Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556
Research Article

An Efficient Parallel Algorithm for finding Bridges in a Dense Graph

Ashwani Kumar 2, Aditya Pratap Singh ®

a.bIndependent Scholar Delhi, India
email:# ashwanisinghnet@gmail.com, Ppratapadityal997@gmail.com

Avrticle History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28
April 2021

Abstract: This paper presents a simple and efficient approach for finding the bridges and failure points in a densely connected
network mapped as a graph. The algorithm presented here is a parallel algorithm which works in a distributed environment.
The main idea of our algorithm is to generate a sparse certificate for a graph and finds bridges using a simple DFS (Depth First
Search). We first decompose the graph into independent and minimal subgraphs using a minimum spanning forest algorithm.
To identify the bridges in the graph network, we convert these subgraphs into a single compressed graph and use a DFS
approach to find bridges. The approach presented here is optimized for the use cases of dense graphs and gives the time
complexity of O(E/M + Vlog(M)), for a given graph G(V,E) running on M machines.

Keywords: Bridges, Parallel Algorithms, Distributed Sys- tems, Graph Theory, Computational Complexity

1. Introduction

The bridges of a graph G(V, E) are those edges which, if removed individually, will contribute to increase the
connected components of graph G [2]. Finding bridges in a graph has many applications in real-world
systems like network bottlenecks, fault determination, vulnerabilities in a connected network and are useful for
designing reliable networks. Of particular interest has been to develop algorithms for densely connected networks
in real-world systems. In this direction, Alan P. Sprague and K.H. Kulkarni have presented algorithms for bridges
in a parallel setting which relies heavily on the parallel prefix algorithm and is limited to interval graphs [1].
But the algorithms for dense networks are not much worked upon, unlike sparse graphs such as C. Savage and
Joseph Ja’Ja’[3], which are optimized for sparse graphs witha time complexity of (log n) using (n®) processors.
These approaches work well for sparse graphs, but the algorithms don’t perform well for dense networks. In this
paper, we designa simple and efficient algorithm that considers a simple Depth First Search (DFS) approach to be
worked in a parallel setting optimized for densely connected graphs.

1.1.Motivation

One of the crucial facts that motivate our method to find bridges and its algorithm in sequential environment is
that finding bridges in a graph is a relatively easier task. In agraph, one can use a simple depth-first search
to find bridges. O 0]

But in a distributed system parallelizing a DFS is not trivial and poses some challenges. In summary, it is not
efficient to parallelize the idea of simple DFS to find a bridge. But we can optimize this approach for dense
graphs by making several independent sparse graphs and then run our bridge finding algorithm on different
machines, which is later formed into a single graph. We use this idea in our algorithm. Since in real- world
scenarios of the network, graphs are dense, and this approach is usually very fast. Another advantage of such an
algorithm is the simplicity of implementation in identifying the bridges in dense graphs. The idea of breaking
graphs into sparse subgraphs is conducive to distributed environment.

1.2.0ur Contribution

We design a parallel algorithm that is simple to under-stand and implement. The idea of making independent
sparse subgraphs makes the sequential algorithm of finding bridges applicable to parallel environments. The most
important aspect of our algorithm is how it is optimized for a dense network. We use certificate theorem to exploit
graphs’ properties and make our simple sequential algorithm efficient for a distributedsystem.

1.3.Related Work

There are several parallel algorithms for finding bridges in a graph. For a graph G with n vertices and m
edges, Yung H. Tsin and Francis Y. Chin [10] provided the parallel algorithm for finding bridges in a connected
graph. Recent work to find articulation points that can be modified to find bridges is done by George M. Slota and
Kamesh Madduri [5] to find cutpoints in a large undirected sparse graph. The algorithm is based on identifying
articulation points, and labeling edges using multiple connectivity queries. Alan P. Sprague and K.H. Kulkarni do
another work to find bridges in a parallel setting that relies on interval graphs [1].

