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Abstract: A decomposition of G is a collection  rg HHH ,....., 21=  such that iH are edge disjoint and every 

edge in iH belongs to G . If each iH  is a graceful graph, then g is called a graceful decomposition of G . The 

minimum cardinality of a graceful decomposition of G  is called the graceful decomposition number of G and it 

is denoted by ).(Gg In this paper, we define graceful decomposition and graceful decomposition number 

)(Gg of a graphs. Also, some bounds of )(Gg in product graphs like Cartesian product, composition etc. are 

investigated. 

Keyword: Decomposition, Graceful graphs, Graceful decomposition and Graceful decomposition number. 

 

1. Introduction  

A graph is a well-ordered pair ),( EVG = , where V  is a non-empty finite set, called the set of vertices or 

nodes of G, and E  is a set of unordered pairs (2-element subsets) ofV , called the edges of G . If Exy , x and 

y are called adjacent and they are incident with the edge xy . 

 The complete graph on n vertices, denoted by nK , is a graph on n vertices such that every pair of 

vertices is connected by an edge. The empty graph on n vertices, denoted by nE , is a graph on n vertices with no 

edges. A graph ),( EVG =  is a sub graph of ),( EVG = if and only if VV   and EE  .The order of 

a graph ),( EVG = is V , the number of its vertices. The size of G is E , the quantity of its edges. The degree 

of a node Vx , represented by )(xd , is the quantity of edges incident with it. 

 A subgraph H of G is a graph such that )()( GVHV 
 
and )()( GEHE  . For a graph ),( EVG  

and a subset VW  , the subgraph of G induced by W, denoted as  WG , is the graph ),( FWH such that, for 

all Wvu , , if Euv , then Fuv . We say H is an induced subgraph of G. 

 A graph ),( EVG  is said to be connected if every pair of vertices is connected by a path. If there is 

exactly one path connecting each pair of vertices, we say G is a tree. Equivalently, a tree is a connected graph with 

n − 1 edges. A pathgraph nP is a connected graph on n vertices such that each vertex has degree at most 2. A cycle 

graph nC  is a connected graph on n vertices such that every vertex has degree 2. 

 A complete graph nP  is a graph with n vertices such that every vertex is adjacent to all the others. On 

the other hand, an independent set is a set of vertices of a graph in which no two vertices are adjacent. We denote 

In for an independent set with n vertices.  

 A bipartite graph ),( EVG  is a graph such that there exists a partition ),( BAP of V such that every 

edge of G connects a vertex in A to one in B. Equivalently, G is said to be bipartite if A and B are independent 

sets. The bipartite graph is also denoted as ),,( EBAG .  

 A graceful labelling of a graph G is a vertex labelling  1,0: →Vf such that f is injective and the 

edge labelling  mEf ,1:* →  defined by )()()(* vfufuvf −= is also injective. If a graph G admits a 

graceful labelling, we say G is a graceful graph. 
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In this paper we define graceful decomposition and graceful decomposition number )(Gg of a 

graph G . Also investigate some bounds of )(Gg in product graphs like Cartesian product, composition etc. 

2. Graceful Decomposition 

In this section we define graceful decomposition of a graph ( , )G V E some and investigate some bounds 

of graceful decomposition number in ( , )G V E  . 

Definition 2.1:Let  rg HHH ,....., 21=  be a decomposition of a graph G . If each iH  is a graceful 

graph, then g is called a graceful decomposition of G . The minimum cardinality of a graceful decomposition of 

G  is called the graceful decomposition number of G and it is denoted by ).(Gg  

Definition 2.2: Let ),( 111 EVG =  and ),( 222 EVG =  be two simple graphs. The join 21 GG +
 
of 

21 GandG with disjoint vertex set 21 &VV  and the edge set E of 21 GG +  is defined by the two vertices 

),( ji vu  if one of the following conditions are satisfied 

i) 1Evu ji  . 

ii) 2Evu ji  . 

iii) 21 & VvVu ji   , Evu ji   

Theorem 2.1: A graph mn PP + is a join of two path graceful graphs with (m>n) can be decomposed in 

to at least ‘m’ number of mP ,graceful graphs. Then the graceful decomposition number .3)( + mng PP  

Proof:Let nP  and mP  be two path graceful graphs of order m and n (m>n)respectively and mn PP + is a 

join of nP  and mP with edge set E. Therefore )( ,21 nmKSEEE = , here )( ,nmKS is a size of a bipartite 

complete graph nmK , . Note that nP  and mP  be two graceful graphs and complete bipartite graphs nmK , also 

graceful graph. The complete bipartite graphs nmK , can be decomposed in to m number of mP . This implies 
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 . Therefore we get .)( mPP mng + Note that nP  and mP are graceful 

graph also decomposed in to nP  and mP
 
paths, hence we get .)( mPP mng +  

Illustration 2.1:The Join of two graceful graphs 32 & PP is given in figure.2.1 

 

