Combinatorial Construction of Second Order Rotatable Designs

Ameen Saheb Sk ${ }^{\text {a }}$, Deepthi T ${ }^{\text {b }}$, Bhatra Charyulu N. Ch. ${ }^{\text {c }}$, R. Ajantha ${ }^{\text {d }}$
${ }^{\text {and }}$ Department of Science and Humanities, B V Raju Institute of Technology, Narsapur.
${ }^{\text {b }}$ Department of Science and Humanities, Bharat Institute of Engineering and Technology, Hyderabad.
${ }^{\text {c Department }}$ of Statistics, University College of Science, Osmania University, Hyderabad,
${ }^{\text {d}}$ Project Research Assistant, Food Chemistry Division, ICMR-NIN, Hyderabad.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract: In this paper, we constructed a new series for the construction of Second Order Rotatable Design using Partially Balanced Incomplete Block Designs (PBIBD).
Keywords: Partially Balanced Incomplete Block Design, Second Order Rotatable Designs, Group Divisible PBIBD

1. Introduction

The primary goal of the research on rotatable designs was to estimate the response and its accuracy. Estimating the difference between responses at two points in the space dimension will also be important. The local slope (change rate) of the response surface should be calculated if the difference occurs at two points close together.

When a design is rotatable, then the estimate of Y gives all information about the responses with the same precision at all points which are equidistant from the coded origin of the design. In other way of saying this is that the contours of variance of estimated response, the variance of the predicted value will be spherical about the design origin. In any experimental design it is not essential that the design should be exact rotatable but the knowledge of how to obtain the design is useful in producing approximate rotatability while perhaps attaining other desirable design characteristics.

The variance of predicted response \hat{Y} of the design Second Order Response Surface Model satisfying the property that at any particular point in a design, is a function of the distance from that design point to the origin, more specifically, all the rotatable designs are spherical or nearly spherical variance function. When $\mathrm{c}=3$, the $\mathrm{V}(\hat{\mathrm{Y}})$ can be expressed in the form of a function of ρ^{2} as

$$
\begin{equation*}
\mathrm{V}\left(\hat{\mathrm{Y}}_{\mathrm{u}}\right)=\mathrm{A} \rho^{4}+\mathrm{B} \rho^{2}+\mathbf{C} \tag{1}
\end{equation*}
$$

where

$$
\mathrm{A}=\frac{\sigma^{2}}{\mathrm{~N} \Delta}\left[\frac{\Delta-\lambda_{2}^{2}}{\lambda_{4}(\mathrm{c}-1)}\right] ; \mathrm{B}=\frac{\sigma^{2}}{\mathrm{~N} \Delta}\left[\frac{\Delta-2 \lambda_{2}^{2}}{\lambda_{2}}\right] ; \mathbf{C}=\frac{\sigma^{2}}{\mathrm{~N} \Delta}\left[\Delta+\mathrm{v} \lambda_{2}^{2}\right]
$$

and $\Delta=\left[\lambda_{4}(c+v-1)-v \lambda_{2}{ }^{2}\right]$.

2. Construction Of New Series Of Second Order Rotatable Designs

In this section, the constructions are illustrated with suitable examples.
Method 2.1: Consider a Group Divisible PBIBD with parameters $v=m n, b, r, k, \lambda_{1}, \lambda_{2}, n_{1}$ and n_{2}. Identify the first and second associates for each treatment. Construct a design of order v x v corresponds to each pair of treatments. Place $\pm \alpha, \quad$ if the pair of treatments belongs to the first associate class and place $\pm \beta$, if the pair of treatments belongs to the second associate class, otherwise put ' 0 ' and choosing appropriate fraction of factorials for v factors, with levels ± 1 (let $2^{\mathrm{k} 1}$ is that the suitable fraction of 2^{v}). Complete the design by taking n_{0} central points if necessary, the unknown levels ' α ' and ' β ' can be chosen so that they satisfy the rotatable condition is $\Sigma \mathrm{x}^{4}{ }_{\mathrm{ui}}=3 . \sum \mathrm{x}^{2}{ }_{\text {ui }} \mathrm{X}_{\mathrm{uj}}^{2}$. The resulting design ' D ' is a v -dimensional SORD with five levels.