4550

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556
Research Article

1.4.0rganisation of Paper

The paper is organized into various sections. In Section 2, we provide the existing algorithms related to our
work. In Section 3, we describe and present our approach to solving the problem and various lemmas used to
get to the final idea. Section 4 describes the formal process and algorithm for our

approach. The analysis of time complexity is presented in section 5. A comparative analysis is done with the
existing work in section 6. We provide ideas for further improvements and optimizations in Section 7. In Section
8, concluding pointsare then made, which marks the end of our paper followingthe references section.

2.Existing Work

An efficient bridge algorithm is provided by Carla Savage and Joseph Ja’Ja’. It is given that for a graph
G(V, E) be a connected, undirected graph, an algorithm with time complexity of (n? log® n) is provided [3].
Yung H. Tsin and Francis Y. Chin [10] presents a parallel algorithm to find all bridges in a connected, undirected
graphin (" + log? n) time with nK(K 1) processors. An inverted tree S(V, E) is constructed for graph G(V,
E) and th91, with the help of (HLCA) highest lowest common ancestor bridges are computed. Susanne E.
Hambrusch [9] paper discusses an approach to find bridges and biconnectivity on Minimum Area Meshes. The
presented algorithms find the bridge-conne@ted components in (n 2) time for a 2- dimensional mesh of (n) area,
both input in the form of an adjacency matrix and in the form of edges.

3.0ur Approach

We design a simple and efficient approach to solve the problem of finding bridges in a graph by
extending the DFS (Depth First Search) to find bridges in a graph. We extend the sequential algorithm for
computing bridges using depth-first search (DFS) algorithm for graph G = (V, E) which runs in (V + E) time
[8]. The ingn of our algorithm is optimized for ‘the case when there are a huge number of edges in the
graph network but few nodes. Since it is a known fact that DFS is not very well suited for working in a
parallel setting due to constraints with node discovery, i.e., there might be a large subtree below a node, and
since one machine would be working on that node, it will be somewhat equivalent to a sequential algorithm.
Although there are some ways to tackle this problem, it’s still not a great idea to directly parallelize a DFS
algorithm. Our algorithm works to use the multiple nodes of a cluster machine to run a DFS on a reduced graph
in such a way that the result from individual machines can be later combined to get to the final result. Our
approach would be similar to a divide and conquer algorithm; first, we divide our graph into sparse certificates
and find a solution by distributingit on different machines, which are later combined to form the final solution.

Consider a graph G = (V, E). We will find a sparse certificate S where S E. Also, for this sparse certificate
we can say that forzany set X V.V, G(V,E Y) =G(V,S Y).So we can say that a sparse certificate with an
edge set S can replace the original edge set E and the 2 graphs formed respectively would be equivalent for our
purpese of finding bridges [4].

Lemma 1. Let there be a graph G(V, E) and let the number of nodes be n and number of edges be m. Then
there existsa sparse certificate edge set S for graph G such that S2(n 1) where S is the number of
edges for the sparsecertificate edge set [4].

4551

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556
Research Article

Mow we define owr approach to find the bridges m =
distributed envirconment. Wwe will use the paradigm of discide
end congusr in which we will disride the graph & edge set
E mte Ad random edge sets as UL, LR, L&, . Lo where
E=rLr °r TCE Uz where A iz the number of machmes
m owur distribfited custer. Ohwawr slgorithim w1l runm in & phases
where & = lozx AF + 1. We will hawe A machmes numbersd
= o 'l:;, 'l::, 'l:;, - iz

In the first phases e=ach of the ™ machines wrill be grven the
™ graph &dT7, L. INow on e=ach of the machims an slgorithm
tor fimd = sperse coertficats will run and prowvides the owtpuat
where 357 iz the sparse csrtificats for edges st LG zlso from
the lemma 1 we can sayv that 35 {E{n _ 1% where m 1s the
total Dumber of podes in the graph SR, DL

MNow_ in the second phass we will combins thes =solutions
from the first Fhase where each machine gase the output with
a Sparse O cate praph GV, &) where (35, _Z2(r _ 13, In
thiz phase the : znd & machines will combine their sparse
certificates FAn and J& which will maks the mput graph =s
e S0 and we can say that A& Fo5, A _ 4 now we
wrill Tun our sparse certificate zalgorithm on > machine as
machms remains tdle. The cutput graph of this phase would
rezult im a sparse graph asz & = - S0 oand we can dlso
say that X _ Z(n 1) a= miven in the lemmma

