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Abstract: A decomposition of G is a collection y/, = {Hl, H,,..H r} such that H. are edge disjoint and every
edge in H, belongs to G . If each H, is a graceful graph, then ¥, is called a graceful decomposition of G . The
minimum cardinality of a graceful decomposition of G is called the graceful decomposition number of G and it
is denoted by 7Ty (G).In this paper, we define graceful decomposition and graceful decomposition number
7Ty (G) of a graphs. Also, some bounds of T, (G) in product graphs like Cartesian product, composition etc. are

investigated.
Keyword: Decomposition, Graceful graphs, Graceful decomposition and Graceful decomposition number.

1. Introduction

A graph is a well-ordered pairG = (V, E), where V is a non-empty finite set, called the set of vertices or

nodes of G, and E is a set of unordered pairs (2-element subsets) of V , called the edges of G . If Xy € E , x and
y are called adjacent and they are incident with the edge XY .

The complete graph on n vertices, denoted by Kn , is a graph on n vertices such that every pair of
vertices is connected by an edge. The empty graph on n vertices, denoted by En , is a graph on n vertices with no
edges. A graph G’ = (V',E") isasub graphof G = (V,E)ifandonly if V' <V and E' < E .The order of
agraph G=(V,E)is [\/| , the number of its vertices. The size of G is |E| the quantity of its edges. The degree
of anode X €V, represented by d (X) , is the quantity of edges incident with it.

A subgraph Hof G isagraph such that V(H) <V (G) and E(H) < E(G) . Foragraph G(V,E)
and a subsetW <V , the subgraph of G induced by W, denoted as G[VV ] is the graph H (W, F) such that, for
allu,veW ,ifuve E, thenuv e F . We say H is an induced subgraph of G.

A graph G(V, E) is said to be connected if every pair of vertices is connected by a path. If there is
exactly one path connecting each pair of vertices, we say G is a tree. Equivalently, a tree is a connected graph with
n— 1 edges. A pathgraph P, is a connected graph on n vertices such that each vertex has degree at most 2. A cycle

graph C,, is a connected graph on n vertices such that every vertex has degree 2.

A complete graph P, is a graph with n vertices such that every vertex is adjacent to all the others. On

the other hand, an independent set is a set of vertices of a graph in which no two vertices are adjacent. We denote
In for an independent set with n vertices.

A bipartite graph G(V, E) is a graph such that there exists a partition P(A, B) of V such that every
edge of G connects a vertex in A to one in B. Equivalently, G is said to be bipartite if A and B are independent
sets. The bipartite graph is also denoted as G(A, B, E) .

A graceful labelling of a graph G is a vertex labelling f :V — [0,1]such that f is injective and the
edge labelling f*:E — [1,m] defined by f * (uv) =|f(u) - f(V)| is also injective. If a graph G admits a
graceful labelling, we say G is a graceful graph.
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In this paper we define graceful decomposition and graceful decomposition number 7, (G)ofa

graph G . Also investigate some bounds of . (G) in product graphs like Cartesian product, composition etc.

2. Graceful Decomposition
In this section we define graceful decomposition of a graph G(V, E) some and investigate some bounds

of graceful decomposition number inG(V, E) .

Definition 2.1:Let ¥/ = {Hl, H,,.... Hr} be a decomposition of a graph G . If each H; is a graceful
graph, then ¥, is called a graceful decomposition of G . The minimum cardinality of a graceful decomposition of
G is called the graceful decomposition number of G and it is denoted by T, (G).

Definition 2.2: Let G, =(V,,E;) and G, =(V,,E,) be two simple graphs. The join G, +G, of
G, and G, with disjoint vertex set V; &V, and the edge set E of G, +G, is defined by the two vertices
(u;,Vv;) if one of the following conditions are satisfied

i) uv; e g .
ii) uv; € E,.
iii) u eV, &v; eV, , uv, eE

Theorem 2.1: A graph Pn + Pm is a join of two path graceful graphs with (m>n) can be decomposed in
to at least ‘m’ number of Pm ,graceful graphs. Then the graceful decomposition number 7Ty (Pn + Pm) >3.