Theorem 2.1: A new series of SORD with five levels can be obtained based on the group divisible PBIBD with two - associate pairs of factors, the parameters $\mathrm{v}=\mathrm{mn}, \mathrm{b}, \mathrm{r}, \mathrm{k}, \lambda_{1}, \lambda_{2}, \mathrm{n}_{1}$ and n_{2}.

Proof: Consider the parameters $v=m n, b, r, k, \lambda_{1}, \lambda_{2}$ and n_{1} and n_{2} of group divisible $\operatorname{PBIBD}(2)$ and assume that T_{i}, T_{j} and T_{k} be any 3 factors with pairs $\left(T_{i}, T_{j}\right)$ being first associates and the pair $\left(T_{i}, T_{k}\right)$ being second associates of the original group divisible design. Place $\pm \alpha$, if the pair of treatments belong to first associate class and Place $\pm \beta$ if the pair of treatments belong to the second associates otherwise put ' 0 '. Complete the design by
taking n_{0} central points if necessary, the unknown levels ' α ' and ' β ' can be chosen so that they satisfy the rotatable condition is $\Sigma \mathrm{x}^{4}{ }_{\mathrm{ui}}=3 . \sum \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{X}^{2}{ }_{\mathrm{uj}}$.

For a group divisible PBIBD design with two association classes. Let S_{1} be the set of pairs of treatment which occur to get in λ_{1} blocks. The number of pairs in $\mathrm{N}_{1} \mathrm{is} \mathrm{vn}_{1} / 2$. Let the remaining pairs of treatments belong to S_{2} where each at the pair will occur together in λ_{2} blocks and number of such pair is $\mathrm{vn}_{2} / 2$, We shall call two PBIBD with similar association a scheme if the sets S_{1} and S_{2} remain unaltered but the values of λ 's may be different. Now, if we take the incident matrix of another PBIB design similar to the first one with values of λ as λ_{1}^{2} and λ_{2}^{2}. replacing 1 by β, we shall get another set of N_{2} points by multiplying with suitable unaffected set of combinations. The totality of $\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)$ design points will satisfy the following conditions;

$$
\begin{aligned}
& \Sigma x^{4}{ }_{u i}=r_{1} 2^{\mathrm{k} 1} \alpha^{4}+r_{2} 2^{\mathrm{k} 2} \beta^{4}=\mathrm{C}\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right) \lambda_{4}=\text { constant } \\
& \Sigma \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{x}^{2}{ }_{\mathrm{uj}}=\lambda^{`}{ }_{1} 2^{\mathrm{k} 1} \alpha^{4}+\lambda_{1}^{2} 2^{\mathrm{k}} \beta^{4} \text { for }(\mathrm{i}, \mathrm{j}) \in \mathrm{S}_{1} \\
& \Sigma \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{x}^{2}{ }_{\mathrm{uj}}=\lambda^{\prime}{ }_{2} 2^{\mathrm{k} 1} \alpha^{4}+\lambda_{2}^{2} 2^{\mathrm{k} 2} \beta^{4} \text { for }(\mathrm{i}, \mathrm{j}) \in \mathrm{S}_{2}
\end{aligned}
$$

Where, λ_{1}^{2} and λ_{2}^{2}, are the parameters of second PBIB design. Now, if α and β are chosen such that

$$
\begin{equation*}
\lambda_{1}{ }_{1} 2^{\mathrm{k} 1} \alpha^{4}+\lambda_{1}^{2} 2^{\mathrm{k} 2} \beta^{4}=\lambda^{\prime} 2^{\mathrm{k} 1} \alpha^{4}+\lambda_{2}^{2} 2^{\mathrm{k} 2} \beta^{4} \tag{2}
\end{equation*}
$$

then we get $\Sigma \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{x}^{2}{ }_{\mathrm{uj}}=$ constant. The unknown levels ' α ' and ' β ' can be chosen so that they satisfy the rotatable condition $\Sigma \mathrm{x}^{4}{ }_{\mathrm{ui}}=3 . \Sigma \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{x}^{2}{ }_{\mathrm{uj}}$. Choose the real positive values for α and β so that the design exist. The resulting design D provides a v-dimensional SORD in five levels. The above new class of combinatorial construction of SORD is illustrated with suitable example using a Group Divisible PBIBD parameters.

