Decomposition of Product Path Graphs Into Graceful Graphs

P.M.Sudha ${ }^{\mathrm{a}^{*}}$ And P.Senthilkumar ${ }^{\text {b }}$
${ }^{\text {a }}$ Research Scholar, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur - 638108, Tamil Nadu, India.
${ }^{\text {b }}$ Assistant Professor, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur - 638108, Tamil Nadu, India.
* Corresponding author E-Mail: sudhasathees@ gmail.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract: A decomposition of G is a collection $\psi_{g}=\left\{H_{1}, H_{2}, \ldots . H_{r}\right\}$ such that H_{i} are edge disjoint and every edge in H_{i} belongs to G. If each H_{i} is a graceful graph, then ψ_{g} is called a graceful decomposition of G. The minimum cardinality of a graceful decomposition of G is called the graceful decomposition number of G and it is denoted by $\pi_{g}(G)$. In this paper, we define graceful decomposition and graceful decomposition number $\pi_{g}(G)$ of a graphs. Also, some bounds of $\pi_{g}(G)$ in product graphs like Cartesian product, composition etc. are investigated.
Keyword: Decomposition, Graceful graphs, Graceful decomposition and Graceful decomposition number.

1. Introduction

A graph is a well-ordered pair $G=(V, E)$, where V is a non-empty finite set, called the set of vertices or nodes of G , and E is a set of unordered pairs (2-element subsets) of V, called the edges of G. If $x y \in E$, x and y are called adjacent and they are incident with the edge $x y$.

The complete graph on n vertices, denoted by K_{n}, is a graph on n vertices such that every pair of vertices is connected by an edge. The empty graph on n vertices, denoted by E_{n}, is a graph on n vertices with no edges. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a sub graph of $G=(V, E)$ if and only if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. The order of a graph $G=(V, E)$ is $|V|$, the number of its vertices. The size of G is $|E|$, the quantity of its edges. The degree of a node $x \in V$, represented by $d(x)$, is the quantity of edges incident with it.

A subgraph H of G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a graph $G(V, E)$ and a subset $W \subseteq V$, the subgraph of G induced by W , denoted as $G[W]$, is the graph $H(W, F)$ such that, for all $u, v \in W$, if $u v \in E$, then $u v \in F$. We say H is an induced subgraph of G .

A graph $G(V, E)$ is said to be connected if every pair of vertices is connected by a path. If there is exactly one path connecting each pair of vertices, we say G is a tree. Equivalently, a tree is a connected graph with $\mathrm{n}-1$ edges. A pathgraph P_{n} is a connected graph on n vertices such that each vertex has degree at most 2 . A cycle graph C_{n} is a connected graph on n vertices such that every vertex has degree 2 .

A complete graph P_{n} is a graph with n vertices such that every vertex is adjacent to all the others. On the other hand, an independent set is a set of vertices of a graph in which no two vertices are adjacent. We denote In for an independent set with n vertices.

A bipartite graph $G(V, E)$ is a graph such that there exists a partition $P(A, B)$ of V such that every edge of G connects a vertex in A to one in B . Equivalently, G is said to be bipartite if A and B are independent sets. The bipartite graph is also denoted as $G(A, B, E)$.

A graceful labelling of a graph G is a vertex labelling $f: V \rightarrow[0,1]$ such that f is injective and the edge labelling $f^{*}: E \rightarrow[1, m]$ defined by $f^{*}(u v)=|f(u)-f(v)|$ is also injective. If a graph G admits a graceful labelling, we say G is a graceful graph.

In this paper we define graceful decomposition and graceful decomposition number $\pi_{g}(G)$ of a graph G. Also investigate some bounds of $\pi_{g}(G)$ in product graphs like Cartesian product, composition etc.

2. Graceful Decomposition

In this section we define graceful decomposition of a graph $G(V, E)$ some and investigate some bounds of graceful decomposition number in $G(V, E)$.

Definition 2.1:Let $\psi_{g}=\left\{H_{1}, H_{2}, \ldots . H_{r}\right\}$ be a decomposition of a graph G. If each H_{i} is a graceful graph, then ψ_{g} is called a graceful decomposition of G. The minimum cardinality of a graceful decomposition of G is called the graceful decomposition number of G and it is denoted by $\pi_{g}(G)$.