Therefore e can fosmalize a generzl disvides =2nd conguer
approzch where thiz algerithm would run untl O phase and
wa will have owr final sparse graph az MV, S whers = -
21— 1 =2nd = 1= the sporse osrtificats formed throuzh thess
zewerzl phasss. We cazn desoribe thiz procsss mathematiczllss
az followimg,

Eefore the gthphase:

Lat, Gy=(V, LU Lz U D= U U Lieme—) Ui =

For g=0, &= (17, L)

After the 1™ phase the set X; 15 a sparse certificate of Gy
and | X < Z(r _ 1), Also, after the @_ 1 phases 3G 13 the
fmal sparse certificate of G amd Jo Z2in 1) Now, at this
point the machine ME runs a2 simple DFS algorithm on the
fmazl sparse graph & = (V, X)) and computes the bridges m
thiz graph az it follows from the statement of sparse certificates
that GV, E Y) = &V, S ¥). Fig 1 depicts this proocess
wisually. = =

5.Algorithm

5.1.General Dfs Algorithm

This gives us the simple DFS algorithm for finding bridges at the final point in our sparse graph [8]. We can
see the Algorithm 1 for the formal explanation.

5.2.Sparse certificates algorithm

In this section we see the major algorithm to find the sparse certificates of a edge set with the help of a data
structure calledunion-find [6] and the subroutine DFS is used to traverse the

4552

Turkish Journal of Computer and Mathematics Education

Vol.12 No.10 (2021), 4550-4556

I ———————————————— 2 csegch Article

The final sparse graph is
formed here and the dfs
algorithm to find bridges is
ran in this phase

N

The individual edge sets U, is

given here and the algorithm to

find sparse certificate is ran in
each machine

Co

(M-1)th phase

1st phase

Cm

Oth phase

Fig. 1. Phases of Algorithm

Algorithm 1 Bridge algorithm

1. procedure DFS-BRIDGE(start)

2: time O

3. disc[start] time+1

4: low[start] time+1

5. for all vertex v in the graph G do

6: if there is an edge between (start, v) then
7 if v is visited then

8: parent[v] start

o: DFS-BRIDGE(V)

10: low[start] min(low[start], low[v])
11: if low[v] > disc[start] then

12: mark bridge from start to v

13: elself v is not the parent of start

14: low[start] < min(low[start], disc[v])
15: done

graph, presented in Algorithm 3. We can see the Algorithm 2for the formal explanation.

Algorithm 2 Sparse certificates algorithm

1: procedure CERTIFICATE

2:

3
4:
5

Construct a Union-Find Data structure

Pick a vertex and start a DFS algorithm subroutine

Check for cycles using Union-Find functions and weget a graph F

F is the spanning forest for graph G = (V,E)

4553

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

Research Article

6. Runtime Analysis

DFS algorithm for finding bridges in an undirected graph G(V, E) is a sequential algorithm which takes (V
+ E) time on a single machine [8]. The alggithm to find Sparse

006 T
T 004+
3
3
£ o021
@
E
'_
0.00 t t t t t t } } t
2 4 6 8 10 15 25 50 100
M
Algorithm 3 Subroutine - DFS algorithm
i procedure DFs(G, V) d vis the source vertsx
Z Stacks §} o start with an empty stack
3 pushSv _
4 DFS-BRIDGE(v)
5 while 5 iz not empty do
&: U, pops
T: if not visited[u] then
g visted[]— trues
o for each unvizited neighbour w of u do
10 pushs — w
11: done

Fig. 2. M is number of machines, |E| = 10000000, |V | = 100000

4554

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556
Research Article

certificates m a graph & = (W7, E) uses a data structare called
dizjommt union set which providez function to detect cyvcles
in {%) and the final algorithm constructed above mms in a
O + E) ttme complexity on a2 single machinme.

Further, we will discuss the time complexity for our algo-
rithm m a distmibuted svstem envwonment.