Example 2.1: Suppose the parameters $v=8, b=2, r=1, k=4, \lambda_{1}=0, \lambda_{2}=1, n_{1}=3, n_{2}=4, m=2$ and $n=4$ of a group divisible PBIBD and let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}, \mathrm{~T}_{7}$ and T_{8} be the eight treatments. The two blocks of GDPBIBD are $\left(T_{1}, T_{3}, T_{5}, T_{7}\right) \&\left(T_{2}, T_{4}, T_{6}, T_{8}\right)$. The below are the treatments of the association schemes are:

Treatments \rightarrow	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$			
Second Associate Treatments	T_{6}	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{2}$			
$\mathrm{~T}_{4}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{1}$				$\mathrm{~T}_{8}$	T_{7}	$\mathrm{~T}_{8}$
:---	:---										
First Associate Treatments	T_{5}										

Let S_{1} be the set of pairs of treatment which occur to get in λ_{1} blocks. The number of pairs in N_{1} is $v n_{1} / 2$. Let the remaining pairs of treatments belong to S_{2} where each at the pair will occur together in λ_{2} blocks and number of such pair is $\mathrm{vn}_{2} / 2$

$$
\mathrm{S}_{1}=\left\{\begin{array}{llll}
T_{1} T_{2} & T_{1} T_{4} & T_{1} T_{6} & T_{1} T_{8} \\
T_{3} T_{2} & T_{3} T_{4} & T_{3} T_{6} & T_{3} T_{8} \\
T_{5} T_{2} & T_{3} T_{6} & T_{5} T_{6} & T_{5} T_{8} \\
T_{7} T_{2} & T_{3} T_{8} & T_{7} T_{6} & T_{7} T_{8}
\end{array}\right\} \quad \mathrm{S}_{2}=\left\{\begin{array}{lll}
\boldsymbol{T}_{1} \boldsymbol{T}_{3} & \boldsymbol{T}_{1} \boldsymbol{T}_{5} & \boldsymbol{T}_{1} \boldsymbol{T}_{7} \\
\boldsymbol{T}_{3} \boldsymbol{T}_{5} & \boldsymbol{T}_{3} \boldsymbol{T}_{7} & \boldsymbol{T}_{5} \boldsymbol{T}_{7} \\
\boldsymbol{T}_{2} \boldsymbol{T}_{4} & \boldsymbol{T}_{2} \boldsymbol{T}_{6} & \boldsymbol{T}_{2} \boldsymbol{T}_{8} \\
\boldsymbol{T}_{4} \boldsymbol{T}_{6} & \boldsymbol{T}_{4} \boldsymbol{T}_{8} & \boldsymbol{T}_{6} \boldsymbol{T}_{8}
\end{array}\right\}
$$

The resultant second order rotatable design is:

