Decomposition of Product Path Graphs Into Graceful Graphs

P.M.Sudha^{a*} And P.Senthilkumar^b

^a Research Scholar, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur – 638108, Tamil Nadu, India.

^bAssistant Professor, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur – 638108, Tamil Nadu, India.

* Corresponding author E-Mail: sudhasathees@gmail.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract: A decomposition of G is a collection $\psi_g = \{H_1, H_2, \dots, H_r\}$ such that H_i are edge disjoint and every edge in H_i belongs to G. If each H_i is a graceful graph, then ψ_g is called a graceful decomposition of G. The minimum cardinality of a graceful decomposition of G is called the graceful decomposition number of G and it is denoted by $\pi_g(G)$. In this paper, we define graceful decomposition and graceful decomposition number $\pi_g(G)$ of a graphs. Also, some bounds of $\pi_g(G)$ in product graphs like Cartesian product, composition etc. are investigated.

Keyword: Decomposition, Graceful graphs, Graceful decomposition and Graceful decomposition number.

1. Introduction

A graph is a well-ordered pair G = (V, E), where V is a non-empty finite set, called the set of vertices or nodes of G, and E is a set of unordered pairs (2-element subsets) of V, called the edges of G. If $xy \in E$, x and y are called adjacent and they are incident with the edge xy.

The complete graph on n vertices, denoted by K_n , is a graph on n vertices such that every pair of vertices is connected by an edge. The empty graph on n vertices, denoted by E_n , is a graph on n vertices with no edges. A graph G' = (V', E') is a sub graph of G = (V, E) if and only if $V' \subseteq V$ and $E' \subseteq E$. The order of a graph G = (V, E) is |V|, the number of its vertices. The size of G is |E|, the quantity of its edges. The degree of a node $x \in V$, represented by d(x), is the quantity of edges incident with it.

A subgraph H of G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a graph G(V, E)and a subset $W \subseteq V$, the subgraph of G induced by W, denoted as G[W], is the graph H(W, F) such that, for all $u, v \in W$, if $uv \in E$, then $uv \in F$. We say H is an induced subgraph of G.

A graph G(V, E) is said to be connected if every pair of vertices is connected by a path. If there is exactly one path connecting each pair of vertices, we say G is a tree. Equivalently, a tree is a connected graph with n - 1 edges. A pathgraph P_n is a connected graph on n vertices such that each vertex has degree at most 2. A cycle graph C_n is a connected graph on n vertices such that every vertex has degree 2.

A complete graph P_n is a graph with n vertices such that every vertex is adjacent to all the others. On the other hand, an independent set is a set of vertices of a graph in which no two vertices are adjacent. We denote In for an independent set with n vertices.

A bipartite graph G(V, E) is a graph such that there exists a partition P(A, B) of V such that every edge of G connects a vertex in A to one in B. Equivalently, G is said to be bipartite if A and B are independent sets. The bipartite graph is also denoted as G(A, B, E).

A graceful labelling of a graph G is a vertex labelling $f: V \to [0,1]$ such that f is injective and the edge labelling $f^*: E \to [1,m]$ defined by $f^*(uv) = |f(u) - f(v)|$ is also injective. If a graph G admits a graceful labelling, we say G is a graceful graph.

In this paper we define graceful decomposition and graceful decomposition number $\pi_{a}(G)$ of a

graph G . Also investigate some bounds of $\pi_{g}(G)$ in product graphs like Cartesian product, composition etc.

2. Graceful Decomposition

In this section we define graceful decomposition of a graph G(V, E) some and investigate some bounds of graceful decomposition number in G(V, E).

Definition 2.1:Let $\psi_g = \{H_1, H_2, \dots, H_r\}$ be a decomposition of a graph G. If each H_i is a graceful graph, then ψ_g is called a graceful decomposition of G. The minimum cardinality of a graceful decomposition of G is called the graceful decomposition number of G and it is denoted by $\pi_g(G)$.

