
Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4667

Research Article

An Efficient Approach for Merging Small Files in HDFS Storage and Accessing Small Files
by Using Name Node Method in Big Data

J. Sirisha1, K. Swathi2, P. Rama Koteswara Rao3

1Sr. Assistant Professor, Dept. of CSE, PVP Siddhartha Institute of Technology, sirisha.j@pvpsiddhartha.ac.in
2Professor, Dept. of CSE, NRI Institute of Technology, kswathi@nriit.edu.in
3Professor, Dept. of ECE, NRI Institute of Technology, prkr74@gmail.com

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April

2021

Abstract

Big Data is one of the most requested techniques in the modern world of software development. In Big Data, the treatment of

distributed files is performed by the open-source software framework called Hadoop on the product hardware cluster. For the

storage of Big Data, the Framework is considered the most powerful. The HDFS Name Node component is used to store all sorts of

files, folders, and blocks or metadata. The HDFS is specially designed to handle large files, but this framework will not properly

handle a large number of small files. Proposed systems introduce that how the Name Node memory overheads the data storage

reduces the storage of the huge number of small-size files in the HDFS. This approach will be very helpful in understanding the

memory consumption and workload in the Name Node reduces the distributed file system called Hadoop.

Keywords: Bigdata, Cluster, HDFS, Name Node, Merge File.

1 Introduction

Currently, cloud computing has become the most important computing system in web design computing and growing

around the globe. Distributed storage is the fundamental piece of cloud computing as it gives the information storage

access of enormous informational indexes for end clients at whatever point and any place needed in the conveyed

record system [1]. Replication of information is an integral part of distributed storage to the accessibility of

information, limiting the inactivity of access to information, and balancing the burden on a few workers

simultaneously. Subsequent implementation of the framework expanded considerably. Hadoop is open-source

programming for the gigantic informational indexes to encourage ability, supervise, study, and access utility in frames

transmitted through a huge number of frames. The Hadoop instrument began with Google, Facebook, Twitter, and so

forth to store and process a huge amount of information. Hadoop consists mainly of the following two sections: Map

Reduce and Hadoop Distributed File System (HDFS) [2].

HDFS is a conveyed recording frame that deals with the preparation of the document through a gigantic number of

machine inappropriate frames with the least equipment needed for the calculation. HDFS mainly supports composing

a single reading of many kinds of responsibility on access to information streaming and Big Data collections. It

provides the information replication block of information for saving against equipment disappointments. HDFS is

expert/slave engineering and primarily incorporates the following three parts: NameNode, DataNode, and Clients [3].

HDFS contains a unique NameNode which, for the most part, is responsible for the supervision of the namespace for

registration frames with deference block substitution system and information node. It stores the metadata or document

namespace in Dynamic Random Access Memory (DRAM) for quick access and keeps the duplicate of the record

Framework namespace (FsImage) on the plate for information recuperation.

Any adjustment or updating to the record framework namespace are put away in the EDitLog and opportune converge

with the FsImage so that put away duplicate of the document framework namespace consistently be state-of-the-art.

NameNode contains record metadata; file directories, document content squares which incorporate update time, file

length, block size, property, replication, and access data. NameNode contains record metadata; file folders, document

content squares that incorporate update time, file length, block size, ownership, replication, and access data.

DataNodes store the information squares document and are responsible for serving reading writing to clients. The

information nodes perform the procedure on the squares based on the direction given by the NameNode [4]. HDFS

primarily offers replication for deficiency lenient and saves against hub disappointment. HDFS for the most part

concedes from another record framework in the accompanying cases: 1) Fault-open minded 2) Low expense

equipment 3) Increased Throughput MapReduce is another component that bolsters the equal producing and preparing

mailto:prkr74@gmail.com

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4668

Research Article

enormous informational collections. It deals primarily with similarity, business planning and deals accordingly with

disappointments. Guiding the work in MapReduce outline measures the key-estimate pair to produce intermediate

value key pairs. Reducing work in MapReduce outline coordinates transient qualities related to a similarly moderate

key [5].