$$
\left[\begin{array}{cccccccc}
\pm \alpha & \pm \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\
\pm \alpha & 0 & 0 & \pm \alpha & 0 & 0 & 0 & 0 \\
\pm \alpha & 0 & 0 & 0 & 0 & \pm \alpha & 0 & 0 \\
\pm \alpha & 0 & 0 & 0 & 0 & 0 & 0 & \pm \alpha \\
0 & \pm \alpha & \pm \alpha & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \pm \alpha & \pm \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & \pm \alpha & 0 & 0 & \pm \alpha & 0 & 0 \\
0 & 0 & \pm \alpha & 0 & 0 & 0 & 0 & \pm \alpha \\
0 & \pm \alpha & 0 & 0 & \pm \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & \pm \alpha & \pm \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \pm \alpha & \pm \alpha & 0 & 0 \\
0 & 0 & 0 & 0 & \pm \alpha & 0 & 0 & \pm \alpha \\
0 & \pm \alpha & 0 & 0 & 0 & 0 & \pm \alpha & 0 \\
0 & 0 & 0 & \pm \alpha & 0 & 0 & \pm \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & \pm \alpha & \pm \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \pm \alpha & \pm \alpha \\
\pm \beta & 0 & \pm \beta & 0 & 0 & 0 & 0 & 0 \\
\pm \beta & 0 & 0 & 0 & \pm \beta & 0 & 0 & 0 \\
\pm \beta & 0 & 0 & 0 & 0 & 0 & \pm \beta & 0 \\
0 & 0 & \pm \beta & 0 & \pm \beta & 0 & 0 & 0 \\
0 & 0 & \pm \beta & 0 & 0 & 0 & \pm \beta & 0 \\
0 & 0 & 0 & 0 & \pm \beta & 0 & \pm \beta & 0 \\
0 & \pm \beta & 0 & \pm \beta & 0 & 0 & 0 & 0 \\
0 & \pm \beta & 0 & 0 & 0 & \pm \beta & 0 & 0 \\
0 & \pm \beta & 0 & 0 & 0 & 0 & 0 & \pm \beta \\
0 & 0 & 0 & \pm \beta & 0 & \pm \beta & 0 & 0 \\
0 & 0 & 0 & \pm \beta & 0 & 0 & 0 & \pm \beta \\
0 & 0 & 0 & 0 & 0 & \pm \beta & 0 & \pm \beta
\end{array}\right]
$$

Let us consider two PBIBD designs with $\mathrm{v}=8$ and other parameters are: $\mathrm{b}_{1}=16, \mathrm{r}_{1}=4, \mathrm{k}_{1}=2, \lambda_{1}^{1}=1, \lambda_{2}^{1}==0$, $\mathrm{b}_{2}=12, \mathrm{r}_{2}=3, \mathrm{k}_{2}=2, \lambda_{1}^{2}=0, \lambda_{2}^{2}=1$ We have $\mathrm{n}_{1}=3$ and $\mathrm{n}_{2}=4 ; \mathrm{N}_{1}=12$ and $\mathrm{N}_{2}=16$.
$\Sigma \mathrm{x}^{4}{ }_{\mathrm{ui}}=4 \alpha^{4}+3 \beta^{4}$
$\sum \mathrm{x}^{2}{ }_{\mathrm{ui}} \mathrm{X}^{2}{ }_{\mathrm{uj}}=16 \alpha^{4}+12 \beta^{4}$

For the value of $\alpha^{2} / \beta^{2}=\frac{1}{3}$, the 28 design points for 8 factors satisfy all the conditions of rotatability.

References

1. Ameen Saheb Sk and Bhatra Charyulu N.Ch (2017): "Note on Reduction of Dimensionality for Second order Response Surface Design Model", Communications in Statistics: Theory and Methods, Taylor and Francis Series, Vol.46, No.7, pp 3520-352.
2. Bhatra Charyulu, N. Ch. (2006): "A method for the construction of SORD", Bulletin of Pure and Applied Science, Math \& Stat, Vol.25E (1), pp 205-208.
3. Deepthi, T. and Bhatra Charyulu, N.Ch. (2020): "Construction of a New Series of SORD", Sambodhi, Vol. 43(02), pp $47-50$, ISSN No $2249-6661$.
4. Box, G. E. P., and Draper, N. R. (1959): "A basis for the selection of a response surface design", Journal of American Statistical Association, 54, pp 622-1439.
5. Das, M. N., and Narasimham, V. L. (1962): "Construction of rotatable designs through balanced incomplete block designs", Annals of Mathematical Statistics, 33(4), pp 1421-1439.
6. Tyagi, B.N. and Rizwi S. K.H. (1979): "A note on construction of balanced ternary designs, Journal of Indian Society for Agricultural Statistics, Vol 31, pp 121-125