Definition 2.2: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The join $G_1 + G_2$ of G_1 and G_2 with disjoint vertex set $V_1 \& V_2$ and the edge set E of $G_1 + G_2$ is defined by the two vertices (u_i, v_i) if one of the following conditions are satisfied

- i) $u_i v_i \in E_1$.
- ii) $u_i v_i \in E_2$.

iii)
$$u_i \in V_1 \& v_j \in V_2 , u_i v_j \in E$$

Theorem 2.1: A graph $P_n + P_m$ is a join of two path graceful graphs with (m>n) can be decomposed in to at least 'm' number of P_m , graceful graphs. Then the graceful decomposition number $\pi_e(P_n + P_m) \ge 3$.

Proof:Let P_n and P_m be two path graceful graphs of order m and n (m>n)respectively and $P_n + P_m$ is a join of P_n and P_m with edge set E. Therefore $E = E_1 \cap E_2 \cap S(K_{m,n})$, here $S(K_{m,n})$ is a size of a bipartite complete graph $K_{m,n}$. Note that P_n and P_m be two graceful graphs and complete bipartite graphs $K_{m,n}$ also graceful graph. The complete bipartite graphs $K_{m,n}$ can be decomposed in to m number of P_m . This implies $\begin{bmatrix} m & p \\ m & p \end{bmatrix} = \begin{bmatrix} m & p \\ m & p \end{bmatrix}$

 $\Psi_{g} \supseteq \left\{ \bigcup_{i=1}^{m} P_{mi} \right\} \text{ and } \left| \Psi_{g} \right| \ge \left| \left\{ \bigcup_{i=1}^{m} P_{mi} \right\} \right|. \text{ Therefore we get } \pi_{g} \left(P_{n} + P_{m} \right) \ge m. \text{ Note that } P_{n} \text{ and } P_{m} \text{ are graceful}$

graph also decomposed in to P_n and P_m paths, hence we get $\pi_g(P_n + P_m) \ge m$.

Illustration 2.1:The Join of two graceful graphs $P_2 \& P_3$ is given in figure.2.1

The graph $P_2 + P_3$ is decomposed in to isomorphic graphs of P_2 , P_3 and $K_{3,2}$. Therefore the set $\psi_g = \{P_1, P_2, K_{3,2}\}$

Figure.2.1:Graceful decomposition of $P_2 + P_3$

Definition 2.3: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The Cartesian product $G_1 \times G_2$ of G_1 and G_2 , is a graph with vertex set $V = V_1 \times V_2$ and the edge set of $G_1 \times G_2$ is defined by the two vertices $(u_i, v_i) \& (u_k, v_l)$ if one of the following conditions are satisfied

- i) $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$.
- ii) $u_2 = v_2$ and u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.

Theorem 2.2: A graph $P_m \times P_n$ is a Cartesian product of two graceful graphs $P_m \& P_n$ with order m and n can be decomposed in to at least (m+n) graceful graphs (i.e. $\pi_g (G_1 \times G_2) \ge (m+n)$).

Proof:Let P_m and P_n be two path graceful graphs of order m and n (m > n) respectively and $P_n \times P_m$ and is a Cartesian product of $P_n \& P_m$ with edge set E the one of the following conditions are satisfied

- i) $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$.
- ii) $u_2 = v_2$ and u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.

Case (i): If $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$

If $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$. Let the sub graph H_i is isomorphic to the graph $G_2 = (V_2, E_2)$. The graph $G_2 = (V_2, E_2)$ be a graceful graph this implies H_i is also a graceful graph. This implies $H_i \subset \psi$

Case (ii): If $u_2 = v_2 u_1, v_1$ are adjacent vertices in $G_1 = (V_1, E_1)$

If $u_2 = v_2 u_1, v_1$ are adjacent vertices in $G_1 = (V_1, E_1)$. Let the sub graph H_j is isomorphic to the graph $G_1 = (V_1, E_1)$. The graph $G_1 = (V_1, E_1)$ is a graceful graph this implies H_j is also a graceful graph. This implies $H_j \subset \psi$.

From case (i) and (ii), we get
$$\psi = \left\{ \begin{pmatrix} m \\ \bigcup \\ i=1 \end{pmatrix} \cup \begin{pmatrix} n \\ \bigcup \\ j=1 \end{pmatrix} \right\}$$
 this implies $|\psi| = \sum_{i=1}^{m} H_i + \sum_{j=1}^{n} H_j = m + n$

. Hence we get $\pi_g(G_1 \times G_2) = (m+n)$.

