system performance.  The core 

concept is by having significant overhead in the constant factor and so it performs the best. Priority Queue 

performance [4] metric is  

 

Table- I: Priority Queue Processing Time 

# Priority Queue Model Insert/Delete(min) 

1 Sequence Heap (Cache aware) O (log4 N) 

2 Bottom up Binary Heap (worst 

case) 

O (log2 N) 

3 Aligned 4-ary Heap (worst 

case) 
 

 

N:queue size, B: block size, M: cache size, l: (M), k: (M/B) 

 

During this traversal, node flag is set to denote the direction, which is opposite to the taken direction.  

B. Hybrid LRU Algorithm 

The objective is to build the hybrid LRU with the combination of priority queue and LRU concepts.  An 

improvement of the existing LRU is termed as Hybrid LRU, in which parameterized priority queue logic is extended 

to obtain the execution performance benefits.  

On comparison with the normal queue concepts, Priority Queue has the below properties. 

1. Priority is associated with each item. 

2. Higher priority element is dequeued before the lower priority element. 

3. In the event of the same priority, their queue order will take the priority. 

 

A typical priority queue supports three operations. First operation named push is to insert an item with given 

priority. Second operation pop is to fetch and remove the highest priority item.  Last method peek is to get the 

highest priority element in the queue without removing it.  

Pseudo code of the logic will be: 

---------------------------------------------------------------------- 

Algorithm: Priority queue algorithm to maintain 

Input: Gets the content or position 

Output: Retrieves the content for the given position 



Dr. Murugan A 

445 

---------------------------------------------------------------------- 

class NodeObject 

begin  

Declare dataStore as integer 

Declare priorityNum as integer 

Declare next as NodeObject 

end 

 

function newNode (d integer) 

begin 

Initiate temp as NodeObject  

Assign parameter d into temp.dataStore;  

Assign parameter d into temp.priorityNum;  

Assign null to temp.next;  

Return temp;  

end 

  

function push ( 

head NodeObject, d integer, p integer) 

begin 

Assign start as head;  

Assign temp as newNodeObject(d, p);  

if  ((head).priorityNum is greater than p)  

begin 

temp.next = head;  

(head) = temp;  

end 

else  

begin 

While (start.next != null &&  

start.next.priorityNum < p)  

begin 

Move start into start.next;  

end 

Assign temp.next as start.next;  

Assign start.next as temp;  

end 

return head;  

end 

 

Key differentiator of a priority queue is processing by the given priority instead of traditional first in first out 

model. In terms of data structure, it is an abstract data type to capture the idea of a container, in which elements are 

attached with priorities value. In essence, an element with highest priority is positioned at front of the queue. On 

removal of the element, it picks up the next highest priority element to the front. 

In terms of technical implementation, LRU element is identified with the combined logic of parameterized 

priority queue element. 

C. Serverless Architecture 

In the process of architecture evolution, Serverless computing [6], [7] is primarily associated with two key 

concepts.  They are (1) Applications that rely on third-party cloud services to handle their business logic and state, 

which is commonly called as Background-as-a-Service (BaaS) and,  

(2) Applications in which the server side logic is written by application developers.  Unlike traditional architecture, 

the differential element is to execute in stateless containers that are event-triggered and fully managed by a third 

party system.  It is termed as Functions-as-a-Service (FaaS). 

Serverless FaaS model is designed to implement the application logic as functions, which may be written in 

various languages and exposed as web services, and packed with their dependencies. 
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Pseudo code is drafted for hybrid LRU algorithm using serverless redesign as below: 

---------------------------------------------------------------------- 

Algorithm: Hybrid LRU algorithm using serverless 

Input: Gets the content or position 

Output: Retrieves the content for the given position 

---------------------------------------------------------------------- 

 

class ServerlessHybridLRU implements RequestHandler 

begin 

 

class NodeObject 

begin  

Declare dataStore as integer 

Declare priorityNum as integer 

Declare next as NodeObject 

end 

 

function push ( 

head NodeObject, d integer,  

p integer, Context context) 

begin 

Assign start as head;  

Assign temp as newNodeObject(d, p);  

if  ((head).priorityNum is greater than p)  

begin 

temp.next = head;  

(head) = temp;  

end 

else  

begin 

while ( 

start.next != null &&  

start.next.priorityNum < p)  

 

begin 

Move start into start.next;  

end 

Assign temp.next as start.next;  

Assign start.next as temp;  

end 

context = this; 

return head;  

end 

 

end 

 

Apart from on demand cloud infrastructure, there are two key improvements in application objects coding, 

namely event and context. Serverless design event differs in structure and contents, depending on which event 

source created it. In our algorithm, the event will be triggered during the priority queue push operation.  Actually, 

the contents of the event parameter, include all of the data and metadata for the given push FaaS function to drive 

the serverless design.  The context object allows function as a code to interact with the serverless execution 

environment. The contents and structure of the context object vary, based on the runtime language at minimum. 