Our zlgorithm to fmd sperse certificates takegqy (W + E)
tme where m ouwr approach we found a method to make the
reduced set E as S where S| _ 2V, _ 1) s0 we can say
that the tmme complexity is (V) for any g™ phase, where
g =0. For ¢ = 0 this would be given as vV + &) where
A 1z the number of machimes. Conseguently, the fifst phase
takes O +-=) tme on each machme and each of the O — 1
remaining 1::-]1::":'%[23 nms m CNT7) ttme on each machme. Thus,
the ttme complexity of this sclutton 13 OV HF +WV (O—1)) =
My O+ = :I-F:J'-'J'_'I.EI!'-E D= log(Ad+ 1) ﬂiarlzeics?éf the %.ual i;l;ne
complexity of the seolution is,:, ?5.: + T log (AL,

Fizg 2. Fig 3 . Fig 4 depictse how our algorithm works for
different wariables m the system. It shows the behasrour of
the zlgorithm presented here when each of the porameters zre
changed.

7.Comparative Analysis

For the comparative analysis we picked the algorithm for finding bridges by Carla Savage and Joseph Ja’Ja’
[3] and we can see from the Fig 5 that the algorithm presented here works

setting to further optimize our approach. There is some notable work done to improve union find algorithms in a
distributed environment such as given by Fredrik Manne and Md. MostofaAli Patwary [7].

0020 +
— 0015 +
)
=
=
8 00104
]
£ 00051
@
E
= 0.000 t
QB & L » & B
S I & S £¢34§§ §¢!q§9
V|
Fig. 3. [V is number of vertex, |E| = 100000, M = 10
0.015 7
w0010 +
=
=
2
8 0005+
£
@
E 0.000 —t —t +
A PP SPFF PSP S HS
eSS S S EFES S
WS '\Q@

4555

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 4550-4556

Research Article

Fig. 4. |E| is number of edges, |V | = 100000, M = 10

really well for dense graphs and eclipses the other algorithm as we go on increasing the number of edges in

the graph.

8.Further Improvements

For further improving the solution provided in this paper we can go on to parallelize it further. The
algorithm that we are using to find the sparse certificate is currently a sequential approach. This algorithm can
be implemented in a parallel

9.Conclusions

In the paper, a unique parallel approach for identifying the bridges in a densely connected graph for a
distributed environment is presented. The runtime analysis shows promis- ing result for densely connected
networks and graphs when compared with other works done in this field

References

1. Alan P. Sprague, & K.H. Kulkarni (1992). Optimal parallel algorithms for finding cut vertices and
bridges of interval graphs. Information Processing Letters, 42(4), 229 - 234.

2. Bolloba’s, Be'la (1998), Modern Graph Theory, Graduate Texts in Math- ematics, 184, New York:
Springer-Verlag, p. 6, ISBN 0-387-98488-7, MR 1633290.

3. C. Savage, J. Ja’Ja’, Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput. 10
(4) (1981) 682-691

4. Cheriyan, J.,, Kao, M.Y., & Thurimella, R. (1993). Scan-First Search and Sparse Certificates: An
Improved Parallel Algorithm for k -Vertex ConnectivitySIAM Journal on Computing, 22, 157-174.

5. G. M. Slota, & K. Madduri (2014). Simple parallel biconnectivity algo- rithms for multicore platforms.
In 2014 21st International Conference on High Performance Computing (HiPC) (pp. 1-10).

6. Galil, Z., & ltaliano, G. (1991). Data Structures and Algorithms for Disjoint Set Union ProblemsACM
Comput. Surv., 23(3), 319-344.

7. Manne, F., & Patwary, M. (2009). A Scalable Parallel Union-Find Algorithm for Distributed Memory
Computers

8. Shiva Basava P, https://ig.opengenus.org/find-all-bridges-in-graph

9. Susanne E. Hambrusch (1985). Parallel Algorithms for Bridge- and Bi-

10. Connectivity on Minimum Area Meshes

11. YungH. Tsin, & Francis Y. Chin (1983). A general program scheme for finding bridgesinformation

Processing Letters, 17(5), 269 - 272.

4556