Definition 2.2: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The join $G_{1}+G_{2}$ of G_{1} and G_{2} with disjoint vertex set $V_{1} \& V_{2}$ and the edge set E of $G_{1}+G_{2}$ is defined by the two vertices (u_{i}, v_{j}) if one of the following conditions are satisfied
i) $\quad u_{i} v_{j} \in E_{1}$.
ii) $\quad u_{i} v_{j} \in E_{2}$.
iii) $\quad u_{i} \in V_{1} \& v_{j} \in V_{2}, u_{i} v_{j} \in E$

Theorem 2.1: A graph $P_{n}+P_{m}$ is a join of two path graceful graphs with ($\mathrm{m}>\mathrm{n}$) can be decomposed in to at least ' m ' number of P_{m}, graceful graphs. Then the graceful decomposition number $\pi_{g}\left(P_{n}+P_{m}\right) \geq 3$.

Proof:Let P_{n} and P_{m} be two path graceful graphs of order m and $\mathrm{n}(\mathrm{m}>\mathrm{n})$ respectively and $P_{n}+P_{m}$ is a join of P_{n} and P_{m} with edge set E. Therefore $E=E_{1} \cap E_{2} \cap S\left(K_{m, n}\right)$, here $S\left(K_{m, n}\right)$ is a size of a bipartite complete graph $K_{m, n}$. Note that P_{n} and P_{m} be two graceful graphs and complete bipartite graphs $K_{m, n}$ also graceful graph. The complete bipartite graphs $K_{m, n}$ can be decomposed in to m number of P_{m}. This implies
 graph also decomposed in to P_{n} and P_{m} paths, hence we get $\pi_{g}\left(P_{n}+P_{m}\right) \geq m$.

Illustration 2.1: The Join of two graceful graphs $P_{2} \& P_{3}$ is given in figure.2.1

The graph $P_{2}+P_{3}$ is decomposed in to isomorphic graphs of P_{2}, P_{3} and $K_{3,2}$. Therefore the set $\psi_{g}=\left\{P_{1}, P_{2}, K_{3,2}\right\}$

Figure.2.1: Graceful decomposition of $P_{2}+P_{3}$
Definition 2.3: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The Cartesian product $G_{1} \times G_{2}$ of G_{1} and G_{2}, is a graph with vertex $\operatorname{set} V=V_{1} \times V_{2}$ and the edge set of $G_{1} \times G_{2}$ is defined by the two vertices $\left(u_{i}, v_{j}\right) \&\left(u_{k}, v_{l}\right)$ if one of the following conditions are satisfied
i) $\quad u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad u_{2}=v_{2}$ and u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Theorem 2.2: A graph $P_{m} \times P_{n}$ is a Cartesian product of two graceful graphs $P_{m} \& P_{n}$ with order m and n can be decomposed in to at least $(m+n)$ graceful graphs (i.e. $\pi_{g}\left(G_{1} \times G_{2}\right) \geq(m+n)$).

Proof:Let P_{m} and P_{n} be two path graceful graphs of order m and $\mathrm{n}(\mathrm{m}>\mathrm{n})$ respectively and $P_{n} \times P_{m}$ and is a Cartesian product of $P_{n} \& P_{m}$ with edge set E the one of the following conditions are satisfied
i) $\quad u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad u_{2}=v_{2}$ and u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Case (i):If $u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$
If $u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$. Let the sub graph H_{i} is isomorphic to the graph $G_{2}=\left(V_{2}, E_{2}\right)$. The graph $G_{2}=\left(V_{2}, E_{2}\right)$ be a graceful graph this implies H_{i} is also a graceful graph. This implies $H_{i} \subset \psi$

Case (ii):If $u_{2}=v_{2} u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$
If $u_{2}=v_{2} u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$. Let the sub graph H_{j} is isomorphic to the graph $G_{1}=\left(V_{1}, E_{1}\right)$. The graph $G_{1}=\left(V_{1}, E_{1}\right)$ is a graceful graph this implies H_{j} is also a graceful graph. This implies $H_{j} \subset \psi$.

From case (i) and (ii), we get $\psi=\left\{\left(\bigcup_{i=1}^{m} H_{i}\right) \cup\left(\bigcup_{j=1}^{n} H_{j}\right)\right\}$ this implies $|\psi|=\sum_{i=1}^{m} H_{i}+\sum_{j=1}^{n} H_{j}=m+n$. Hence we get $\pi_{g}\left(G_{1} \times G_{2}\right)=(m+n)$.