During the execution of ServerlessHybridLRU class object, each time a function container is created and invoked.  

In the system, it remains active and available for subsequent invocations for at least a few threshold minutes before 

it is terminated. On the subsequent invocations occur on a container that has already been active and invoked at least 

once before, then invocation is running on a warm container. When an invocation occurs that requires function as a 
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code package to be created and invoked for the first time, the invocation is experiencing a cold start by design. 

When RequestHandler logic is executing using the given serverless context, the system takes the advantage of a 

warm container.  As a result, the serverless design creates faster code execution for the associated Hybrid LRU 

algorithm. In turn, the experiment results are in quicker responses and lower cost when the input data set grows from 

10 to 10,500 records as depicted in the following experimentation result section. 

V. EXPERIMENTATION RESULT 

A. Data Analysis 

To experiment the value of serverless architecture on applying in hybrid LRU, the previous data set was executed 

with multiple cycle between traditional and serverless architecture.  Amazon Lambda provides the cloud platform 

for the execution of high throughput job.  Each serverless FaaS function provides the service of memory between 

128 to 3,008 MB, disk storage of 75 GB, concurrent execution of 1,000 tasks and timeout of 15 minutes. 

 

With the above obtained results, corroborate the benefits of the serverless architecture in three core areas.  They 

are (i) drastically reducing the burden of infrastructure management, (ii) allowing more functionality to be deployed 

on fog nodes with limited resources, and (iii) fulfilling the requirements of different application scenarios and 

heterogeneous deployments of fog nodes.  In the essence, the execution time of Hybrid LRU is optimized when the 

computing process grows. 

B. Execution Time Optimization 

Serverless hybrid LRU algorithm is benchmarked to measure the response time with meaningful experimental 

executions.  Serverlesss Function as a Service (FaaS) is executed against the traditional design of hybrid LRU with 

four handful use cases. 

Table- II: Experimented Result – Execution Time 

Patterns - 

architecture 

Data set execution (milli-seconds) 

10 150 1,300 10,500 

Traditional 

HybridLRU 

2.1 3 6.4 12.5 

Serverless 

HybridLRU 

2.1 3 6.1 11.2 

 

The execution data set contains the range from 10 to 10,500 and approximately 6.39 GB sized content. Python 2.7 

and Node.js software are used to develop the program. The system uses Amazon cloud's Lambda to leverage the 

serverless architecture.  The four queries are tested and execution time is captured against disk based hive and 

serverless map reduce algorithms. 

 

Serverless Execution Efficiency α Transaction Volume 

 

Based on the experimental results, it is evident that the execution efficiency using serverless architecture is 

directly proportional to the given volume of transactions.  Because, serverless design is good fit for the compute 

intensive programs to achieve the efficiency. 

Experimented execution results are marked in the above table to demonstrate the time efficiency.  Data points are 

graphically represented as below. 
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Fig. 5. Comparision chart of Scan & Aggregation queries 

 

Result shows the serverless architecture improvement of hybrid LRU algorithm execution time between 

traditional and serverless models.  When the rate of data volume and complexity of queries increase, the execution 

time efficiency is improved as shown in the experimented result graph. 

VI. CONCLUSION 

This paper describes an improved version of hybrid LRU algorithm, by leveraging the emerging serverless 

architecture. Amazon Lambda framework is used to implement serverless architecture in this paper.  The core logic 

is to invoke Function as a Service in response to the distributed data based on the number of simultaneous queue 

function.  On comparing the performance of serverless architecture against traditional design, it has an impact on the 

execution time efficiency of data queue processing. 

This research paper concludes the technical strength of new serverless architecture, using the experimental results.  

Thus, enterprise data hub can leverage the state of the most efficient architecture to execute the newly built hybrid 

Least Recently Used data processing algorithm. 
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