2. Related Works

As HDFS employees grow up, the HDFS traps are also found. Among these, there is the horrific demonstration when

the HDFS processes practically nothing and as regularly as conceivable coordinated reports. HDFS is expected to plan

a colossal data transfer instead of moving countless reports [6]. Shvhko of Yahoo! depicts the organized arrangement

and usage of HDFS. Understood that assessment of applications would typically make gigantic recordings was wrong

and that new applications for HDFS should store incalculable reports more discrete. Depicted as there is only a

solitary NameNode in Hadoop which keeps all the metadata in essential memory, a gigantic number of little records

produce an immense impact on metadata execution of HDFS [7][8]. Investigation on little record issue of HDFS has

pulled in the colossal thought and it is acknowledged that three issues ought to be gotten comfortable a more

appropriate way. The essential question is the distinctive verification of 'how little will be near anything'. Reports of

less than 16MB are few files, no control or hobby was required of the same. The problem that follows is collecting

small documents. Small documents in two kinds: (i) reports which are pieces of a huge authentic disk (ii) archives

which are practically nothing.

The third problem concerns the responses to the minor archiving problem. Action plans are divided into two

categories: overall plans and exceptional plans [9]. Hadoop Archive (HAR), SequenceFile, and MapFile are typical

general responses for smoothing small folders for Hadoop used by various reviewers. HAR is an archive chronicle

desk that packages various small records into huge HDFS blocks so that the main reports can be obtained life and

successfully equivalent. It contains Metadata (in the form of _index and _masterindex reports) and data. Partial

records contain the substance of the reports that are essential for the records [10]. A SequenceFile file is a level record

and gives a coherent data configuration to resemble key sets. It uses the name of the report as the key and records the

substance as the value, and supports compaction and decompression at the cradle or square. Small records can be put

into a single action plan report that is prepared using MapReduce chipping to the progress archive.

A MapFile is a kind of SequenceFile orchestrated with a recording to question the movement by key. It comprises two

reports, a data folder, and a more modest archive. All organized key sets are accounted for in the data record and the

key area information is processed in the list archive. MapFile does not search for the report in its entirety by searching

for a specific key. The reviewers grouped the page reports into one extraordinary document and created a folder for

each book to store the book pages for the e-libraries. No plan was in place to improve passage efficiency. Analyzed a

phenomenal game plan which solidified the little archives into a colossal one and manufactured a hash list for every

single record which stores the little data of Geographic Information System on HDFS. The connection record meeting

and some variations in the data were taken into consideration.

3. Small File in HDFS

HDFS is a distributed file system that manages file processing among a large number of machines in distributed

systems for computing with minimum hardware requirements. The HDFS capacity is progressively reduced when it

begins to manage the storage and access functionality of the number of messages of small files. A massive number of

small files is now present in current systems like climatology, energy, astronomy, business, biology, e-Learning, and

e-Library. Therefore, the critical problem in HDFS is storage management, replication, and access to small files.

Handling a massive amount of small files and storage is the heavy burden that is created at NameNode. The access

efficiency of small files is degraded and the memory usage of the name node is increased. Metadata handling

performance is also influenced by the number of small files in HDFS. For small files, HDFS appears as a bottleneck

for processing metadata services.

A. NameNode: This component is primarily used to store and manage the metadata of data files that are stored in the

DataNode in the HDFS. It is also used to maintain the relationship between the NameNode and the DataNode and it is

like maintaining the heartbeat. It also maintains access to and control over the data file storage. To replicate,

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4669

Research Article

NameNode retains the metadata. NameNode replication factor is 3 by default. For each object, the 150-byte memory

size is used by NameNode to store metadata.