Illustration 2.2: The Cartesian product of two graceful graphs $P_2 \& P_3$ is given in Figure 2.2

Figure.2.2: $P_2 \times P_3$

The graph $P_2 \times P_3$ is decomposed in to isomorphic graphs of P_2 and P_3 , the set ψ contains n times P_2 and m times P_3 as follows.

The graph $P_2 \times P_3$ is decomposed in to $O(G_2)$ number of G_1 graphs, $O(G_1)$ number of G_2 Graphs. **Definition 2.4:** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The Composition $G_1 \circ G_2$ of G_1 and G_2 , is a graph with vertex set $V = V_1 \times V_2$ and the edges in $G_1 \circ G_2$ is defined by the two vertices $(u_1, u_2) \& (v_1, v_2)$ if one of the following conditions are satisfied

- i) $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$.
- ii) $u_2 = v_2$ and u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.
- iii) u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.

Theorem 2.3: A graph $G_1 \circ G_2$ is a Composition of two graceful graphs $G_1 \& G_2$ with order m and n, can be decomposed in to at least (mn + m + n) graceful graphs (i.e. $\pi_g (G_1 \circ G_2) \ge (mn + m + n)$).

Proof:Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graceful graphs of order m and n respectively and $G_1 \circ G_2$ is a Composition of G_1 and G_2 with edge set E the one of the following conditions are satisfied

- i) $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$.
- ii) $u_2 = v_2$ and u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.
- iii) u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.

Case (i): If $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$

If $u_1 = v_1$ and u_2, v_2 are adjacent vertices in $G_2 = (V_2, E_2)$. Let the sub graph H_i is isomorphic to the graph $G_2 = (V_2, E_2)$. The graph $G_2 = (V_2, E_2)$ is a graceful graph this implies H_i is also a graceful graph. This implies $H_i \subset \psi$

Case (ii): If $u_2 = v_2 u_1, v_1$ are adjacent vertices in $G_1 = (V_1, E_1)$

If $u_2 = v_2 u_1$, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$. Let the sub graph H_j is isomorphic to the graph $G_1 = (V_1, E_1)$. The graph $G_1 = (V_1, E_1)$ be a graceful graph this implies H_j is also a graceful graph. This implies $H_j \subset \psi$.

Case (iii): If u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$.

If u_1, v_1 are adjacent vertices in $G_1 = (V_1, E_1)$. The graph $G_1 = (V_1, E_1)$ be a graceful graph therefore we get mn number graceful graph isomorphic to $G_1 = (V_1, E_1)$. Hence we get mn times of $G_1 = (V_1, E_1)$. $\pi_{g}(G_{1} \circ G_{2}) \geq (m+n+mn).$

From case (i) and (ii), we get
$$\Psi = \left\{ \begin{pmatrix} m \\ \bigcup_{i=1}^{m} H_i \end{pmatrix} \cup \begin{pmatrix} n \\ \bigcup_{j=1}^{m} H_j \end{pmatrix} \cup \begin{pmatrix} n \\ \bigcup_{j=1}^{m} H_{j}, H_{2j}, \dots, H_{mj} \end{pmatrix} \right\}$$
 this $|\Psi| = \sum_{i=1}^{m} H_i + \sum_{j=1}^{n} H_j + \sum_{j=1}^{n} \sum_{i=1}^{m} H_{ij} = m + n + mn$. Hence we get

implies

Illustration 2.3: The Cartesian product of two graceful graphs $P_2 \& P_3$ is given in Figure.2.3

Definition 2.5:FortwosimplegraphsGandHtheirtensor product is denoted by G * H, has vertex set $V = V_1 \times V_2$ in which (g_1, h_1) and (g_2, h_2) are adjacent whenever g_1g_2 is an edge in G and h_1h_2 is an edge in H

Theorem 2.4: A graph P_m is a tensor product of two graceful graphs with order (m > n), can be decomposed in to (m) number of P_m graceful graphs (i.e. $\pi_g(P_m * P_n) = (m)$).

Proof: A graph $P_m * P_n$ is a tensor product of two graceful graphs with (m > n). Let the vertex (u_1, v_1) and (u_2, v_2) are adjacent whenever u_1u_2 is an edge in P_m and v_1v_2 is an edge in P_n . By the definition we identify 'm' number of P_m in tensor product P_m . Hence we get $\pi_g (P_m * P_n) = (m)$.