 

32 PP +  

The graph 32 PP +  is decomposed in to isomorphic graphs of 2P  , 3P and 2,,3K . Therefore the set 

 2,321 ,, KPPg =
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Figure.2.1:Graceful decomposition of 32 PP +  

Definition 2.3: Let ),( 111 EVG =  and ),( 222 EVG =  be two simple graphs. The Cartesian product

21 GG  of 21 GandG , is a graph with vertex set 21 VVV =  and the edge set of 21 GG   is defined by the two 

vertices ),(&),( lkji vuvu  if one of the following conditions are satisfied 

i) 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG = . 

ii) 22 vu = and 11,vu are adjacent vertices in ),( 111 EVG = . 

Theorem 2.2: A graph nm PP  is a Cartesian product of two graceful graphs nm PP &  with order m and 

n can be decomposed in to at least )( nm +  graceful graphs (i.e. )()( 21 nmGGg + ). 

Proof:Let mP  and nP  be two path graceful graphs of order m and n (m > n) respectively and mn PP 
 

and  
is

 a Cartesian product of mn PP & with edge set E the one of the following conditions are satisfied 

i) 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG = . 

ii) 22 vu = and 11,vu are adjacent vertices in ),( 111 EVG = . 

Case (i):If 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG =  

 If 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG = . Let the sub graph iH is isomorphic to the 

graph ),( 222 EVG = . The graph ),( 222 EVG =  be a graceful graph this implies iH is also a graceful graph. 

This implies iH  

Case (ii):If 22 vu = 11,vu are adjacent vertices in ),( 111 EVG =  

 If 22 vu = 11,vu are adjacent vertices in ),( 111 EVG =  . Let the sub graph jH is isomorphic to the graph 

),( 111 EVG = . The graph ),( 111 EVG = is a graceful graph this implies jH is also a graceful graph. This implies

jH . 

 From case (i) and (ii), we get 
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. Hence we get )()( 21 nmGGg += . 

Illustration 2.2:The Cartesian product of two graceful graphs 32 & PP is given in Figure.2.2 
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Figure.2.2: 32 PP   

The graph 32 PP  is decomposed in to isomorphic graphs of 2P and 3P , the set  contains n times 2P  

and m times 3P as follows. 

Isomorphic graphs of 2P  

 
 

Isomorphic graphs of 3P  

 

 

The graph 32 PP  is decomposed in to )( 2GO  number of  1G  graphs, )( 1GO number of 2G Graphs. 

Definition 2.4: Let ),( 111 EVG =  and ),( 222 EVG =  be two simple graphs. The Composition 21 GG 

of 21 GandG , is a graph with vertex set 21 VVV =  and the edges in 21 GG   is defined by the two vertices 

),(&),( 2121 vvuu  if one of the following conditions are satisfied 

 

i) 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG = . 

ii) 22 vu = and 11,vu are adjacent vertices in ),( 111 EVG = . 

iii) 11,vu are adjacent vertices in ),( 111 EVG = . 

 

Theorem 2.3: A graph 21 GG  is a Composition of two graceful graphs 21 & GG  with order m and n, 

can be decomposed in to at least )( nmmn ++  graceful graphs (i.e. )()( 21 nmmnGGg ++ ). 

Proof:Let ),( 111 EVG =  and ),( 222 EVG =  be two graceful graphs of order m and n respectively and 

21 GG  is a Composition of 21 GandG with edge set E the one of the following conditions are satisfied 

i) 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG = . 

ii) 22 vu = and 11,vu are adjacent vertices in ),( 111 EVG = . 

iii) 11,vu are adjacent vertices in ),( 111 EVG = . 

Case (i):If 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG =  

 If 11 vu = and 22 ,vu are adjacent vertices in ),( 222 EVG =  . Let the sub graph iH is isomorphic to the 

graph ),( 222 EVG = . The graph ),( 222 EVG = is a graceful graph this implies iH is also a graceful graph. This 

implies iH  

Case (ii):If 22 vu = 11,vu are adjacent vertices in ),( 111 EVG =  

 If 22 vu = 11,vu are adjacent vertices in ),( 111 EVG =  . Let the sub graph jH is isomorphic to the graph 

),( 111 EVG = . The graph ),( 111 EVG =  be a graceful graph this implies jH is also a graceful graph. This 

implies jH . 

Case (iii):If 11,vu are adjacent vertices in  ),( 111 EVG = . 