Illustration 2.2:The Cartesian product of two graceful graphs $P_{2} \& P_{3}$ is given in Figure.2.2

Figure.2.2: $P_{2} \times P_{3}$
The graph $P_{2} \times P_{3}$ is decomposed in to isomorphic graphs of P_{2} and P_{3}, the set ψ contains n times P_{2} and m times P_{3} as follows.

$$
\text { Isomorphic graphs of } P_{2}
$$

Isomorphic graphs of P_{3}

The graph $P_{2} \times P_{3}$ is decomposed in to $O\left(G_{2}\right)$ number of G_{1} graphs, $O\left(G_{1}\right)$ number of G_{2} Graphs.
Definition 2.4: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The Composition $G_{1} \circ G_{2}$ of G_{1} and G_{2}, is a graph with vertex $\operatorname{set} V=V_{1} \times V_{2}$ and the edges in $G_{1} \circ G_{2}$ is defined by the two vertices $\left(u_{1}, u_{2}\right) \&\left(v_{1}, v_{2}\right)$ if one of the following conditions are satisfied
i) $\quad u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad u_{2}=v_{2}$ and u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.
iii) $\quad u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Theorem 2.3: A graph $G_{1} \circ G_{2}$ is a Composition of two graceful graphs $G_{1} \& G_{2}$ with order m and n , can be decomposed in to at least $(m n+m+n)$ graceful graphs (i.e. $\pi_{g}\left(G_{1} \circ G_{2}\right) \geq(m n+m+n)$).

Proof:Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graceful graphs of order m and n respectively and $G_{1} \circ G_{2}$ is a Composition of G_{1} and G_{2} with edge set E the one of the following conditions are satisfied
i) $\quad u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad u_{2}=v_{2}$ and u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.
iii) $\quad u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Case (i):If $u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$
If $u_{1}=v_{1}$ and u_{2}, v_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$. Let the sub graph H_{i} is isomorphic to the graph $G_{2}=\left(V_{2}, E_{2}\right)$. The graph $G_{2}=\left(V_{2}, E_{2}\right)$ is a graceful graph this implies H_{i} is also a graceful graph. This implies $H_{i} \subset \psi$

Case (ii):If $u_{2}=v_{2} u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$
If $u_{2}=v_{2} u_{1}, v_{1}$ are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$. Let the sub graph H_{j} is isomorphic to the graph $G_{1}=\left(V_{1}, E_{1}\right)$. The graph $G_{1}=\left(V_{1}, E_{1}\right)$ be a graceful graph this implies H_{j} is also a graceful graph. This implies $H_{j} \subset \psi$.

Case (iii):If u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.
If u_{1}, v_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$. The graph $G_{1}=\left(V_{1}, E_{1}\right)$ be a graceful graph therefore we get mn number graceful graph isomorphic to $G_{1}=\left(V_{1}, E_{1}\right)$. Hence we get mn times of $G_{1}=\left(V_{1}, E_{1}\right)$.

From case (i) and (ii), we get $\quad \psi=\left\{\left(\bigcup_{i=1}^{m} H_{i}\right) \cup\left(\bigcup_{j=1}^{n} H_{j}\right) \cup\left(\bigcup_{j=1}^{n}\left(H_{1 j}, H_{2 j}, \ldots H_{m j}\right)\right)\right\}$ this
implies

$$
|\psi|=\sum_{i=1}^{m} H_{i}+\sum_{j=1}^{n} H_{j}+\sum_{j=1}^{n} \sum_{i=1}^{m} H_{i j}=m+n+m n . \text { Hence we get }
$$

$$
\pi_{g}\left(G_{1} \circ G_{2}\right) \geq(m+n+m n)
$$

Illustration 2.3: The Cartesian product of two graceful graphs $P_{2} \& P_{3}$ is given in Figure.2.3

G_{1}
Decomposition of $G_{1} \circ G_{2}$
Isomorphic to G_{1}

Isomorphic to G_{2}

Isomorphic to 'mn' times of G_{1}

Figure. 2.3
Definition 2.5:FortwosimplegraphsGandHtheirtensor product is denoted by $G * H$, has vertex set $V=V_{1} \times V_{2}$ in which $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent whenever $g_{1} g_{2}$ is an edge in G and $h_{1} h_{2}$ is an edge in H

Theorem 2.4: A graph P_{m} is a tensor product of two graceful graphs with order $(m>n)$, can be decomposed in to (m) number of P_{m} graceful graphs (i.e. $\pi_{g}\left(P_{m} * P_{n}\right)=(m)$).

Proof: A graph $P_{m} * P_{n}$ is a tensor product of two graceful graphs with $(m>n)$. Let the vertex $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent whenever $u_{1} u_{2}$ is an edge in P_{m} and $v_{1} v_{2}$ is an edge in P_{n}. By the definition we identify ' m ' number of P_{m} in tensor product P_{m}. Hence we get $\pi_{g}\left(P_{m} * P_{n}\right)=(m)$.