Illustration 2.4: The tensor product of two graceful graphs $P_2 \& P_3$ is given in Figure.2.4

Definition 2.6: The Strong product $G \otimes H$ of graphs G and H has the vertex set $V(G \otimes H) = V(G) \times V(H)$ and (a, x)(b, y) is an edge of $G \otimes H$ ere satisfied one of the following condition.

- i) a = b and $xy \in E(H)$.
- ii) $ab \in E(G)$ and x = y.
- iii) $ab \in E(G)$ and $xy \in E(H)$.

Theorem 2.5: A graph $P_m \otimes P_n$ is a Strong productof two graceful graphs with m > n, can be decomposed in to at least (2m+n) graceful graphs (i.e. $\pi_g(P_m \otimes P_n) \ge (2m+n)$).

Proof:Let $P_m = (V_1, E_1)$ and $P_m = (V_2, E_2)$ be two graceful graphs of order m and n respectively and $P_m \otimes P_n$ is a Strong product of P_m and P_n with edges $(a, x)(b, y) \in E$ and the set is satisfied the one of the following conditions.

- i) a = b and $xy \in P_m$.
- ii) $ab \in P_n$ and x = y.
- iii) $ab \in P_n$ and $xy \in P_m$.

Case (i): If a = b and $xy \in P_m$ are adjacent vertices in P_m .

If a = b and $xy \in P_m$ are adjacent vertices in P_m . Let the sub graph formed by these set of edges is H_i isomorphic to the graph P_m . The graph P_m is a graceful graph this implies H_i is also a graceful graph. This implies $H_i \subset \psi$

Case (ii): If $ab \in P_n$ are adjacent vertices in P_n and x = y.

If $ab \in P_n$ are adjacent vertices in P_n and x = y. Let the sub graph formed by these set of edges is H_j isomorphic to the graph P_n . The graph P_n is a graceful graph this implies H_j is also a graceful graph. This implies $H_j \subset \psi$.

Case (iii): If $ab \in P_n$ are adjacent vertices in P_n and $xy \in P_m$ are adjacent vertices in P_m .

If $ab \in P_n$ are adjacent vertices in P_n and $xy \in P_m$ are adjacent vertices in P_m . The graph P_m is a graceful graph therefore we get m number graceful graph isomorphic to P_m . Hence we get m times of P_m .

From case (i) and (ii), we get
$$\Psi = \left\{ \begin{pmatrix} m \\ \bigcup_{i=1}^{m} P_{ni} \end{pmatrix} \cup \begin{pmatrix} n \\ \bigcup_{j=1}^{n} P_{mj} \end{pmatrix} \cup \begin{pmatrix} m \\ \bigcup_{i=1}^{m} P_{mi} \end{pmatrix} \right\}$$
 this implies

$$|\psi| = \sum_{i=1}^{m} P_{ni} + \sum_{j=1}^{n} P_{mj} + \sum_{i=1}^{m} P_{mi}$$
$$|\psi| = m + n + m = 2m + n$$

Paths P_m & P_n are also decomposed in to graceful graphs. Hence we get $\pi_g(P_m \otimes P_n) \ge (2m+n)$.

Illustration 2.5: The strong product of two graceful graphs $P_2 \& P_3$ and its possible decomposition are given in Figure 2.5

Conclusion:

In this paper, we define graceful decomposition and graceful decomposition number $\pi_g(G)$ of a graph G. Also, some bounds of $\pi_g(G)$ in product graphs like Cartesian product, composition etc. are discussed. In future, we will define different types of decomposition on labelling.v

References

- 1. Rosa, (1967), *On certain valuation of graph*, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, , 349–355.
- 2. Barrientos, (2005), *The gracefulness of unions of cycles and complete bipartite graphs*, J. Combin. Math. Combin. Comput. 52, 69 78.
- 3. F. Harary, (1972), Graph theory Addition Wesley, Massachusetts.
- 4. J. A. Bondy and U. S. R. Murty, (1976), Graph Theory with Applications, Macmillan Press, London.
- 5. G. Chartrand, L. Lesniak, (1996), Graph and Digraphs, 3rd edition, Chapman & Hall, London,.