Proof:Let P, and P, be two path graceful graphs of order m and n (m>n)respectively and P, + P, isa
join of P, and P, with edge set E. Therefore E=E, N"E, "S(K_, ), here S(K_, ) is a size of a bipartite

complete graph Km’n. Note that P, and P, be two graceful graphs and complete bipartite graphs Km'nalso

graceful graph. The complete bipartite graphs K can be decomposed in to m number of P, . This implies

v, Q{QPmi}and‘l//g‘Z {Q Pmi}

graph also decomposed into P, and P, paths, hence we get 7Ty (P,+P,)=m.

n

. Therefore we get 7z, (P, +P,;) > m.Note that B, and P, are graceful

Illustration 2.1:The Join of two graceful graphs P, & P, is given in figure.2.1

92
1
2
1
®0
0
P- 1
P2+Ps
®1
P: PZ + P3

The graph P, + P, is decomposed in to isomorphic graphs of P, , P,and K, ,. Therefore the set
Wy = {Py P, Ks,z}
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Figure.2.1:Graceful decomposition of P, + P,
Definition 2.3: Let G, = (V,,E,) and G, =(V,,E,) be two simple graphs. The Cartesian product
G, xG,of G, and G, , isa graph with vertex setV =V, xV, and the edge set of G, x G, is defined by the two
vertices (U;,V;) & (Uy,V,) if one of the following conditions are satisfied

i) U, =V,and U,,V,are adjacent vertices in G, = (V,, E,) .

i) U, =V,and U,,V, are adjacent vertices in G, = (V,, E,) .

Theorem 2.2: A graph P, x P, is a Cartesian product of two graceful graphs P,, & P, with order m and
n can be decomposed in to at least (M +n) graceful graphs (i.e. 7, (G, x G,) = (M +n)).

Proof:Let Pm and Pn be two path graceful graphs of order m and n (m > n) respectively and Pn X Pm
and i & Cartesian product of Pn & Pm with edge set E the one of the following conditions are satisfied

i) U, =V,and U,,V,are adjacent vertices in G, = (V,, E,) .

i) U, =V,and U,,V, are adjacent vertices in G, = (V,, E,) .

Case (i):If U, =V, and U,,V, are adjacent vertices in G, = (V,, E,)

If U, =V,and U,,V,are adjacent vertices in G, = (V,, E,) . Let the sub graph H. is isomorphic to the
graph G, =(V,,E,) . The graph G, =(V,, E,) be a graceful graph this implies H; is also a graceful graph.
This implies H, cy

Case (ii):If U, =V, U,,V; are adjacent vertices in G, = (V,, E,)

If U, =V, U,V are adjacent vertices in G, = (V;, E;) . Letthe sub graph H | is isomorphic to the graph
G, =(V;, E;) . Thegraph G, = (V;, E;) is a graceful graph this implies H ; is also a graceful graph. This implies
H, cy.

m n m n

From case (i) and (ii), we get ¥ = {(Ik:)l Hij U(szjl H, j} this implies|w| = ; H, + ; H,=m+n
. Hence we get 7, (G, xG,) = (m+n).

Illustration 2.2:The Cartesian product of two graceful graphs P, & P, is given in Figure.2.2

[VRATAI L1z [FRAT)

uzvi uzv: u:zvs
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Figure.2.2: P, x P,

The graph P, x F’3 is decomposed in to isomorphic graphs of P,and P3 , the set i/ contains n times P,
and m times P as follows.

Isomorphic graphs of P, Isomorphic graphs of P,
L1v1 [VELF] [FRATE
L1V uiv:z L1Vs
& 4 @
@ @ ®
uzv1 uzv: [ FATH]
uzvi uzvz uzvs

The graph P, x P, is decomposed into O(G,) number of G, graphs, O(G,) number of G, Graphs.

Definition 2.4: Let G, = (V,, E;) and G, = (V,, E,) be two simple graphs. The Composition G, o G,
of G, and G, is a graph with vertex setV =V, XV, and the edges in G, o G, is defined by the two vertices
(u,,u,) & (v;,V,) if one of the following conditions are satisfied

i) U, = V,andU,,V, are adjacent vertices in G, = (V,,E,) .
i) U, =V,and U,,V, are adjacent vertices in G, = (V,, E,) .
iii) U, V, are adjacent vertices in G, = (V,, E,).