Illustration 2.4: The tensor product of two graceful graphs $P_{2} \& P_{3}$ is given in Figure.2.4

P_{4} Decomposition of $P_{3} * P_{4}$

$\left(x_{3}, y_{3}\right)$

Figure.2.4
Definition 2.6:The Strong product $G \otimes H$ of graphs G and H has the vertex set $V(G \otimes H)=V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G \otimes H$ ere satisfied one of the following condition.
i) $\quad a=b$ and $x y \in E(H)$.
ii) $a b \in E(G)$ and $x=y$.
iii) $a b \in E(G)$ and $x y \in E(H)$.

Theorem 2.5: A graph $P_{m} \otimes P_{n}$ is a Strong productof two graceful graphs with $\mathrm{m}>\mathrm{n}$, can be decomposed in to at least $(2 m+n)$ graceful graphs (i.e. $\pi_{g}\left(P_{m} \otimes P_{n}\right) \geq(2 m+n)$).

Proof:Let $P_{m}=\left(V_{1}, E_{1}\right)$ and $P_{m}=\left(V_{2}, E_{2}\right)$ be two graceful graphs of order m and n respectively and $P_{m} \otimes P_{n}$ is a Strong productof P_{m} and P_{n} with edges $(a, x)(b, y) \in E$ and the set is satisfied the one of the following conditions.
i) $\quad a=b$ and $x y \in P_{m}$.
ii) $a b \in P_{n}$ and $x=y$.
iii) $a b \in P_{n}$ and $x y \in P_{m}$.

Case (i): If $a=b$ and $x y \in P_{m}$ are adjacent vertices in P_{m}.
If $a=b$ and $x y \in P_{m}$ are adjacent vertices in P_{m}. Let the sub graph formed by these set of edges is H_{i} isomorphic to the graph P_{m}. The graph P_{m} is a graceful graph this implies H_{i} is also a graceful graph. This implies $H_{i} \subset \psi$

Case (ii): If $a b \in P_{n}$ are adjacent vertices in P_{n} and $x=y$.
If $a b \in P_{n}$ are adjacent vertices in P_{n} and $x=y$. Let the sub graph formed by these set of edges is H_{j} isomorphic to the graph P_{n}. The graph P_{n} is a graceful graph this implies H_{j} is also a graceful graph. This implies $H_{j} \subset \psi$.

Case (iii): If $a b \in P_{n}$ are adjacent vertices in P_{n}.and $x y \in P_{m}$ are adjacent vertices in P_{m}.
If $a b \in P_{n}$ are adjacent vertices in P_{n}.and $x y \in P_{m}$ are adjacent vertices in P_{m}. The graph P_{m} is a graceful graph therefore we get m number graceful graph isomorphic to P_{m} Hence we get m times of P_{m}.

From case (i) and (ii), we get $\psi=\left\{\left(\bigcup_{i=1}^{m} P_{n i}\right) \cup\left(\bigcup_{j=1}^{n} P_{m_{j}}\right) \cup\left(\bigcup_{i=1}^{m} P_{m_{i}}\right)\right\}$ this implies

$$
\begin{aligned}
& |\psi|=\sum_{i=1}^{m} P_{n i}+\sum_{j=1}^{n} P_{m j}+\sum_{i=1}^{m} P_{m i} \\
& |\psi|=m+n+m=2 m+n
\end{aligned}
$$

Paths $P_{m} \& P_{n}$ are also decomposed in to graceful graphs. Hence we get $\pi_{g}\left(P_{m} \otimes P_{n}\right) \geq(2 m+n)$.
Illustration 2.5: The strong product of two graceful graphs $P_{2} \& P_{3}$ and its possible decomposition are given in Figure.2.5

Figure. 2.5

Conclusion:

In this paper, we define graceful decomposition and graceful decomposition number $\pi_{g}(G)$ of a graph G. Also, some bounds of $\pi_{g}(G)$ in product graphs like Cartesian product, composition etc. are discussed. In future, we will define different types of decomposition on labelling.v

References

1. Rosa, (1967), On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, , 349-355.
2. Barrientos, (2005), The gracefulness of unions of cycles and complete bipartite graphs, J. Combin. Math. Combin. Comput. 52, $69-78$.
3. F. Harary, (1972), Graph theory Addition Wesley, Massachusetts.
4. J. A. Bondy and U. S. R. Murty, (1976), Graph Theory with Applications, Macmillan Press, London.
5. G. Chartrand, L. Lesniak, (1996), Graph and Digraphs, 3rd edition, Chapman \& Hall, London,.