B. DataNode: It is used to process the HDFS cluster that has freely available data blocks to store a large number of

data files. In the HDFS cluster, the replication factor may be stored by the DataNode in the different data blocks

available. The NameNode component is supported by the DataNode to maintain the link between them. HDFS is

specifically designed for handling large files, but the framework does not properly handle a large number of small

files. So to solve the storage problem of the huge number of small-size files with metadata creation and management,

we proposed an approach for each small size of files in the NameNode.

3.1 Proposed Approaches to Handle a Large Number of Small Size Files

In HDFS, the distributed file system called Hadoop is used to solve the issue of managing a large number of small

files. Our proposed approach helps improve the efficiency of accessing a large number of small files and the storage

capacity. The primary objective of this approach is to reduce the operating overhead associated with creating metadata

in NameNode and to back up metadata by reducing memory consumption. The architecture structure proposed

distributed file system called Hadoop architecture as follows. This framework is made up of the following elements:

3.1.1 HDFS client

This component is used for playback and writing of two types of files, Big Size files and a large number of small files.

If the size of the file is greater than 128 MB then it is called a Big data and if it is lesser than 128 MB, it is called a

small size file.

File Writing Process: This process includes identifying the file type, identifying the file size, and merging the files.

To determine the file type, the file type identifier unit is used. To identify the file size, the file size identifier unit is

used. If the size of the file is found smaller, the file merging unit is used to merge the small size files into the

DataMerge files, and for that Index, Merge file is created.

File Reading Process: This process is used for reading files available in HDFS. As a first step, the file read unit

checks that the file size is large or small.

3.2 Optimize Storage of Small Files with NameNode in HDFS

To reduce overhead and memory consumption in the HDFS NameName, the optimized strategy is used to store small

files. The policy we used in this proposal is divided into two sections called File Processing Unit and File Fusion Unit.

Processing of files: In this unit, the entry is taken from the user. This unit judges the file size that we populate as input

as either small file size or large file size. If the size of the file is found greater than 128 MB, then it is considered a Big

data and if it is smaller than 128 MB, it is a Small-size file. The large file size is stored directly in the HDFS while the

small files are sent to the file fusion unit.

File Fusion: In this unit, receives small files that are sent from the File Processing Unit. After receiving the small

files, the files are merged in the DataMerge files. Now a merge index file is created. After completing the merge

process, the DataMerge files and the merge index file are routed to the HDFS for storage as illustrated in Figure 1.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4670

Research Article

Figure 1: Method for Proposed Merge system using NameNode HDFS Storage

The Small File Fusion Algorithm Fusion calculations have the idea of classifying a considerable number of small

records into huge documents. It reduces the length of metadata storage for a large number of small documents. Access

to information control and inertia can now be improved and access time saved where necessary. Here the recordings

are grouped into four kinds they are: Serious reading, Focused composing, Intensive reading and composing, and Lean

reading and composing. The idea behind all this is to group all the little documents into four kinds and to bring

together the documents that have a place with explicit classifications and divide the documents into squares of

information. At this stage, the convergence of the third and second classes into the fourth classification and after

mixing the records of the first class into these squares. If a few squares are not in all cases consolidate all records has a

place with the first classification. The basic thought is that few records are converged in huge documents and

designated storage between block times.

Pseudocode of Small File Merging Algorithm

BlockSize_hdfs = configured (block size of storage)

max_Size = BlockSize_hdfs * th-Value /*threshold value analyse*/

Bytes_merge = 0

File_merge = Array_List ()

for (File: directory) {

Length_file = length.File ()

if (Length_file <= max_Size) {

Bytes_merge = Bytes_merge + Length_file

 File_merge.add(File)

 }

}

4 Results and Discussion

In HDFS, each file, directory, and box are counted as a single object. For each object, metadata is created into memory

by NameNode. To store metadata, 150 bytes are occupied by NameNode in memory. The data files provided by the

users are divided into different data blocks of 128 MB by the HDFS and the namespaces for each block are stored by

the NameNode shown in Table 1. The storage calculation is resolved by three storage usage settings in the form of