If 11,vu are adjacent vertices in  ),( 111 EVG = . The graph ),( 111 EVG =  be a graceful graph therefore 

we get mn number graceful graph isomorphic to ).,( 111 EVG =  Hence we get mn times of ).,( 111 EVG =
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From case (i) and (ii), we get  ( )
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 . Hence we get  

)()( 21 mnnmGGg ++ . 

Illustration 2.3: The Cartesian product of two graceful graphs 32 & PP is given in Figure.2.3 

 

 

 

21 GG   

Decomposition of  21 GG   

Isomorphic to 1G  

 

Isomorphic to 2G  

 

Isomorphic to ‘mn’ times of 1G  

 
Figure.2.3 

Definition 2.5:FortwosimplegraphsGandHtheirtensor product is denoted by HG , has vertex set

21 VVV = in which ),( 11 hg and ),( 22 hg are adjacent whenever 21gg is an edge in G and 21hh is an edge in H 
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Theorem 2.4: A graph mP is a tensor product of two graceful graphs with order )( nm  , can be 

decomposed in to )(m number of mP graceful graphs (i.e. )()( mPP nmg = ). 

Proof: A graph nm PP  is a tensor product of two graceful graphs with )( nm  .  Let the vertex ),( 11 vu

and ),( 22 vu are adjacent whenever 21uu is an edge in mP and 21vv is an edge in nP . By the definition we identify 

‘m’ number of  mP in tensor product mP .Hence we get ).()( mPP nmg =  

Illustration 2.4: The tensor product of two graceful graphs 32 & PP is given in Figure.2.4 

 
 

 

 

 
 

 

 

43 PP   

4P Decomposition of 43 PP 
 

 

 

  
Figure.2.4 

Definition 2.6:The Strong product HG  of graphs G and H has the vertex set 

)()()( HVGVHGV =  and ),)(,( ybxa is an edge of HG ere satisfied one of the following 

condition. 

i) ba = and )(HExy . 

ii) )(GEab  and yx = . 

iii) )(GEab and )(HExy . 

Theorem 2.5: A graph nm PP  is a Strong productof two graceful graphs with m > n, can be 

decomposed in to at least )2( nm +  graceful graphs (i.e. )2()( nmPP nmg + ). 
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Proof:Let ),( 11 EVPm =  and ),( 22 EVPm =  be two graceful graphs of order m and n respectively and 

nm PP  is a Strong productof nm PandP with edges Eybxa ),)(,(  and the set is satisfied the one of the 

following conditions. 

i) ba =  and mPxy . 

ii) nPab  and yx = . 

iii) nPab and mPxy . 

Case (i): If ba =  and mPxy are adjacent vertices in mP . 

 If ba = and mPxy are adjacent vertices in mP . Let the sub graph formed by these set of edges is iH  

isomorphic to the graph mP . The graph mP is a graceful graph this implies iH is also a graceful graph. This implies 

iH  

Case (ii): If nPab are adjacent vertices in nP and yx = . 

 If nPab are adjacent vertices in nP
 
and yx = .Let the sub graph formed by these set of edges is jH  

isomorphic to the graph nP . The graph nP is a graceful graph this implies jH is also a graceful graph. This implies

jH . 

Case (iii): If nPab are adjacent vertices in nP .and mPxy are adjacent vertices in mP . 

If nPab are adjacent vertices in nP .and mPxy are adjacent vertices in mP . The graph mP is a 

graceful graph therefore we get m number graceful graph isomorphic to mP  Hence we get m times of mP .
 

From case (i) and (ii), we get 
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Paths nm PP & are also decomposed in to graceful graphs .Hence we get )2()( nmPP nmg + . 

Illustration 2.5: The strong product of two graceful graphs 32 & PP and its possible decomposition are 

given in Figure.2.5 

 

 

 

 

 

 

 

 
 

 

43 PP   
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Isomorphic to 3P  

 

Isomorphic to 3P
 

 

Other 4P Decomposition of 43 PP 
 

 

 

 
 

  

Figure.2.5 

Conclusion: 

In this paper, we define graceful decomposition and graceful decomposition number )(Gg of a graph G . Also, 

some bounds of )(Gg in product graphs like Cartesian product, composition etc. are discussed. In future, we will 

define different types of decomposition on labelling.v 

References   

1. Rosa, (1967), On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and 

Breach, N. Y. and Paris, , 349−355. 
2. Barrientos, (2005), The gracefulness of unions of cycles and complete bipartite graphs, J. Combin. Math. 

Combin. Comput. 52, 69 − 78. 

3. F. Harary, (1972), Graph theory Addition Wesley, Massachusetts. 

4. J. A. Bondy and U. S. R. Murty, (1976), Graph Theory with Applications, Macmillan Press, London. 

5. G. Chartrand, L. Lesniak, (1996), Graph and Digraphs, 3rd edition, Chapman & Hall, London,. 

 