Theorem 2.3: A graph G, o G, is a Composition of two graceful graphs G, & G, with order m and n,
can be decomposed in to at least (MmN +m+n) graceful graphs (i.e. 7, (G, © G,) = (MN+m +n)).

Proof:Let G, = (V,, E,) and G, =(V,, E,) be two graceful graphs of order m and n respectively and
G, o G, is a Composition of G, and G, with edge set E the one of the following conditions are satisfied

i) U, =V,and U,,V,are adjacent vertices in G, = (V,,E,).
i) U, =V,and U,,V, are adjacent vertices in G, = (V,, E,) .
iii) u,,V, are adjacent vertices in G, = (V, E,).

Case (i):If U, =V,and U,,V, are adjacent vertices in G, = (V,, E,)

If U, =V,and U,,V,are adjacent vertices in G, = (V,, E,) . Let the sub graph H, is isomorphic to the
graph G, = (V,,E,) . The graph G, = (V,, E,) is a graceful graph this implies H, is also a graceful graph. This
implies H, cy

Case (ii):If U, =V, U,,V, are adjacent vertices in G, = (V,, E,)

If U, =V, U,,V, are adjacent vertices in G, = (V,, E,) . Let the sub graph Hj is isomorphic to the graph
G, =(V;,E,). The graph G, =(V,, E,) be a graceful graph this implies H | is also a graceful graph. This
implies H; cy/.

Case (iii):Ifuy, v, are adjacent vertices in G, = (V, E,).
Ifu,,V, are adjacent vertices in G, = (V;, E;) . The graph G, = (V,, E,) be a graceful graph therefore

we get mn number graceful graph isomorphic to G, = (V,, E,). Hence we get mn times of G, = (V,, E,).
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From case (i) and (ii), we get V= {

implies

DH;+

W= Hi+
i=L 1

74(G,2G,) = (M+n+mn).

n

Research Article

HHij u[julHj)u[jul(Hlj, HyjvHy )]}this

Hij =M+ N+ mn. Hence we get

j=1 i=1

Ilustration 2.3: The Cartesian product of two graceful graphs P, & P3 is given in Figure.2.3

1]
® (L), L2) (eey, va) (t4], Wwa)
li> Va Wi
L & ®
'I'l
[ ]
(vy, ua)g
Gy
L
w1 (W, 1) (W, 1-) (W, W)
ca G,°G,
Decomposition of G, oG,
Isomorphic to G, Isomorphic to G,
“‘"li i) ["I.- i‘:} “'!l' i".::l '“l* H:_l ["L' i*:} “'.l|. il':,
* » * [ 2 - ®
) » L & ]
[ ) - . N (v, u3) (v, v2) (vy, w2)
(vy, uzh (vy, v2) (1, w2)
L L ]
] L b (wy, u>) (W, va) (wy, wa)
(W, us) (w, v2) (wy, w3)
Isomorphic to ‘mn’ times of G,
(1), 1t2) (uy, 1) (1, va) (e, va) (b1g, wa) (4], ll.';
(V) V) (], Wa) (V). uz) (vy, w3) vy, w2l (v, va)
(W, 1) (Wi, 1) (W, v2) (Wi, v2) (wy, w2) (W, 142)
Figure.2.3

Definition 2.5:FortwosimplegraphsGandHtheirtensor product is denoted by G * H , has vertex set
V =V, xV, in which (g,,h;)and (g,, h,) are adjacent whenever g, 9, is an edge in G and h;h, is an edge in H
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Theorem 2.4: A graph P, is a tensor product of two graceful graphs with order (M >n), can be
decomposed in to (M) number of P, graceful graphs (i.e. 7, (R, * B,) = (M)).

Proof: Agraph P, * P, isatensor product of two graceful graphs with (m > n) . Letthe vertex (ul,Vl)
and (U,,V, ) are adjacent whenever U,U, is an edge in P, andV,V, is an edge in P, . By the definition we identify
‘m’ number of P, in tensor product B, .Hence we get 7, (R, * P,) = (m).