10K, 20K, and 30K counts of small files are shown in Figure 2. Using the HDFS approach with the proposed approach

called Novel Hadoop Distributed File System (NHDFS), the file is stored in MB size by the node. CPU and energy

consumption is less in the proposed system when compared with the existing system are shown in Figures 3 and 4.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4671

Research Article

Table 1 Memory used by HDFS and Proposed HDFS

File Small Files File Size Memory used

by HDFS

Memory used by

Proposed HDFS

1. 20000 1GB 1.53MB 0.00115 MB

2. 30000 1GB 2.46MB 0.00116 MB

3. 40000 1GB 3.85MB 0.00118 MB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20000 30000 40000

M
em

o
ry

 C
o

n
su

m
ed

 in
 M

B

File Size

Memory Used by HDFS

Figure 2: Memory Consumption by HDFS and Proposed HDFS

Figure 3. CPU Time Vs Memory consumption

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4672

Research Article

Figure 4. Energy Consumption

5. Conclusion

The Hadoop distributed system running in a cluster environment is an open-source framework. To work with Big Data

files, HDFS is used due to the way it manages to store Big Data files effectively. However, HDFS does not efficiently

manage the storage of small files in very large quantities. It also creates a problem of managing the Big Data and the

creation of Big Data for every single small size files which because of the main reasons for the lack of consumption in

memory. So the processing and storage of small files in great numbers using Hadoop become more problematic. On

Hadoop, the new and optimizing HDFS framework is featured in this article. This NOHDFS frame is specially

designed to provide the solution to store a large number of small files and also the HDFS memory consumption is

optimized.

References:

1. Zeebaree, S. R., Shukur, H. M., Haji, L. M., Zebari, R. R., Jacksi, K., & Abas, S. M. (2020). Characteristics

and analysis of hadoop distributed systems. Technology Reports of Kansai University, 62(4), 1555-1564.

2. Cui, Y., Kara, S., & Chan, K. C. (2020). Manufacturing big data ecosystem: A systematic literature

review. Robotics and computer-integrated Manufacturing, 62, 101861.

3. Scolati, R., Fronza, I., El Ioini, N., Samir, A., & Pahl, C. (2019). A Containerized Big Data Streaming

Architecture for Edge Cloud Computing on Clustered Single-board Devices. In Closer (pp. 68-80).

4. Chandrasekar, S., Dakshinamurthy, R., Seshakumar, P. G., Prabavathy, B., & Babu, C. (2013, January). A

novel indexing scheme for efficient handling of small files in hadoop distributed file system. In 2013

International Conference on Computer Communication and Informatics (pp. 1-8). IEEE.

5. Richter, S., Quiané-Ruiz, J. A., Schuh, S., & Dittrich, J. (2014). Towards zero-overhead static and adaptive

indexing in Hadoop. The VLDB journal, 23(3), 469-494.

6. Jiang, L., Li, B., and Song, M. 2010. The optimization of hdfs based on small files. In 3rd IEEE International

Conference on Broadband Network and Multimedia Technology, IC-BNMT. 912-915.

7. Mackey, G., Sehrish, S., and Wang, J. Aug 31- Sep 4, 2009. Improving metadata management for small files

in HDFS. In proceedings of IEEE International Conference on Cluster Computing and Workshops. New

Orleans, USA. 1-4.

8. Min, L., and Yokata, H. 2010. Comapring hadoop and fat-btree based access method for small file I/o

applications. Web-age information management, Lecture notes in computer science. Vol. 6184, Springer.

182-193.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4667-4673

4673

Research Article

9. Shen, C., Lu, W., Wu, J., and Wei, B. 2010. A digital library architecture supporting massive small files and

efficient replica maintenance. In Proceedings of the 10th annual joint conference on digital libraries. ACM.

391-2.

10. Liu, X., Han, J., Zhong, Y., Han, C., and He, X. 2009. Implementing webgis on hadoop: a case study of

improving small file i/o performance on HDFS. In IEEE international conference on cluster computing and

workshops, CLUSTER'09. 1-8.