Illustration 2.4: The tensor product of two graceful graphs P, & P, is given in Figure.2.4

XIT

Yy Y) Y3 Yy
N n N3 V4
X @ }ﬁ
XZ (xZa y4)
X3 @
P
’ X; b (3,04)

(43, 2)
PP,
P, Decomposition of P, * P,
(x1,y1) (x1,2)
(x2,y2) ‘
(x2,y4) (xl’ya,)
(x2,y1) .
(x3,4)
(X3, _)"3)
(X1,¥4) (x1,¥5)
(x2,¥1)
. o %\ (2,34)
(x3, ¥2) (x3,¥1)
Figure.2.4

Definition 2.6:The Strong product G®H of graphs G and H has the vertex set
V(G®H)=V(G)xV(H) and (a,X)(b,Yy)is an edge of G ® H ere satisfied one of the following

condition.
i) a=bandxyeE(H).
iy abeE(G)and xX=Y.
iii) abe E(G)and xye E(H).
Theorem 2.5: A graph P, ® P, is a Strong productof two graceful graphs with m > n, can be
decomposed in to at least (2m +n) graceful graphs (i.e. 7, (B, ® R,) = (2m +n)).
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Proof:Let P, =(V,,E,) and P, =(V,, E,) be two graceful graphs of order m and n respectively and
P, ® P, is a Strong productof P, and P, with edges (@, X)(b, ) € E and the set is satisfied the one of the
following conditions.
i) a=Dband xyeP,.
i) abeP, and X=Y.
iii) abeP,and xyeP, .
Case (i): If a=b and Xy e P, are adjacent vertices in P, .
If a=Dband Xy € P, are adjacent vertices in P, . Let the sub graph formed by these set of edges is H;
isomorphic to the graph P, . The graph P, is a graceful graph this implies H, is also a graceful graph. This implies
H cy
Case (ii): If ab € P, are adjacent vertices in P,and X =Y.
Ifab e P, are adjacent vertices in P, and X = Y .Let the sub graph formed by these set of edges is Hj
isomorphic to the graph P, . The graph P, is a graceful graph this implies H i is also a graceful graph. This implies
H, cy.
Case (iii): Ifab € P, are adjacent vertices in P, .and Xy € P,, are adjacent vertices in P, .
Ifab € P, are adjacent vertices in P,.and Xy € P, are adjacent vertices in P, . The graph P, is a

graceful graph therefore we get m number graceful graph isomorphic to Prn Hence we get m times of Pm .

From case (i) and (ii), we get i = {Q Pm) u(knj ijju(_kmj Pmij }this implies

j=1 i=1
p-3r 3, S,
i=L j=L i=L .

w| =m+n+m=2m+n
Paths P, & P, are also decomposed in to graceful graphs .Hence we get 7z, (P,®P)>(2m+n).

Illustration 2.5: The strong product of two graceful graphs P, & P,and its possible decomposition are
given in Figure.2.5

X Yy Ys Y3 Yy
T ¢ *r—or— X : : (X1,Y4)
Y1 2 )3 Y4
X @ Py
X5 (X2, y4)
X3 @
P X3 i i (x?) » )’4)
3 (X3,¥2)
P, ®P,
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Isomorphic to P,
L 3 T 9
111

LI

Other P, Decomposition of P, * P,

(x1,y1)

(x2.y2)

(X2, y4)

(X3, }"3) .

(xlay4)

(X2.¥1)

(x2,¥3)

(x3,¥2)

Conclusion:
In this paper, we define graceful decomposition and graceful decomposition number T, (G) of agraph G . Also,

Figure.2.5

Vol.12 No.10 (2021), 4719-4726

Isomorphic to P,

® # # L]
* # # L
(x1,y2)
(x2,¥3)
(2,y1)
(x3,y4)
(x1,¥5)
4 X2,
2,y2) (32.74)
(X3, Y1)

some bounds of T, (G) in product graphs like Cartesian product, composition etc. are discussed. In future, we will

define different types of decomposition on labelling.v
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